Fooocus GitHub Bot Commit

This commit is generated by a GitHub bot of Fooocus
This commit is contained in:
lllyasviel 2023-10-30 16:54:08 -07:00
parent 34bcfa79c0
commit 07b0a37de0
2 changed files with 13 additions and 26 deletions

View File

@ -160,32 +160,19 @@ def attention_sub_quad(query, key, value, heads, mask=None):
mem_free_total, mem_free_torch = model_management.get_free_memory(query.device, True)
chunk_threshold_bytes = mem_free_torch * 0.5 #Using only this seems to work better on AMD
kv_chunk_size_min = None
kv_chunk_size = None
query_chunk_size = None
#not sure at all about the math here
#TODO: tweak this
if mem_free_total > 8192 * 1024 * 1024 * 1.3:
query_chunk_size_x = 1024 * 4
elif mem_free_total > 4096 * 1024 * 1024 * 1.3:
query_chunk_size_x = 1024 * 2
else:
query_chunk_size_x = 1024
kv_chunk_size_min_x = None
kv_chunk_size_x = (int((chunk_threshold_bytes // (batch_x_heads * bytes_per_token * query_chunk_size_x)) * 2.0) // 1024) * 1024
if kv_chunk_size_x < 1024:
kv_chunk_size_x = None
for x in [4096, 2048, 1024, 512, 256]:
count = mem_free_total / (batch_x_heads * bytes_per_token * x * 4.0)
if count >= k_tokens:
kv_chunk_size = k_tokens
query_chunk_size = x
break
if chunk_threshold_bytes is not None and qk_matmul_size_bytes <= chunk_threshold_bytes:
# the big matmul fits into our memory limit; do everything in 1 chunk,
# i.e. send it down the unchunked fast-path
query_chunk_size = q_tokens
kv_chunk_size = k_tokens
else:
query_chunk_size = query_chunk_size_x
kv_chunk_size = kv_chunk_size_x
kv_chunk_size_min = kv_chunk_size_min_x
if query_chunk_size is None:
query_chunk_size = 512
hidden_states = efficient_dot_product_attention(
query,
@ -229,7 +216,7 @@ def attention_split(q, k, v, heads, mask=None):
gb = 1024 ** 3
tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * element_size
modifier = 3 if element_size == 2 else 2.5
modifier = 3
mem_required = tensor_size * modifier
steps = 1
@ -257,10 +244,10 @@ def attention_split(q, k, v, heads, mask=None):
s1 = einsum('b i d, b j d -> b i j', q[:, i:end].float(), k.float()) * scale
else:
s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) * scale
first_op_done = True
s2 = s1.softmax(dim=-1).to(v.dtype)
del s1
first_op_done = True
r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
del s2

View File

@ -1 +1 @@
version = '2.1.766'
version = '2.1.767'