import os import torch import math import fcbh.model_management as model_management from transformers.generation.logits_process import LogitsProcessorList from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed from modules.path import fooocus_expansion_path from fcbh.model_patcher import ModelPatcher # limitation of np.random.seed(), called from transformers.set_seed() SEED_LIMIT_NUMPY = 2**32 def safe_str(x): x = str(x) for _ in range(16): x = x.replace(' ', ' ') return x.strip(",. \r\n") def remove_pattern(x, pattern): for p in pattern: x = x.replace(p, '') return x class FooocusExpansion: def __init__(self): self.tokenizer = AutoTokenizer.from_pretrained(fooocus_expansion_path) positive_words = open(os.path.join(fooocus_expansion_path, 'positive.txt'), encoding='utf-8').read() positive_words = positive_words.lower().replace(' ', '').replace('\n', '').split(',') # print(', '.join(sorted(list(set(positive_words))))) # t198 = self.tokenizer('\n', return_tensors="np") # t11 = self.tokenizer(',', return_tensors="np") # positive_ids = [11, 198, self.tokenizer.eos_token_id] positive_ids = [11] self.bad_words_ids = [] for k, v in self.tokenizer.vocab.items(): if k.replace('Ġ', '') not in positive_words and v not in positive_ids: self.bad_words_ids.append([v]) self.model = AutoModelForCausalLM.from_pretrained(fooocus_expansion_path) self.model.eval() load_device = model_management.text_encoder_device() offload_device = model_management.text_encoder_offload_device() # MPS hack if model_management.is_device_mps(load_device): load_device = torch.device('cpu') offload_device = torch.device('cpu') use_fp16 = model_management.should_use_fp16(device=load_device) if use_fp16: self.model.half() self.patcher = ModelPatcher(self.model, load_device=load_device, offload_device=offload_device) print(f'Fooocus Expansion engine loaded for {load_device}, use_fp16 = {use_fp16}.') def __call__(self, prompt, seed): if prompt == '': return '' if self.patcher.current_device != self.patcher.load_device: print('Fooocus Expansion loaded by itself.') model_management.load_model_gpu(self.patcher) seed = int(seed) % SEED_LIMIT_NUMPY set_seed(seed) prompt = safe_str(prompt) + ',' tokenized_kwargs = self.tokenizer(prompt, return_tensors="pt") tokenized_kwargs.data['input_ids'] = tokenized_kwargs.data['input_ids'].to(self.patcher.load_device) tokenized_kwargs.data['attention_mask'] = tokenized_kwargs.data['attention_mask'].to(self.patcher.load_device) current_token_length = int(tokenized_kwargs.data['input_ids'].shape[1]) max_token_length = 75 * int(math.ceil(float(current_token_length) / 75.0)) max_new_tokens = max_token_length - current_token_length # https://huggingface.co/blog/introducing-csearch # https://huggingface.co/docs/transformers/generation_strategies features = self.model.generate(**tokenized_kwargs, top_k=100, max_new_tokens=max_new_tokens, do_sample=True, bad_words_ids=self.bad_words_ids) response = self.tokenizer.batch_decode(features, skip_special_tokens=True) result = safe_str(response[0]) return result