Solve all GPT problems forever

This commit is contained in:
lllyasviel 2023-10-30 21:17:38 -07:00 committed by GitHub
parent 07b0a37de0
commit 1b96d3ba0b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 23 additions and 47 deletions

View File

@ -2,7 +2,7 @@ from modules.expansion import FooocusExpansion
expansion = FooocusExpansion()
text = 'stone'
text = 'a handsome man'
for i in range(64):
print(expansion(text, seed=i))

View File

@ -1 +1 @@
version = '2.1.767'
version = '2.1.769'

File diff suppressed because one or more lines are too long

View File

@ -1,3 +1,4 @@
import os
import torch
import math
import fcbh.model_management as model_management
@ -9,33 +10,6 @@ from fcbh.model_patcher import ModelPatcher
# limitation of np.random.seed(), called from transformers.set_seed()
SEED_LIMIT_NUMPY = 2**32
neg_inf = - 8192.0
preparation_templates = [
'{prompt}, extremely detailed, ',
# '{prompt}, intricate, ',
]
dangrous_patterns = '[]【】()|:'
black_list = ['art', 'digital', 'paint', 'painting', 'painted', 'drawing', 'draw', 'drawn',
'concept', 'illustration', 'illustrated', 'illustrate',
'face', 'faces', 'eye', 'eyes', 'hand', 'hands', 'head', 'heads', 'leg', 'legs', 'arm', 'arms',
'shoulder', 'shoulders', 'body', 'facial', 'skin', 'character', 'human',
'portrait', 'portraits', 'port', 'cloth',
'monster', 'artistic', 'oil', 'brush', 'ugly', 'ug',
'artwork', 'artworks', 'pencil', 'line', 'sketch', 'cartoon', 'white', 'black', 'red',
'skeletal', 'skeleton', 'a', 'the', 'background', 'blur', 'blurred', 'depth', 'no', 'of',
'catdog', 'cat', 'fur',
'mugshot', 'selfie',
'!', '!!', '!!!', '!!!!', '!!!!!', '!!!!!!', '!!!!!!!', '-', '(', ')', ':', '', '"', '.']
black_list = black_list + [k.upper() for k in black_list] + [k.capitalize() for k in black_list]
black_list.remove('Art')
black_list.remove('ART')
black_list = black_list + ['Ġ' + k for k in black_list]
def safe_str(x):
@ -54,11 +28,21 @@ def remove_pattern(x, pattern):
class FooocusExpansion:
def __init__(self):
self.tokenizer = AutoTokenizer.from_pretrained(fooocus_expansion_path)
self.vocab = self.tokenizer.vocab
self.logits_bias = torch.zeros((1, len(self.vocab)), dtype=torch.float32)
for k, v in self.vocab.items():
if k in black_list:
self.logits_bias[0, v] = neg_inf
positive_words = open(os.path.join(fooocus_expansion_path, 'positive.txt'), encoding='utf-8').read()
positive_words = positive_words.lower().replace(' ', '').replace('\n', '').split(',')
# print(', '.join(sorted(list(set(positive_words)))))
# t198 = self.tokenizer('\n', return_tensors="np")
# t11 = self.tokenizer(',', return_tensors="np")
# positive_ids = [11, 198, self.tokenizer.eos_token_id]
positive_ids = [11]
self.bad_words_ids = []
for k, v in self.tokenizer.vocab.items():
if k.replace('Ġ', '') not in positive_words and v not in positive_ids:
self.bad_words_ids.append([v])
self.model = AutoModelForCausalLM.from_pretrained(fooocus_expansion_path)
self.model.eval()
@ -79,10 +63,6 @@ class FooocusExpansion:
self.patcher = ModelPatcher(self.model, load_device=load_device, offload_device=offload_device)
print(f'Fooocus Expansion engine loaded for {load_device}, use_fp16 = {use_fp16}.')
def logits_processor(self, input_ids, scores):
self.logits_bias = self.logits_bias.to(scores)
return scores + self.logits_bias
def __call__(self, prompt, seed):
if prompt == '':
return ''
@ -93,8 +73,7 @@ class FooocusExpansion:
seed = int(seed) % SEED_LIMIT_NUMPY
set_seed(seed)
prompt = safe_str(prompt)
prompt = preparation_templates[seed % len(preparation_templates)].replace('{prompt}', prompt)
prompt = safe_str(prompt) + ','
tokenized_kwargs = self.tokenizer(prompt, return_tensors="pt")
tokenized_kwargs.data['input_ids'] = tokenized_kwargs.data['input_ids'].to(self.patcher.load_device)
@ -104,19 +83,15 @@ class FooocusExpansion:
max_token_length = 75 * int(math.ceil(float(current_token_length) / 75.0))
max_new_tokens = max_token_length - current_token_length
logits_processor = LogitsProcessorList([self.logits_processor])
# https://huggingface.co/blog/introducing-csearch
# https://huggingface.co/docs/transformers/generation_strategies
features = self.model.generate(**tokenized_kwargs,
num_beams=1,
top_k=100,
max_new_tokens=max_new_tokens,
do_sample=True,
logits_processor=logits_processor)
bad_words_ids=self.bad_words_ids)
response = self.tokenizer.batch_decode(features, skip_special_tokens=True)
result = safe_str(response[0])
result = response[0]
result = safe_str(result)
result = remove_pattern(result, dangrous_patterns)
return result