Solve all GPT problems forever
This commit is contained in:
parent
07b0a37de0
commit
1b96d3ba0b
@ -2,7 +2,7 @@ from modules.expansion import FooocusExpansion
|
||||
|
||||
expansion = FooocusExpansion()
|
||||
|
||||
text = 'stone'
|
||||
text = 'a handsome man'
|
||||
|
||||
for i in range(64):
|
||||
print(expansion(text, seed=i))
|
||||
|
@ -1 +1 @@
|
||||
version = '2.1.767'
|
||||
version = '2.1.769'
|
||||
|
1
models/prompt_expansion/fooocus_expansion/positive.txt
Normal file
1
models/prompt_expansion/fooocus_expansion/positive.txt
Normal file
File diff suppressed because one or more lines are too long
@ -1,3 +1,4 @@
|
||||
import os
|
||||
import torch
|
||||
import math
|
||||
import fcbh.model_management as model_management
|
||||
@ -9,33 +10,6 @@ from fcbh.model_patcher import ModelPatcher
|
||||
|
||||
# limitation of np.random.seed(), called from transformers.set_seed()
|
||||
SEED_LIMIT_NUMPY = 2**32
|
||||
neg_inf = - 8192.0
|
||||
|
||||
|
||||
preparation_templates = [
|
||||
'{prompt}, extremely detailed, ',
|
||||
# '{prompt}, intricate, ',
|
||||
]
|
||||
|
||||
dangrous_patterns = '[]【】()()|::'
|
||||
|
||||
black_list = ['art', 'digital', 'paint', 'painting', 'painted', 'drawing', 'draw', 'drawn',
|
||||
'concept', 'illustration', 'illustrated', 'illustrate',
|
||||
'face', 'faces', 'eye', 'eyes', 'hand', 'hands', 'head', 'heads', 'leg', 'legs', 'arm', 'arms',
|
||||
'shoulder', 'shoulders', 'body', 'facial', 'skin', 'character', 'human',
|
||||
'portrait', 'portraits', 'port', 'cloth',
|
||||
'monster', 'artistic', 'oil', 'brush', 'ugly', 'ug',
|
||||
'artwork', 'artworks', 'pencil', 'line', 'sketch', 'cartoon', 'white', 'black', 'red',
|
||||
'skeletal', 'skeleton', 'a', 'the', 'background', 'blur', 'blurred', 'depth', 'no', 'of',
|
||||
'catdog', 'cat', 'fur',
|
||||
'mugshot', 'selfie',
|
||||
'!', '!!', '!!!', '!!!!', '!!!!!', '!!!!!!', '!!!!!!!', '-', '(', ')', ':', '”', '"', '.']
|
||||
|
||||
black_list = black_list + [k.upper() for k in black_list] + [k.capitalize() for k in black_list]
|
||||
black_list.remove('Art')
|
||||
black_list.remove('ART')
|
||||
|
||||
black_list = black_list + ['Ġ' + k for k in black_list]
|
||||
|
||||
|
||||
def safe_str(x):
|
||||
@ -54,11 +28,21 @@ def remove_pattern(x, pattern):
|
||||
class FooocusExpansion:
|
||||
def __init__(self):
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(fooocus_expansion_path)
|
||||
self.vocab = self.tokenizer.vocab
|
||||
self.logits_bias = torch.zeros((1, len(self.vocab)), dtype=torch.float32)
|
||||
for k, v in self.vocab.items():
|
||||
if k in black_list:
|
||||
self.logits_bias[0, v] = neg_inf
|
||||
|
||||
positive_words = open(os.path.join(fooocus_expansion_path, 'positive.txt'), encoding='utf-8').read()
|
||||
positive_words = positive_words.lower().replace(' ', '').replace('\n', '').split(',')
|
||||
|
||||
# print(', '.join(sorted(list(set(positive_words)))))
|
||||
|
||||
# t198 = self.tokenizer('\n', return_tensors="np")
|
||||
# t11 = self.tokenizer(',', return_tensors="np")
|
||||
# positive_ids = [11, 198, self.tokenizer.eos_token_id]
|
||||
positive_ids = [11]
|
||||
|
||||
self.bad_words_ids = []
|
||||
for k, v in self.tokenizer.vocab.items():
|
||||
if k.replace('Ġ', '') not in positive_words and v not in positive_ids:
|
||||
self.bad_words_ids.append([v])
|
||||
|
||||
self.model = AutoModelForCausalLM.from_pretrained(fooocus_expansion_path)
|
||||
self.model.eval()
|
||||
@ -79,10 +63,6 @@ class FooocusExpansion:
|
||||
self.patcher = ModelPatcher(self.model, load_device=load_device, offload_device=offload_device)
|
||||
print(f'Fooocus Expansion engine loaded for {load_device}, use_fp16 = {use_fp16}.')
|
||||
|
||||
def logits_processor(self, input_ids, scores):
|
||||
self.logits_bias = self.logits_bias.to(scores)
|
||||
return scores + self.logits_bias
|
||||
|
||||
def __call__(self, prompt, seed):
|
||||
if prompt == '':
|
||||
return ''
|
||||
@ -93,8 +73,7 @@ class FooocusExpansion:
|
||||
|
||||
seed = int(seed) % SEED_LIMIT_NUMPY
|
||||
set_seed(seed)
|
||||
prompt = safe_str(prompt)
|
||||
prompt = preparation_templates[seed % len(preparation_templates)].replace('{prompt}', prompt)
|
||||
prompt = safe_str(prompt) + ','
|
||||
|
||||
tokenized_kwargs = self.tokenizer(prompt, return_tensors="pt")
|
||||
tokenized_kwargs.data['input_ids'] = tokenized_kwargs.data['input_ids'].to(self.patcher.load_device)
|
||||
@ -104,19 +83,15 @@ class FooocusExpansion:
|
||||
max_token_length = 75 * int(math.ceil(float(current_token_length) / 75.0))
|
||||
max_new_tokens = max_token_length - current_token_length
|
||||
|
||||
logits_processor = LogitsProcessorList([self.logits_processor])
|
||||
|
||||
# https://huggingface.co/blog/introducing-csearch
|
||||
# https://huggingface.co/docs/transformers/generation_strategies
|
||||
features = self.model.generate(**tokenized_kwargs,
|
||||
num_beams=1,
|
||||
top_k=100,
|
||||
max_new_tokens=max_new_tokens,
|
||||
do_sample=True,
|
||||
logits_processor=logits_processor)
|
||||
bad_words_ids=self.bad_words_ids)
|
||||
|
||||
response = self.tokenizer.batch_decode(features, skip_special_tokens=True)
|
||||
result = safe_str(response[0])
|
||||
|
||||
result = response[0]
|
||||
result = safe_str(result)
|
||||
result = remove_pattern(result, dangrous_patterns)
|
||||
return result
|
||||
|
Loading…
Reference in New Issue
Block a user