Fooocus/modules/expansion.py
2023-10-30 21:17:38 -07:00

98 lines
3.6 KiB
Python

import os
import torch
import math
import fcbh.model_management as model_management
from transformers.generation.logits_process import LogitsProcessorList
from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
from modules.path import fooocus_expansion_path
from fcbh.model_patcher import ModelPatcher
# limitation of np.random.seed(), called from transformers.set_seed()
SEED_LIMIT_NUMPY = 2**32
def safe_str(x):
x = str(x)
for _ in range(16):
x = x.replace(' ', ' ')
return x.strip(",. \r\n")
def remove_pattern(x, pattern):
for p in pattern:
x = x.replace(p, '')
return x
class FooocusExpansion:
def __init__(self):
self.tokenizer = AutoTokenizer.from_pretrained(fooocus_expansion_path)
positive_words = open(os.path.join(fooocus_expansion_path, 'positive.txt'), encoding='utf-8').read()
positive_words = positive_words.lower().replace(' ', '').replace('\n', '').split(',')
# print(', '.join(sorted(list(set(positive_words)))))
# t198 = self.tokenizer('\n', return_tensors="np")
# t11 = self.tokenizer(',', return_tensors="np")
# positive_ids = [11, 198, self.tokenizer.eos_token_id]
positive_ids = [11]
self.bad_words_ids = []
for k, v in self.tokenizer.vocab.items():
if k.replace('Ġ', '') not in positive_words and v not in positive_ids:
self.bad_words_ids.append([v])
self.model = AutoModelForCausalLM.from_pretrained(fooocus_expansion_path)
self.model.eval()
load_device = model_management.text_encoder_device()
offload_device = model_management.text_encoder_offload_device()
# MPS hack
if model_management.is_device_mps(load_device):
load_device = torch.device('cpu')
offload_device = torch.device('cpu')
use_fp16 = model_management.should_use_fp16(device=load_device)
if use_fp16:
self.model.half()
self.patcher = ModelPatcher(self.model, load_device=load_device, offload_device=offload_device)
print(f'Fooocus Expansion engine loaded for {load_device}, use_fp16 = {use_fp16}.')
def __call__(self, prompt, seed):
if prompt == '':
return ''
if self.patcher.current_device != self.patcher.load_device:
print('Fooocus Expansion loaded by itself.')
model_management.load_model_gpu(self.patcher)
seed = int(seed) % SEED_LIMIT_NUMPY
set_seed(seed)
prompt = safe_str(prompt) + ','
tokenized_kwargs = self.tokenizer(prompt, return_tensors="pt")
tokenized_kwargs.data['input_ids'] = tokenized_kwargs.data['input_ids'].to(self.patcher.load_device)
tokenized_kwargs.data['attention_mask'] = tokenized_kwargs.data['attention_mask'].to(self.patcher.load_device)
current_token_length = int(tokenized_kwargs.data['input_ids'].shape[1])
max_token_length = 75 * int(math.ceil(float(current_token_length) / 75.0))
max_new_tokens = max_token_length - current_token_length
# https://huggingface.co/blog/introducing-csearch
# https://huggingface.co/docs/transformers/generation_strategies
features = self.model.generate(**tokenized_kwargs,
top_k=100,
max_new_tokens=max_new_tokens,
do_sample=True,
bad_words_ids=self.bad_words_ids)
response = self.tokenizer.batch_decode(features, skip_special_tokens=True)
result = safe_str(response[0])
return result