Each QUIC MUX may allocate buffers for MUX stream emission. These
buffers are then shared with quic_conn to handle ACK reception and
retransmission. A limit on the number of concurrent buffers used per
connection has been defined statically and can be updated via a
configuration option. This commit replaces the limit to instead use the
current underlying congestion window size.
The purpose of this change is to remove the artificial static buffer
count limit, which may be difficult to choose. Indeed, if a connection
performs with minimal loss rate, the buffer count would limit severely
its throughput. It could be increase to fix this, but it also impacts
others connections, even with less optimal performance, causing too many
extra data buffering on the MUX layer. By using the dynamic congestion
window size, haproxy ensures that MUX buffering corresponds roughly to
the network conditions.
Using QCC <buf_in_flight>, a new buffer can be allocated if it is less
than the current window size. If not, QCS emission is interrupted and
haproxy stream layer will subscribe until a new buffer is ready.
One of the criticals parts is to ensure that MUX layer previously
blocked on buffer allocation is properly woken up when sending can be
retried. This occurs on two occasions :
* after an already used Tx buffer is cleared on ACK reception. This case
is already handled by qcc_notify_buf() via quic_stream layer.
* on congestion window increase. A new qcc_notify_buf() invokation is
added into qc_notify_send().
Finally, remove <avail_bufs> QCC field which is now unused.
This commit is labelled MAJOR as it may have unexpected effect and could
cause significant behavior change. For example, in previous
implementation QUIC MUX would be able to buffer more data even if the
congestion window is small. With this patch, data cannot be transferred
from the stream layer which may cause more streams to be shut down on
client timeout. Another effect may be more CPU consumption as the
connection limit would be hit more often, causing more streams to be
interrupted and woken up in cycle.
Define a new QCC counter named <buf_in_flight>. Its purpose is to
account the current sum of all allocated stream buffer size used on
emission.
For this moment, this counter is updated and buffer allocation and
deallocation. It will be used to replace <avail_bufs> once congestion
window is used as limit for buffer allocation in a future commit.
Define a new qc_stream_desc flag QC_SD_FL_OOB_BUF. This is to mark
streams which are not subject to the connection limit on allocated MUX
stream buffer.
The purpose is to simplify handling of QUIC MUX streams which do not
transfer data and as such are not driven by haproxy layer, for example
HTTP/3 control stream. These streams interacts synchronously with QUIC
MUX and cannot retry emission in case of temporary failure.
This commit will be useful once connection buffer allocation limit is
reimplemented to directly rely on the congestion window size. This will
probably cause the buffer limit to be reached more frequently, maybe
even on QUIC MUX initialization. As such, it will be possible to mark
control streams and prevent them to be subject to the buffer limit.
QUIC MUX expose a new function qcs_send_metadata(). It can be used by an
application protocol to specify which streams are used for control
exchanges. For the moment, no such stream use this mechanism.
A limit per connection is put on the number of buffers allocated by QUIC
MUX for emission accross all its streams. This ensures memory
consumption remains under control. This limit is simply explained as a
count of buffers which can be concurrently allocated for each
connection.
As such, quic_conn structure was used to account currently allocated
buffers. However, a quic_conn nevers allocates new stream buffers. This
is only done at QUIC MUX layer. As such, this commit moves buffer
accounting inside QCC structure. This simplifies the API, most notably
qc_stream_buf_alloc() usage.
Note that this commit inverts the accounting. Previously, it was
initially set to 0 and increment for each allocated buffer. Now, it is
set to the maximum value and decrement for each buf usage. This is
considered as clearer to use.
Define a new global keyword tune.quic.frontend.max-window-size. This
allows to set globally the maximum congestion window size for each QUIC
frontend connections.
The default value is 0. It is a special value which automatically derive
the size from the configured QUIC connection buffer limit. This is
similar to the previous "quic-cc-algo" behavior, which can be used to
override the maximum window size per bind line.
load_cfg_in_mem() can continuously reallocate memory in order to load an
extremely large input from /dev/stdin, until it fails with ENOMEM, which means
that process has consumed all available RAM. In case of containers and
virtualized environments it's not very good.
So, in order to prevent this, let's introduce MAX_CFG_SIZE as 10MB, which will
limit the size of input supplied via /dev/stdin.
Some systems require log formats in the CLF format and that meant that I
could not send my logs for proxies in mode tcp to those servers. This
implements a format that uses log variables that are compatble with TCP
mode frontends and replaces traditional HTTP values in the CLF format
to make them stand out. Instead of logging method and URI like this
"GET /example HTTP/1.1" it will log "TCP " and for a response code I
used "000" so it would be easy to separate from legitimate HTTP
traffic. Now your log servers that require a CLF format can see the
timings for TCP traffic as well as HTTP.
It is now possible to use "drop" keyword for "on" lines under a
log-profile section to specify that no log at all should be emitted for
the specified step (setting an empty format was not sufficient to do so
because only the log payload would be empty, not the log header, thus the
log would still be emitted).
It may be useful to selectively disable logging at specific steps for a
given log target (since the log profile may be set on log directives):
log-profile myprof
on request format "blabla" sd "custom sd"
on response drop
New testcase was added to reg-tests/log/log_profiles.vtc
ci_insert() is a function which allows to insert a string <str> of size
<len> at <pos> of the input buffer. This is the equivalent of
ci_insert_line2() but without inserting '\r\n'
As readcfgfile no longer opens configuration files and reads them with fgets,
but performs only the parsing of provided data, let's rename it to parse_cfg by
analogy with read_cfg in haproxy.c.
Let's call load_cfg_in_ram() helper for each configuration file to load it's
content in some area in memory. Adapt readcfgfile() parser function
respectively. In order to limit changes in its scope we give as an argument a
cfgfile structure, already filled in init_args() and in load_cfg_in_ram() with
file metadata and content.
Parser function (readcfgfile()) uses now fgets_from_mem() instead of standard
fgets from libc implementations.
SPOE filter parses its own configuration file, pointed by 'config' keyword in
the configuration already loaded in memory. So, let's allocate and fill for
this a supplementary cfgfile structure, which is not referenced in cfg_cfgfiles
list. This structure and the memory with content of SPOE filter configuration
are freed immediately in parse_spoe_flt(), when readcfgfile() returns.
HAProxy OpenTracing filter also uses its own configuration file. So, let's
follow the same logic as we do for SPOE filter.
Add fgets_from_mem() helper to read lines from configuration files, stored now
as memory chunks. In order to limit changes in the first-level parser code
(readcfgfile()), it is better to reimplement the standard fgets, i.e. to
have a fgets, which can read the serialized data line by line from some memory
area, instead of file stream, and can keep the same behaviour as libc
implementations fgets.
list_append_word() helper was used before only to chain configuration file names
in a list. As now we start to use cfgfile structure which represents entire file
in memory and its metadata, let's adapt this helper to use this structure and
let's rename it to list_append_cfgfile().
Adapt functions, which process configuration files and directories to use
cfgfile structure and list_append_cfgfile() instead of wordlist.
This and following commits serve to prepare loading configuration files in
memory, before parsing them, as we may need to parse some parts of
configuration in different moments of the startup sequence. This is a case of
the new master-worker initialization process. Here we need to read at first
only the global and the program sections and only after some steps
(forking worker, etc) the rest of the configuration.
Add a new structure cfgfile to keep configuration files metadata and content,
loaded somewhere in a memory. Instances of filled cfgfile structures could be
chained in a list, as the order in which they were loaded is important.
We now have a trace_ctx to hold the sess, conn, qc, stream and so on.
This will allow us to pass it across layers so that other helpers can
help fill them.
Ideally it should be passed as an argument to __trace_enabled() by
__trace() so that it can be passed back to the trace callback. But
it seems that trace callbacks are smart enough to figure all their
info when they need them.
With "follow" from one source to another, it becomes possible for a
source to automatically follow another source's tracked pointer. The
best example is the session:
- the "session" source is enabled and has a "lockon session"
-> its lockon_ptr is equal to the session when valid
- other sources (h1,h2,h3 etc) are configured for "follow session"
and will then automatically check if session's lockon_ptr matches
its own session, in which case tracing will be enabled for that
trace (no state change).
It's not necessary to start/pause/stop traces when using this, only
"follow" followed by a source with lockon enabled is needed. Some
combinations might work better than others. At the moment the session
is almost never known from the backend, but this may improve.
The meta-source "all" is supported for the follower so that all sources
will follow the tracked one.
Reuse newly defined tot_time structure to measure various values related
to a QCS lifetime.
First, a timer is used to comptabilize the total QCS lifetime. Then, two
other timers are used to account the total time during which Tx from
stream layer to MUX is blocked, either on lack of buffer or due to
flow-control.
These three timers are reported in qmux_dump_qcs_info(). Thus, they are
available in traces and for QUIC MUX debug string sample.
Define a new utility type tot_time. Its purpose is to be able to account
elapsed time accross multiple periods. Functions are defined to easily
start and stop measures, and return the current value.
Define a new xprt_ops callback named dump_info. This can be used to
extend MUX debug string with infos from the lower layer.
Implement dump_info for QUIC stack. For now, only minimal info are
reported : bytes in flight and size of the sending window. This should
allow to detect if the congestion controller is fine. These info are
reported via QUIC MUX debug string sample.
Extract trace code to dump QCC and QCS instances into dedicated
functions named qmux_dump_qc{c,s}_info(). This will allow to easily
print QCC/QCS infos outside of traces.
These are passed to the underlying mux to retrieve debug information
at the mux level (stream/connection) as a string that's meant to be
added to logs.
The API is quite complex just because we can't pass any info to the
bottom function. So we construct a union and pass the argument as an
int, and expect the callee to fill that with its buffer in return.
Most likely the mux->ctl and ->sctl API should be reworked before
the release to simplify this.
The functions take an optional argument that is a bit mask of the
layers to dump:
muxs=1
muxc=2
xprt=4
conn=8
sock=16
The default (0) logs everything available.
STREAM frames have dedicated handling on retransmission. A special check
is done to remove data already acked in case of duplicated frames, thus
only unacked data are retransmitted.
This handling is faulty in case of an empty STREAM frame with FIN set.
On retransmission, this frame does not cover any unacked range as it is
empty and is thus discarded. This may cause the transfer to freeze with
the client waiting indefinitely for the FIN notification.
To handle retransmission of empty FIN STREAM frame, qc_stream_desc layer
have been extended. A new flag QC_SD_FL_WAIT_FOR_FIN is set by MUX QUIC
when FIN has been transmitted. If set, it prevents qc_stream_desc to be
freed until FIN is acknowledged. On retransmission side,
qc_stream_frm_is_acked() has been updated. It now reports false if
FIN bit is set on the frame and qc_stream_desc has QC_SD_FL_WAIT_FOR_FIN
set.
This must be backported up to 2.6. However, this modifies heavily
critical section for ACK handling and retransmission. As such, it must
be backported only after a period of observation.
This issue can be reproduced by using the following socat command as
server to add delay between the response and connection closure :
$ socat TCP-LISTEN:<port>,fork,reuseaddr,crlf SYSTEM:'echo "HTTP/1.1 200 OK"; echo ""; sleep 1;'
On the client side, ngtcp2 can be used to simulate packet drop. Without
this patch, connection will be interrupted on QUIC idle timeout or
haproxy client timeout with ERR_DRAINING on ngtcp2 :
$ ngtcp2-client --exit-on-all-streams-close -r 0.3 <host> <port> "http://<host>:<port>/?s=32o"
Alternatively to ngtcp2 random loss, an extra haproxy patch can also be
used to force skipping the emission of the empty STREAM frame :
diff --git a/include/haproxy/quic_tx-t.h b/include/haproxy/quic_tx-t.h
index efbdfe687..1ff899acd 100644
--- a/include/haproxy/quic_tx-t.h
+++ b/include/haproxy/quic_tx-t.h
@@ -26,6 +26,8 @@ extern struct pool_head *pool_head_quic_cc_buf;
/* Flag a sent packet as being probing with old data */
#define QUIC_FL_TX_PACKET_PROBE_WITH_OLD_DATA (1UL << 5)
+#define QUIC_FL_TX_PACKET_SKIP_SENDTO (1UL << 6)
+
/* Structure to store enough information about TX QUIC packets. */
struct quic_tx_packet {
/* List entry point. */
diff --git a/src/quic_tx.c b/src/quic_tx.c
index 2f199ac3c..2702fc9b9 100644
--- a/src/quic_tx.c
+++ b/src/quic_tx.c
@@ -318,7 +318,7 @@ static int qc_send_ppkts(struct buffer *buf, struct ssl_sock_ctx *ctx)
tmpbuf.size = tmpbuf.data = dglen;
TRACE_PROTO("TX dgram", QUIC_EV_CONN_SPPKTS, qc);
- if (!skip_sendto) {
+ if (!skip_sendto && !(first_pkt->flags & QUIC_FL_TX_PACKET_SKIP_SENDTO)) {
int ret = qc_snd_buf(qc, &tmpbuf, tmpbuf.data, 0, gso);
if (ret < 0) {
if (gso && ret == -EIO) {
@@ -354,6 +354,7 @@ static int qc_send_ppkts(struct buffer *buf, struct ssl_sock_ctx *ctx)
qc->cntrs.sent_bytes_gso += ret;
}
}
+ first_pkt->flags &= ~QUIC_FL_TX_PACKET_SKIP_SENDTO;
b_del(buf, dglen + QUIC_DGRAM_HEADLEN);
qc->bytes.tx += tmpbuf.data;
@@ -2066,6 +2067,17 @@ static int qc_do_build_pkt(unsigned char *pos, const unsigned char *end,
continue;
}
+ switch (cf->type) {
+ case QUIC_FT_STREAM_8 ... QUIC_FT_STREAM_F:
+ if (!cf->stream.len && (qc->flags & QUIC_FL_CONN_TX_MUX_CONTEXT)) {
+ TRACE_USER("artificially drop packet with empty STREAM frame", QUIC_EV_CONN_TXPKT, qc);
+ pkt->flags |= QUIC_FL_TX_PACKET_SKIP_SENDTO;
+ }
+ break;
+ default:
+ break;
+ }
+
quic_tx_packet_refinc(pkt);
cf->pkt = pkt;
}
When a STREAM frame is retransmitted, a check is performed to remove
range of data already acked from it. This is useful when STREAM frames
are duplicated and splitted to cover different data ranges. The newly
retransmitted frame contains only unacked data.
This process is performed similarly in qc_dup_pkt_frms() and
qc_build_frms(). Refactor the code into a new function named
qc_stream_frm_is_acked(). It returns true if frame data are already
fully acked and retransmission can be avoided. If only a partial range
of data is acknowledged, frame content is updated to only cover the
unacked data.
This patch does not have any functional change. However, it simplifies
retransmission for STREAM frames. Also, it will be reused to fix
retransmission for empty STREAM frames with FIN set from the following
patch :
BUG/MEDIUM: quic: handle retransmit for standalone FIN STREAM
As such, it must be backported prior to it.
qc_stream_desc had a field <release> used as a boolean. Convert it with
a new <flags> field and QC_SD_FL_RELEASE value as equivalent.
The purpose of this patch is to be able to extend qc_stream_desc by
adding newer flags values. This patch is required for the following
patch
BUG/MEDIUM: quic: handle retransmit for standalone FIN STREAM
As such, it must be backported prior to it.
haproxy supports tunnel establishment through HTTP Upgrade mechanism.
Since the following commit, extended CONNECT is also supported for
HTTP/2 both on frontend and backend side.
commit 9bf957335e
MEDIUM: mux_h2: generate Extended CONNECT from htx upgrade
As specified by HTTP/2 rfc, "h2c" can be used by an HTTP/1.1 client to
request an upgrade to HTTP/2. In haproxy, this is not supported so it
silently ignores this. However, Connection and Upgrade headers are
forwarded as-is on the backend side.
If using HTTP/1 on the backend side and the server supports this upgrade
mechanism, haproxy won't be able to parse the HTTP response. If using
HTTP/2, mux backend tries to incorrectly convert the request to an
Extended CONNECT with h2c protocol, which may also prevent the response
to be transmitted.
To fix this, flag HTTP/1 request with "h2c" or "h2" token in an upgrade
header. On converting the header list to HTX, the upgrade header is
skipped if any of this token is present and the H1_MF_CONN_UPG flag is
removed.
This issue can easily be reproduced using curl --http2 argument to
connect to an HTTP/1 frontend.
This must be backported up to 2.4 after a period of observation.
Decode QUIC MUX connection and stream elements via qcc_show_flags() and
qcs_show_flags(). Flags definition have been moved outside of USE_QUIC
to ease compilation of flags binary.
Add ->get_info() new control layer callback definition to protocol struct to
retreive statiscal counters information at transport layer (TCPv4/TCPv6) identified by
an integer into a long long int.
Move the TCP specific code from get_tcp_info() to the tcp_get_info() control layer
function (src/proto_tcp.c) and define it as the ->get_info() callback for
TCPv4 and TCPv6.
Note that get_tcp_info() is called for several TCP sample fetches.
This patch is useful to support some of these sample fetches for QUIC and to
keep the code simple and easy to maintain.
Then reactivate HAVE_SSL_0RTT and HAVE_SSL_0RTT_QUIC for AWS-LC, which
were wrongly deactivated in f5353f2c ("MINOR: ssl: add HAVE_SSL_0RTT
constant").
Must be backported to 3.0.
There's a rare TOCTOU case that happens from time to time with maxconn 1
and multiple threads. Between the moment we see the queue full and the
moment we queue a request, it's possible that the last request on the
server or proxy ended and that no other one is left to offer it its place.
Given that all this code path is performance-critical and we cannot afford
to increase the lock duration, better recheck for the condition after
queueing. For this we need to be able to check for the condition and
cleanly dequeue a request. That's what this patch provides via the new
function pendconn_must_try_again(). It will catch more requests than
absolutely needed though it will catch them all. It may find that around
1/1000 of requests are at risk, though testing shows that in practice,
it's around 1 per million that really gets stuck (other ones benefit
from timing and finishing late requests). Maybe in the future some
conditions might be refined but it's harmless.
What happens to such requests is that they're dequeued and their pendconn
freed, so that the caller can decide to try to LB or queue them again. For
now the function is not used, it's just added separately for easier tracking.
Add ->state_cli() new callback to quic_cc_algo struct to define a
function called by the "show quic (cc|full)" commands to dump some information
about the congestion algorithm internal state currently in use by the QUIC
connections.
Implement this callback for CUBIC algorithm to dump its internal variables:
- K: (the time to reach the cubic curve inflexion point),
- last_w_max: the last maximum window value reached before intering
the last recovery period. This is also the window value at the
inflexion point of the cubic curve,
- wdiff: the difference between the current window value and last_w_max.
So negative before the inflexion point, and positive after.
In 2.5-dev9, commit 631c7e866 ("MEDIUM: h1: Force close mode for invalid
uses of T-E header") enforced a recently arrived new security rule in the
HTTP specification aiming at preventing a class of content-smuggling
attacks involving HTTP/1.0 agents. It consists in handling the very rare
T-E + C-L requests or responses in close mode.
It happens it does have an impact of a rare few and very old clients
(probably running insecure TLS stacks by the way) that continue to send
both with their POST requests. The impact is that for each and every
request they'll have to reconnect, possibly negotiating a full TLS
handshake that becomes harmful to the machine in terms of CPU computation.
This commit adds a new option "h1-do-not-close-on-insecure-transfer-encoding"
that does exactly what it says, it just asks not to close on such messages,
even though the message continues to be sanitized and C-L dropped. It means
that the risk is only between the sender and haproxy, which is limited, and
might be the only acceptable solution for such environments having to deal
with broken implementations.
The cases are so rare that it should not need to be backported, or in the
worst case, to the latest LTS if there is any demand.
Define a new quic-initial "send-retry" rule. This allows to force the
emission of a Retry packet on an initial without token instead of
instantiating a new QUIC connection.
Define a new quic-initial action named "reject". Contrary to dgram-drop,
the client is notified of the rejection by a CONNECTION_CLOSE with
CONNECTION_REFUSED error code.
To be able to emit the necessary CONNECTION_CLOSE frame, quic_conn is
instantiated, contrary to dgram-drop action. quic_set_connection_close()
is called immediatly after qc_new_conn() which prevents the handshake
startup.
To extend quic-initial rules, pass quic_dgram instance to argument for
the various actions. As such, quic_dgram is now supported as an obj_type
and can be used in session origin field.
Add ACL condition support for quic-initial rules. This requires the
extension of quic_parse_quic_initial() to parse an extra if/unless
block.
Only layer4 client samples are allowed to be used with quic-initial
rules. However, due to the early execution of quic-initial rules prior
to any connection instantiation, some samples are non supported.
To be able to use the 4 described samples, a dummy session is
instantiated before quic-initial rules execution. Its src and dst fields
are set from the received datagram values.
Implement a new set of rules labelled as quic-initial.
These rules as specific to QUIC. They are scheduled to be executed early
on Initial packet parsing, prior a new QUIC connection instantiation.
Contrary to tcp-request connection, this allows to reject traffic
earlier, most notably by avoiding unnecessary QUIC SSL handshake
processing.
A new module quic_rules is created. Its main function
quic_init_exec_rules() is called on Initial packet parsing in function
quic_rx_pkt_retrieve_conn().
For the moment, only "accept" and "dgram-drop" are valid actions. Both
are final. The latter drops silently the Initial packet instead of
allocating a new QUIC connection.
With AWS-LC, the aead part is covered by the EVP_AEAD API which
provides the correct EVP_aead_chacha20_poly1305(), however for header
protection it does not provides an EVP_CIPHER for chacha20.
This patch implements exceptions in the header protection code and use
EVP_CIPHER_CHACHA20 and EVP_CIPHER_CTX_CHACHA20 placeholders so we can
use the CRYPTO_chacha_20() primitive manually instead of the EVP_CIPHER
API.
This requires to check if we are using EVP_CIPHER_CTX_CHACHA20 when
doing EVP_CIPHER_CTX_free().
In order to prepare the code for using Chacha20 with the EVP_AEAD API,
both quic_tls_hp_decrypt() and quic_tls_hp_encrypt() need an extra key
argument.
Indeed Chacha20 does not exists as an EVP_CIPHER in AWS-LC, so the key
won't be embedded into the EVP_CIPHER_CTX, so we need an extra parameter
to use it.
Some of the crypto functions used for headers protection in QUIC are
named with an "aes" name even thought they are not used for AES
encryption only.
This patch renames these "aes" to "hp" so it is clearer.
The QUIC crypto is using the EVP_CIPHER API in order to achieve
authenticated encryption, this was the API which was used with OpenSSL.
With libraries that inspires from BoringSSL (libreSSL and AWS-LC), the
AEAD algorithms are implemented using the EVP_AEAD API.
This patch converts the call to the EVP_CIPHER API when called in the
contex of AEAD cryptography for QUIC.
The patch defines some QUIC_AEAD macros that can be either EVP_CIPHER or
EVP_AEAD depending on the library.
This was mainly done for AWS-LC but this could be useful for other
libraries. This should finally allow to use CHACHA20_POLY1305 with
AWS-LC.
This patch allows to use the following ciphers with the EVP_AEAD API:
- TLS1_3_CK_AES_128_GCM_SHA256
- TLS1_3_CK_AES_256_GCM_SHA384
AWS-LC does not implement TLS1_3_CK_AES_128_CCM_SHA256 and
TLS1_3_CK_CHACHA20_POLY1305_SHA256 requires some hack for headers
protection which will come in another patch.
Add a new struct member to sft structure named e_processed in order to
track the total number of events processed by sft applets.
sink_forward_oc_io_handler() and sink_forward_io_handler() now make use
of ring_dispatch_messages() optional value added in the previous commit
in order to increase the number of processed events.
ring_dispatch_messages() now takes an optional argument <processed> which
must point to a size_t counter when provided.
When provided, the value is updated to the number of messages processed
by the function.
spoe_check_vsn() function can now be used to check if a version, converted
to an integer, via spoe_str_to_vsn() for instance, is supported. To do so,
the list of all supported version is now exported.
Add session/stream scopes related to the parent. To do so, "psess", "ptxn",
"preq" or "pres" must be used instead of tranditionnal scopes (without the
first "p"). the "proc" scope is not concerned by this change because it is
not linked to a stream. When such scopes are used, a specific flags is added
on the variable description during the variable parsing.
For now, theses scopes are parsed and the variable description is updated
accordingly. But at the end, any operation on the variable value fails.
Now a variable description is retrieved when a variable is parsed, we can
use it to set or unset the variable value. It is mandatory to be able to
know the parent stream, if any, must be used, instead of the current one.
A variable description is now used to parse a variable and extract its name
and its scope. It is mandatory to be able to add some flags on the variable
when it is evaluated (set or get). Among other things, this will be used to
know the parent stream, if any, must be used, instead of the current one.
A pointer to a parent stream was added in the stream structure. For now,
this pointer is never set, but the idea is to have an access to a stream
environment from another one from the moment there is a parent/child
relationship betwee these streams.
Concretely, for now, there is nothing to formalize this relationship.
Fix build warning on NetBSD by reapplying f278eec37a ("BUILD: tree-wide:
cast arguments to tolower/toupper to unsigned char").
This should fix issue #2551.
It is more handy to use LIM2A in debug_parse_cli_show_dev(), as it allows to
show a custom string ("unlimited"), if a given limit value equals to 0.
normalize_rlim() handler is needed to convert properly RLIM_INFINITY to zero,
with the respect of type sizes, as rlim_t is always 4 bytes on 32bit and
64bit arch.
During tests, it's pretty visible that with many threads and a large
number of FDs, the process may take time to be ready. The reason for
this is that the full fdtab array is scanned by each and every thread
at boot in fd_reregister_all() in order to make each thread-local
poller adopt the FDs that are relevant to it. The problem is that
when dealing with 1-2M FDs and 64+ threads, it starts to represent
quite a number of loops, and usually the fdtab array doesn't entirely
fit in the CPU's L3 cache, causing extra memory accesses.
It's particularly visible when issuing debugging commands to the CLI
because usually the first one fails while the CPU is at 100% for half
a second (which also is socat's timeout). A quick test with this:
global
stats socket /tmp/sock1 level admin mode 666
stats timeout 1h
maxconn 2000000
And the following script started in another window:
while ! time socat -t5 - /tmp/sock1 <<< "show version";do date -Ins;done
shows that it takes 1.58s for the socat instance that succeeds on an
Ampere Altra with 80 cores, this requires to change the timeout (defaults
to half a second) otherwise it returns nothing. In addition it also means
that during reloads, some CPU spikes will be noticed.
Adding a prefetch of the current FD + 16 improves the startup time by 30%
but that's far from being sufficient.
In practice all of this is performed at boot time, a moment at which we
know that extremely few FDs are registered (basically just the listeners),
so FD numbers are usually very low and the rest of the table is scanned
for no benefit. Ideally, knowing upfront how many FDs we have should be
sufficient.
A first approach would consist in counting the entries on a single thread
before registering pollers. It's not necessarily efficient and would take
time anyway.
This patch takes a different approach. It consists in keeping a thread-local
max ("fd_highest") that is updated whenever fd_insert() is called with a
larger number. Of course this is not correct once all threads have started,
but it will remain valid during boot since the same value is used during
startup and is cloned for each thread, and no scheduling happens anywhere
during this period, so that all threads are aware of the highest FD they've
seen registered, even if it had been done in some init code, and this without
having to deal with a shared variable.
Here on the test platform, the script gets its response in 10ms vs 1580
before.
SPOE functions definitions were splitted on 2 or more lines, with the return
type alone on the first line. It is unusual in the HAProxy code.
The related issue is #2502.
It is the huge part of the series. The patch is not so huge, it removes
functions to produce or consume frames. The SPOE applet is pretty light
now. But since this patch, the SPOP multiplexer is now used. The SPOP mode
is now automatically ised for SPOP backends. So if there are bugs in the
SPOP multiplexer, they will be visible now.
The related issue is #2502.
The SPOP health-checks are now performed using the SPOP multiplexer. This
will be fixed later, but for now, it is considered as a L4 health-check and
no specific status code is reported. It means the corresponding vtest script
is marked as broken for now.
Functionnaly speaking, the same is performed. A connection is opened, a
HELLO frame is sent to the agent and we wait for the HELLO frame from the
agent in reply. But only L4OK, L4KO or L4TOUT will be reported.
The related issue is #2502.
It is no possible yet to use it. Idles connections and pipelining mode are
not supported for now. But it should be possible to open a SPOP connection,
perform the HELLO handshake, send a NOTIFY frame based on data produced by
the client side and receive the corresponding ACK frame to transfer its
content to the client side.
The related issue is #2502.
Structures describing the SPOE applet context, the SPOE filter configuration
and context and the SPOE messages and groups are moved in the C file. In
spoe-t.h file, it remains the structure describing an SPOE agent and flags
used by both sides.
In addition, the SPOE frontend, created for a given SPOE engine, is moved
from the SPOE filter configuration to the SPOE agent structure.
The related issue is #2502.
The inline array used to store, the configured messages per event in the
SPOE agent structure, is replaced by a dynamic array, allocated during the
configuration parsing. The main purpose of this change is to be able to move
all stuff regarding the SPOE filter and applet in the C file.
The related issue is #2502.
A SPOP multiplexer will be added. Many flags, constants and structures will
be remove from the applet scope. So the "SPOP" prefix is used instead of
"SPOE", to be consistent.
The related issue is #2502.
se_opposite() function is added to let an endpoint retrieve the opposite
endpoint descriptor. Muxes supportng the zero-copy forwarding can now use
it. The se_shutdown() function too. This will be use by the SPOP multiplexer
to be able to retrieve the SPOE agent configuration attached to the applet
on client side.
The related issue is #2502.
It is a small change, but it is cleaner to no include stconn-t.h header in
connection-t.h, mainly to avoid circular definitions.
The related issue is #2502.
Applets can now define a shutdown callback function, just like the
multiplexer. It is especially usefull to get the abort reason. This will be
pretty useful to get the status code from the SPOP stream to report it at
the SPOe filter level.
The related issue is #2502.
The SPOE was significantly lightened. It is now possible to refactor it to
use a dedicated multiplexer. The first step is to add a SPOP mode for
proxies. The corresponding multiplexer mode is also added.
For now, there is no SPOP multiplexer, so it is only declarative. But at the
end, the SPOP multiplexer will be automatically selected for servers inside
a SPOP backend.
The related issue is #2502.
Management of idle applets is removed. Consequently, the pipelining support
is also removed. It is a huge change but it should be transparent for the
agents, except regarding the performances. Of course, being able to reuse
already openned connections and being able to multiplex frames on a given
connection is a must have. These features will be restored later.
hello and idle timeout are not longer used. Because an applet is spawned to
process a NOTIFY frame and closed after receiving the ACK reply, the
processing timeout is the only one required. In addition, the parameters to
limit the SPOE applet creation are no longer used too.
The related issue is #2502.
All the SPOE debugging is removed. The code will be easier to rework this
way and the debugging will be mainly moved in the SPOP multiplexter via the
trace API.
The related issue is #2502.
Because the async mode was removed, it is no longer mandatory to announce a
different engine identifiers per thread for a given SPOE agent. This was
used to be sure requests and the corresponding responses are stuck on the
same thread.
So, now, a SPOE agent only announces one engine identifier on all
connections. No changes should be expected for agents.
The related issue is #2502.
The support for asynchronous mode, the ability to send messages on a
connection and receive the responses on any other connections, is removed.
It appears this feature was a bit overkill. And it is a problem for this
refactoring. This feature is removed and will not be restored at the end.
It is not a big deal for agent supporting the async mode because it is
usable if it is announced on both sides. HAProxy stops to announce it. This
should be transparent for agents.
The related issue is #2502.
It is the first patch of a long series to refactor the SPOE filter. The idea
is to rely on a dedicated multiplexer instead of hakcing HAProxy with a list
of applets processing a message queue.
First of all, optionnal features will be removed. Some will be restored at
the end, some others will just be removed. It is the case here. The frame
fragmentation support is removed. The only purpose of this feature is to be
able to support the streaming. Because it is out of the scope of this
refactoring, the fragmentation is removed.
The related issue is #2502.
This commit is the renaming counterpart of the previous one, this time
for quic_conn module. Several elements related to TID affinity update
from quic_conn has been renamed : public functions, but also flag
renamed to QUIC_FL_CONN_TID_REBIND and trace event to
QUIC_EV_CONN_BIND_TID.
This should be backported with the same instruction as the previous
commit.
Since the following patch, protocol API to update a connection TID
affinity has been extended.
commit 1a43b9f32c
MINOR: proto: extend connection thread rebind API
The single callback set_affinity has been splitted in 3 different
functions which are called at different stages during listener_accept(),
depending on accept queue push success or not. However, the naming was
rendered confusing by the usage of function prefix 1 and 2.
Rename proto callback related to TID affinity update and use the
following names :
* bind_tid_prep
* bind_tid_commit
* bind_tid_reset
This commit should probably be backported at least up to 3.0 with the
above patch. This is because the fix was recently backported and it
would allow to keep changes minimal between the two versions. It could
even be backported up to 2.8 if there is no major conflict.
Add a sent bytes counter for each quic_conn instance. A secondary field
which only account bytes sent via GSO which is useful to ensure if this
is activated.
For the moment, these counters are reported on "show quic" but not
aggregated on proxy quic module stats.
UDP GSO on Linux is not implemented in every network devices. For
example, this is not available for veth devices frequently used in
container environment. In such case, EIO is reported on send()
invocation.
It is impossible to test at startup for proper GSO support in this case
as a listener may be bound on multiple network interfaces. Furthermore,
network interfaces may change during haproxy lifetime.
As such, the only option is to react on send syscall error when GSO is
used. The purpose of this patch is to implement a fallback when
encountering such conditions. Emission can be retried immediately by
trying to send each prepared datagrams individually.
To support this, qc_send_ppkts() is able to iterate over each datagram
in a so-called non-GSO fallback mode. Between each emission, a datagram
header is rewritten in front of the buffer which allows the sending loop
to proceed until last datagram is emitted.
To complement this, quic_conn listener is flagged on first GSO send
error with value LI_F_UDP_GSO_NOTSUPP. This completely disables GSO for
all future emission with QUIC connections using this listener.
For the moment, non-GSO fallback mode is activated when EIO is reported
after GSO has been set. This is the error reported for the veth usage
described above.
Add <gso_size> parameter to qc_snd_buf(). When non-null, this specifies
the value for socket option SOL_UDP/UDP_SEGMENT. This allows to send
several datagrams in a single call by splitting data multiple times at
<gso_size> boundary.
For now, <gso_size> remains set to 0 by caller, as such there should not
be any functional change.
Future commits will implement GSO support to be able to emit multiple
datagrams in a single syscall invocation. This will be used every time
there is more data to sent than the UDP network MTU.
No change will be done for Tx buffer encoding, in particular when using
extra metadata datagram header. When GSO will be used, length field will
contain the total length of all datagrams to emit in a single GSO
syscall send. As such, QUIC send functions will detect that GSO is in
use if total length is greater than MTU.
This last assumption forces to ensure that MTU is constant. Indeed, in
case qc_send() is interrupted, Tx buffer will be left with prepared
datagrams. These datagrams will be emitted at the next qc_send()
invocation. If MTU would change during these two calls, it would be
impossible to know if GSO was used or not. To prevent this, mark <mtu>
field of quic_cc_path as constant.
Add a startup test for GSO support in quic_test_socketopts() and
automatically activate it in qc_prep_pkts() when building datagrams as
big as MTU.
Also define a new config option tune.quic.disable-udp-gso. This is
useful to prevent warning on older platform or to debug an issue which
may be related to GSO.
This patch is done in order to prepare the move of handlers to compute and to
check process related limits as maxconn, maxsock, maxpipes.
So, these handlers become no longer static due to the future move.
We add the handlers declarations in limits.h in this patch as well, in order to
keep the next patch, dedicated to code replacement, without any additional
modifications.
Such split also assures that this patch can be compiled separately from the
next one, where we moving the handlers. This is important in case of
git-bisect.
As raise_rlim_nofile() was moved to limits compilation unit, limits.h includes
the system <sys/resource.h>. So, this definition of rlimit system type
structure is no longer need for compilation of fd unit.
The code which gets, sets and checks initial and current fd limits and process
related limits (maxconn, maxsock, ulimit-n, fd-hard-limit) is spread around
different functions in haproxy.c and in fd.c. Let's group it together in
dedicated limits.c and limits.h.
This patch is done in order to prepare the moving of limits-related functions
from different places to the new 'limits' compilation unit. It helps to keep
clean the next patch, which will do only the move without any additional
modifications.
Such detailed split is needed in order to be sure not to break accidentally
limits logic and in order to be able to compile each commit separately in case
of git-bisect.
This is the second attempt at importing the updated mt_list code (commit
59459ea3). The previous one was attempted with commit c618ed5ff4 ("MAJOR:
import: update mt_list to support exponential back-off") but revealed
problems with QUIC connections and was reverted.
The problem that was faced was that elements deleted inside an iterator
were no longer reset, and that if they were to be recycled in this form,
they could appear as busy to the next user. This was trivially reproduced
with this:
$ cat quic-repro.cfg
global
stats socket /tmp/sock1 level admin
stats timeout 1h
limited-quic
frontend stats
mode http
bind quic4@:8443 ssl crt rsa+dh2048.pem alpn h3
timeout client 5s
stats uri /
$ ./haproxy -db -f quic-repro.cfg &
$ h2load -c 10 -n 100000 --npn h3 https://127.0.0.1:8443/
=> hang
This was purely an API issue caused by the simplified usage of the macros
for the iterator. The original version had two backups (one full element
and one pointer) that the user had to take care of, while the new one only
uses one that is transparent for the user. But during removal, the element
still has to be unlocked if it's going to be reused.
All of this sparked discussions with Fred and Aurlien regarding the still
unclear state of locking. It was found that the lock API does too much at
once and is lacking granularity. The new version offers a much more fine-
grained control allowing to selectively lock/unlock an element, a link,
the rest of the list etc.
It was also found that plenty of places just want to free the current
element, or delete it to do anything with it, hence don't need to reset
its pointers (e.g. event_hdl). Finally it appeared obvious that the
root cause of the problem was the unclear usage of the list iterators
themselves because one does not necessarily expect the element to be
presented locked when not needed, which makes the unlock easy to overlook
during reviews.
The updated version of the list presents explicit lock status in the
macro name (_LOCKED or _UNLOCKED suffixes). When using the _LOCKED
suffix, the caller is expected to unlock the element if it intends to
reuse it. At least the status is advertised. The _UNLOCKED variant,
instead, always unlocks it before starting the loop block. This means
it's not necessary to think about unlocking it, though it's obviously
not usable with everything. A few _UNLOCKED were used at obvious places
(i.e. where the element is deleted and freed without any prior check).
Interestingly, the tests performed last year on QUIC forwarding, that
resulted in limited traffic for the original version and higher bit
rate for the new one couldn't be reproduced because since then the QUIC
stack has gaind in efficiency, and the 100 Gbps barrier is now reached
with or without the mt_list update. However the unit tests definitely
show a huge difference, particularly on EPYC platforms where the EBO
provides tremendous CPU savings.
Overall, the following changes are visible from the application code:
- mt_list_for_each_entry_safe() + 1 back elem + 1 back ptr
=> MT_LIST_FOR_EACH_ENTRY_LOCKED() or MT_LIST_FOR_EACH_ENTRY_UNLOCKED()
+ 1 back elem
- MT_LIST_DELETE_SAFE() no longer needed in MT_LIST_FOR_EACH_ENTRY_UNLOCKED()
=> just manually set iterator to NULL however.
For MT_LIST_FOR_EACH_ENTRY_LOCKED()
=> mt_list_unlock_self() (if element going to be reused) + NULL
- MT_LIST_LOCK_ELT => mt_list_lock_full()
- MT_LIST_UNLOCK_ELT => mt_list_unlock_full()
- l = MT_LIST_APPEND_LOCKED(h, e); MT_LIST_UNLOCK_ELT();
=> l=mt_list_lock_prev(h); mt_list_lock_elem(e); mt_list_unlock_full(e, l)
Handshake for quic_conn instances runs on a single non-chosen thread. On
completion, listener_accept() is performed to select the less loaded
thread before initializing connection instance. As such, quic_conn
instance is migrated to the thread with its upper connection.
In case accept queue is full, listener_accept() fallback to local accept
mode, which cause the connection to be assigned to the current thread.
However, this is not supported by QUIC as quic_conn instance is left on
the previously selected thread. In most cases, this will cause a
BUG_ON() due to a task manipulation from an outside thread.
To fix this, handle quic_conn thread rebind in multiple steps using the
new extended protocol API. Several operations have been moved from
qc_set_tid_affinity1() to newly defined qc_set_tid_affinity2(), in
particular CID TID update. This ensures that quic_conn instance is not
prematurely accessed on the new thread until accept queue push is
guaranteed to succeed.
qc_reset_tid_affinity() is also newly defined to reassign the newly
created tasks and tasklets to the current thread. This is necessary to
prevent the BUG_ON() crash described above.
This must be backported up to 2.8 after a period of observation. Note
that it depends on previous patch :
MINOR: proto: extend connection thread rebind API
MINOR: listener: define callback for accept queue push
Extend API for connection thread rebind API by replacing single callback
set_affinity by three different ones. Each one of them is used at a
different stage of the operation :
* set_affinity1 is used similarly to previous set_affinity
* set_affinity2 is called directly from accept_queue_push_mp() when an
entry has been found in accept ring. This operation cannot fail.
* reset_affinity is called after set_affinity1 in case of failure from
accept_queue_push_mp() due to no space left in accept ring. This is
necessary for protocols which must reconfigure resources before
fallback on the current tid.
This patch does not have any functional changes. However, it will be
required to fix crashes for QUIC connections when accept queue ring is
full. As such, it must be backported with it.
Let's provide a default value for fd_hard_limit, if it's not set in the
configuration. With this patch we could set some specific default via
compile-time variable DEFAULT_MAXFD as well. Hope, this will be helpfull for
haproxy package maintainers.
make -j 8 TARGET=linux-glibc DEBUG=-DDEFAULT_MAXFD=50000
If haproxy is comipled without DEFAULT_MAXFD defined, the default will be set
to 1048576.
This is done to avoid killing the process by its watchdog, while it started
without any limitations in its configuration or in the command line and the
hard RLIMIT_NOFILE is extremely huge (~1000000000). We use in this case
compute_ideal_maxconn() to calculate maxconn and maxsock, maxsock defines the
size of internal fdtab, which becames very-very large as well. When
the process starts to simply loop over this fdtab (0(n)), this takes a lot of
time, so watchdog does it job.
To avoid this, maxconn now is always reduced to some reasonable value either
by explicit global.fd-hard-limit from configuration, or by its default. The
default may be changed at build-time and overwritten then by
global.fd-hard-limit at runtime. Explicit global.fd-hard-limit from the
configuration has always precedence over DEFAULT_MAXFD, if set.
Must be backported in all stable versions until v2.6.0, including v2.6.0.
Previous commit removed access/manipulation to QUIC CID global tree
outside of quic_cid module. This ensures that proper locking is always
performed.
This commit finalizes this cleanup by marking CID global tree as static
only to quic_cid source file. Initialization of this tree is removed
from proto_quic and now performed using dedicated initcalls
quic_alloc_global_cid_tree().
As a side change, complete CID global tree documentation, in particular
to explain CID global tree artificial splitting and ODCID handling.
Overall, the code is now clearer and safer.
haproxy generates for each QUIC connection a set of CID. The peer must
reuse them as DCID for its emitted packet. On datagram reception, DCID
field serves as identifier to dispatch them on their correct thread.
These CIDs are stored in a global CID tree. Access to this data
structure must always be protected with CID_LOCK. This commit is a
refactoring to regroup all CID tree access in quic_cid module. Several
code parts are ajusted :
* quic_cid_insert() is extended to check for insertion race-condition.
This is useful on quic_conn instantiation. Code where such race cannot
happen can use unsafe _quic_cid_insert() instead.
* on RETIRE_CONNECTION_ID frame reception, existing quic_cid_delete()
function is used.
* remove tree lookup from qc_check_dcid(), extracted in the new
quic_cmp_cid_conn() function. Ultimately, the latter should be removed
as CID lookup could be conducted on quic_conn owned tree without
locking.
Ensure pseudo-header method is only constitued of valid characters
according to RFC 9110. If an invalid value is found, the request is
rejected and stream is resetted.
Previously only characters forbidden in headers were rejected (NUL/CR/LF),
but this is insufficient for :method, where some other forbidden chars
might be used to trick a non-compliant backend server into seeing a
different path from the one seen by haproxy. Note that header injection
is not possible though.
This must be backported up to 2.6.
Many thanks to Yuki Mogi of FFRI Security Inc for the detailed report
that allowed to quicky spot, confirm and fix the problem.
The MEMPROF_HASH_BITS variable was set to 10 without a possibility to
change it (beyond patching the code). After seeing a few reports already
with "other" being listed and a list with close to 1024 entries, it looks
like it's about time to either increase the hash size, or at least make
it configurable for special cases. As a reminder, in order to remain
fast, the algorithm searches no more than 16 places after the hash, so
when a table is almost full, searches are long and new places are rare.
The present patch just makes it possible to redefine it by passing
"-DMEMPROF_HASH_BITS=11" or "-DMEMPROF_HASH_BITS=12" in CFLAGS, and
moves the definition to defaults.h to make it easier to find. Such
values should be way sufficient for the vast majority of use cases.
Maybe in the future we'd change the default. At least this version
should be backported to ease rebuilds, say, till 2.8 or so.
Let's encapsulate the logic of 'reload' sockpair and master CLI listeners
creation, used by master CLI into a separate function, as we needed this
only in master-worker runtime mode. This makes the code of init() more
readable.
Guarded functions to kill a sticky session, stksess_kill()
stksess_kill_if_expired(), may or may not decrement and test its reference
counter before really killing it. This depends on a parameter. If it is set
to non-zero value, the ref count is decremented and if it falls to zero, the
session is killed. Otherwise, if this parameter is equal to zero, the
session is killed, regardless the ref count value.
In the code, these functions are always called with a non-zero parameter and
the ref count is always decremented and tested. So, there is no reason to
still have a special case. Especially because it is not really easy to say
if it is supported or not. Does it mean it is possible to kill a sticky
session while it is still referenced somewhere ? probably not. So, does it
mean it is possible to kill a unreferenced session ? This case may be
problematic because the session is accessed outside of any lock and thus may
be released by another thread because it is unreferenced. Enlarging scope of
the lock to avoid any issue is possible but it is a bit of shame to do so
because there is no usage for now.
The best is to simplify the API and remove this case. Now, stksess_kill()
and stksess_kill_if_expired() functions always decrement and test the ref
count before killing a sticky session.
When we try to kill a session, the shard must be locked before decrementing
the ref count on the session. Otherwise, the ref count can fall to 0 and a
purge task (stktable_trash_oldest or process_table_expire) may release the
session before we have the opportunity to acquire the lock on the shard to
effectively kill the session. This could lead to a double free.
Here is the scenario:
Thread 1 Thread 2
sktsess_kill(ts)
if (ATOMIC_DEC(&ts->ref_cnt) != 0)
return
/* here the ref count is 0 */
stktable_trash_oldest()
LOCK(&sh_lock)
if (!ATOMIC_LOAD(&ts->ref_cnf))
__stksess_free(ts)
UNLOCK(&sh_lock)
/* here the session was released */
LOCK(&sh_lock)
__stksess_free(ts) <--- double free
UNLOCK(&sh_lock)
The bug was introduced in 2.9 by the commit 7968fe3889 ("MEDIUM:
stick-table: change the ref_cnt atomically"). The ref count must be
decremented inside the lock for stksess_kill() and sktsess_kill_if_expired()
function.
This patch should fix the issue #2611. It must be backported as far as 2.9. On
the 2.9, there is no sharding. All the table is locked. The patch will have to
be adapted.
Compilation issue detected as follows by gcc:
In file included from src/ncbuf.c:19:
src/ncbuf.c: In function 'ncb_write_off':
include/haproxy/bug.h:144:10: error: unknown type name 'ssize_t'
144 | extern ssize_t write(int, const void *, size_t); \
Previous commit 8f204fa8ae ("MINOR: debug: print gdb hints when crashing")
broken on the CI where strlen() isn't known. Let's forward-declare it in
the __ABORT_NOW() functions, just like write(). No backport is needed.
To make bug reporting easier for users, when crashing, let's suggest
what to do. Typically when a BUG_ON() matches, only the current thread
is useful the vast majority of the time, while when the watchdog
triggers, all threads are interesting.
The messages are printed at the end after the dump. We may adjust these
with wiki links in the future is more detailed instructions are relevant.
If haproxy compiled with Linux capabilities support, let's show process
capabilities before applying the configuration and at runtime in 'show dev'
command output. This maybe useful for debugging purposes. Especially in
cases, when process changes its UID and GID to non-priviledged or it
has started and run under non-priviledged UID and needed capabilities are
set by admin on the haproxy binary.
'show dev' command is very convenient to obtain haproxy debugging information,
while process is run in container. Let's extend its output with version and
cmdline. cmdline is useful in a way, as it shows absolute binary path and its
arguments, because sometimes the person, who is debugging failing container is
not the same, who has created and deployed it.
argc and argv are stored in the exported global structure, because
feed_post_mortem() is added as a post check function callback in the
post_check_list. So we can't simply change the signature of
feed_post_mortem(), without breaking other post check callbacks APIs.
Parsers are not supposed to modify argv, so we can safely bypass its pointer
to debug_parse_cli_show_dev(), without copying all argument stings somewhere
in the heap or on stack.
To be able to show process capabilities before applying its configuration and
also at runtime in 'show dev' command output, we need to export the wrapper
around capget() syscall. It also seems more handy to place
__user_cap_header_struct in .data section and declare it as globally
accessible, as we always fill it with the same values. This avoids allocate
and fill these 8 bytes each time on the stack frame, when capget() or capset()
wrappers are called.
As shown in GH #2608 and ("BUG/MEDIUM: proxy: fix email-alert invalid
free"), simply calling free_email_alert() from free_proxy() is not the
right thing to do.
In this patch, we reuse proxy->email_alert.set memory space to introduce
proxy->email_alert.flags in order to support 2 flags:
PR_EMAIL_ALERT_SET (to mimic proxy->email_alert.set) and
PR_EMAIL_ALERT_RESOLVED (set once init_email_alert() was called on the
proxy to resolve email_alert.mailer pointer).
Thanks to PR_EMAIL_ALERT_RESOLVED flag, free_email_alert() may now
properly handle the freeing of proxy email_alert settings: if the RESOLVED
flag is set, then it means the .email_alert.mailers.name parsing hint was
replaced by the actual mailers pointer, thus no free should be attempted.
No backport needed: as described in ("BUG/MEDIUM: proxy: fix email-alert
invalid free"), this historical leak is not sensitive as it cannot be
triggered during runtime.. thus given that the fix is not backport-
friendly, it's not worth the trouble.
AWSLC lacks the SSL_CTX_set1_sigalgs_list define, however the function
exists, which disables the feature in HAProxy, even if we could have
build with it.
SSL_CTX_set1_client_sigalgs_list() is not available, though.
This patch introduce the define so the feature is enabled.
hlua burst timeout was introduced in 58e36e5b1 ("MEDIUM: hlua: introduce
tune.lua.burst-timeout").
It is a safety measure that allows to detect when too much time is spent
on a single lua execution (between 2 interruptions/yields), meaning that
the current thread is not able to perform other tasks. Such scenario
should be avoided because it will cause thread contention which may have
negative performance impact and could cause the watchdog to trigger. When
the burst timeout is exceeded, the current Lua execution is aborted and a
timeout error is reported to the user.
Unfortunately, the same error is currently being reported for cumulative
(AKA execution) timeout and for burst timeout, which may be confusing to
the user.
Indeed, "execution timeout" error historically results from the current
hlua context exceeding the total (cumulative) time it's allowed to run.
It is set per lua context using the dedicated tunables:
- tune.lua.session-timeout
- tune.lua.task-timeout
- tune.lua.service-timeout
We've already faced an user report where the user was able to trigger the
burst timeout and got "Lua task: execution timeout." error while the user
didn't set cumulative timeout. Thus the error was actually confusing
because it was indeed the burst timeout which was causing it due to the
use of cpu-intensive call from within the task without sufficient manual
"yield" keypoints around the cpu-intensive call to ensure it runs on a
dedicated scheduler cycle.
In this patch we make it so burst timeout related errors are reported as
"burst timeout" errors instead of "execution timeout" errors (which
in fact became the generic timeout errors catchall with 58e36e5b1).
To do this, hlua_timer_check() now returns a different value depending if
the exeeded timeout is the burst one or the cumulative one, which allows
us to return either HLUA_E_ETMOUT or HLUA_E_BTMOUT in hlua_ctx_resume().
It should improve the situation described in GH #2356 and may possibly be
backported with 58e36e5b1 to improve error reporting if it applies without
resistance.
AWS-LC have a lot of functions that does nothing, which are now
deprecated and emits some warning.
This patch disables the following useless functions that emits a warning:
SSL_CTX_get_security_level(), SSL_CTX_set_tmp_dh_callback(),
ERR_load_SSL_strings(), RAND_keep_random_devices_open()
The list of deprecated functions is here:
https://github.com/aws/aws-lc/blob/main/docs/porting/functionality-differences.md
AWS-LC does not support the SSL_CTX_set_client_hello_cb() function from
OpenSSL which allows to analyze ciphers and signatures algorithm of the
ClientHello. However it supports the SSL_CTX_set_select_certificate_cb()
which allows the same thing but was the implementation from the
boringSSL side.
This patch uses the SSL_CTX_set_select_certificate_cb() as well as the
SSL_early_callback_ctx_extension_get() function to get the signature
algorithms.
This was successfully tested with openssl s_client as well as
testssl.sh.
This should allow to enable more reg-tests that depend on certificate
selection.
Require at least AWS-LC 1.22.0.
Move the code which is used to select the final certificate with the
clienthello callback. ssl_sock_client_sni_pool need to be exposed from
outside ssl_sock.c
This patch implements prerequisite log-profile struct and parser logic.
It has no effect during runtime for now.
Logformat expressions provided in log-profile "steps" are postchecked
during postparsing for each proxy "log" directive that makes use of a
given profile. (this allows to ensure that the logformat expressions
used in the profile are compatible with proxy using them)
Logger struct may benefit from having a "flags" struct member to set
or remove different logger states. For that, we reuse an existing
4 bytes hole in the logger struct to store a 2 bytes flags integer,
leaving the struct with a 2-bytes hole now.
Prerequisite work for log-profiles, we need to know under which proxy
context the logger is being used. When the info is not available, (ie:
global section or log-forward section, <px> is set to NULL)
'%OG' logformat alias may be used to report the log origin (when/where)
that triggered log generation using sess_build_logline().
Possible values are:
- "sess_error": log was generated during session error handling
- "sess_killed": log was generated during session abortion (killed
embryonic session)
- "txn_accept": log was generated right after frontend conn was accepted
- "txn_request": log was generated after client request was received
- "txn_connect": log was generated after backend connection establishment
- "txn_response": log was generated during server response handling
- "txn_close": log was generated at the final txn step, before closing
- "unspec": unknown or not specified
Documentation was updated.
This is another prerequisite work in preparation for log-profiles: in this
patch we make process_send_log() aware of the log origin, primarily aiming
for sess and txn logging steps such as error, accept, connect, close, as
well as relevant sess and stream pointers.
Move the embryonic session logging logic down to sess_log() in preparation
for log-profiles because then log preferences will be set per logger and
not per proxy. Indeed, as each logger may come with its own log-profile
that possibly overrides proxy logformat preferences, the check will need
to be performed at a central place by lower sending functions.
To ensure the change doesn't break existing behavior, a dedicated
sess_log_embryonic() wrapper was added and is exclusively used by
session_kill_embryonic() to indicate that a special logging logic must
be performed under sess_log().
Also, thanks to this change, log-format-sd will now be taken into account
for legacy embryonic session logging.
rename session_build_err_string() to session_embryonic_build_legacy_err()
and add new <out> buffer argument to the prototype. <out> will be used as
destination for the generated string instead of implicitly relying on the
trash buffer. Finally, expose the new function through the header file so
that it becomes usable from any source file.
The function is expected to be called with a session originating from
a connection and should not be used for applets.
This commit looks messy, but all it does is reorganize send_log() helpers
by dependency order to remove the need of forward-declaring some of them.
Also, since they're all internal helpers, let's explicitly mark them as
static to prevent any misuse.
qc_build_pkt() error handling was difficult due to multiple error code
possible. Improve this by defining a proper enum to describe the various
error code. Also clean up ending labels inside qc_build_pkt().
The previous fix (792a645ec2 ["BUG/MEDIUM: mux-quic: Unblock zero-copy
forwarding if the txbuf can be released"]) introduced a regression. The
zero-copy data forwarding must only be unblocked if it was blocked by the
producer, after a successful negotiation.
It is important because during a negotiation, the consumer may be blocked
for another reason. Because of the flow control for instance. In that case,
there is not necessarily a TX buffer. And it unexpected to try to release an
unallocated TX buf.
In addition, the same may happen while a TX buf is still in-use. In that
case, it must also not be released. So testing the TX buffer is not the
right solution.
To fix the issue, a new IOBUF flag was added (IOBUF_FL_FF_WANT_ROOM). It
must be set by the producer if it is blocked after a sucessful negotiation
because it needs more room. In that case, we know a buffer was provided by
the consummer. In done_fastfwd() callback function, it is then possible to
safely unblock the zero-copy data forwarding if this flag is set.
This patch must be backported to 3.0 with the commit above.
Valentine noticed this ugly SSL_CTX_get_tlsext_status_cb() macro
definition inside ssl_sock.c that is dedicated to openssl-1.0.2 only.
It would be better placed in openssl-compat.h, which is what this
patch does. It also addresses a missing pair of parenthesis and
removes an invalid extra semicolon.
In 2.9 we started to introduce an ambiguity in the documentation by
referring to historical log-format variables ('%var') as log-format
tags in 739c4e5b1e ("MINOR: sample: accept_date / request_date return
%Ts / %tr timestamp values") and 454c372b60 ("DOC: configuration: add
sample fetches for timing events").
In fact, we've had this confusion between log-format tag and log-format
var for more than 10 years now, but in 2.9 it was the first time the
confusion was exposed in the documentation.
Indeed, both 'log-format variable' and 'log-format tag' actually refer
to the same feature (that is: '%B' and friends that can be used for
direct access to some log-oriented predefined fetches instead of using
%[expr] with generic sample expressions).
This feature was first implemented in 723b73ad75 ("MINOR: config: Parse
the string of the log-format config keyword") and later documented in
4894040fa ("DOC: log-format documentation"). At that time, it was clear
that we used to name it 'log-format variable'.
But later the same year, 'log-format tag' naming started to appear in
some commit messages (while still referring to the same feature), for
instance with ffc3fcd6d ("MEDIUM: log: report SSL ciphers and version
in logs using logformat %sslc/%sslv").
Unfortunately in 2.9 when we added (and documented) new log-format
variables we officially started drifting to the misleading 'log-format
tag' naming (perhaps because it was the most recent naming found for
this feature in git log history, or because the confusion has always
been there)
Even worse, in 3.0 this confusion led us to rename all 'var' occurrences
to 'tag' in log-format related code to unify the code with the doc.
Hopefully William quickly noticed that we made a mistake there, but
instead of reverting to historical naming (log-format variable), it was
decided that we must use a different name that is less confusing than
'tags' or 'variables' (tags and variables are keywords that are already
used to designate other features in the code and that are not very
explicit under log-format context today).
Now we refer to '%B' and friends as a logformat alias, which is
essentially a handy way to print some log oriented information in the
log string instead of leveraging '%[expr]' with generic sample expressions
made of fetches and converters. Of course, there are some subtelties, such
as a few log-format aliases that still don't have sample fetch equivalent
for historical reasons, and some aliases that may be a little faster than
their generic sample expression equivalents because most aliases are
pretty much hardcoded in the log building function. But in general
logformat aliases should be simply considered as an alternative to using
expressions (with '%[expr']')
Also, under log-format context, when we want to refer to either an alias
('%alias') or an expression ('%[expr]'), we should use the generic term
'logformat item', which in fact designates a single item within the
logformat string provided by the user. Indeed, a logformat item (whether
is is an alias or an expression) always starts with '%' and may accept
optional flags / arguments
Both the code and the documentation were updated in that sense, hopefully
this will clarify things and prevent future confusions.
Implement pool-conn-name support for idle connection reuse. It replaces
SNI as arbitrary identifier for connections in the idle pool. Thus,
every SNI reference in this context have been replaced.
Main change occurs in connect_server() where pool-conn-name sample fetch
is now prehash to generate idle connection identifier. SNI is now solely
used in the context of SSL for ssl_sock_set_servername().
Define a new server keyword pool-conn-name. The purpose of this keyword
will be to identify connections inside the idle connections pool,
replacing SNI in case SSL is not wanted.
This keyword uses a sample expression argument. It thus can reuse
existing function parse_srv_expr() for parsing. In the future, it may be
necessary to define a keyword variant which uses a logformat for
extensability.
This patch only implement parsing. Argument is stored inside new server
field <pool_conn_name> and expression is generated in
_srv_parse_finalize() into <pool_conn_name_expr>.
If pool-conn-name is not set but SNI is, the latter is reused
automatically as pool-conn-name via _srv_parse_finalize(). This ensures
current reuse behavior remains compatible and idle connection reuse will
not mix connections with different SNIs by mistake.
Main usage will be for rhttp when SSL is not wanted between the two
haproxy instances. Previously, it was possible to use "sni" keyword even
without SSL on a server line which have a similar effect. However,
having a dedicated "pool-conn-name" keyword is deemed clearer. Besides,
it would allow for more complex configuration where pool-conn-name and
SNI are use in parallel with different values.
Two functions exists for server sni sample expression parsing. This is
confusing so this commit aims at clarifying this.
Functions are renamed with the following identifiers. First function is
named parse_srv_expr() and can be used during parsing. Besides
expression parsing, it has ensure sample fetch validity in the context
of a server line.
Second function is renamed _parse_srv_expr() and is used internally by
parse_srv_expr(). It only implements sample parsing without extra
checks. It is already use for server instantiation derived from
server-template as checks were already performed. Also, it is now used
in http-client code as SNI is a fixed string.
Finally, both functions are generalized to remove any reference to SNI.
This will allow to reuse it to parse other server keywords which use an
expression. This will be the case for the future keyword pool-conn-name.
Review RFC 9000 and ensure restriction on Stateless reset are properly
enforced. After careful examination, several changes are introduced.
First, redefine minimal Stateless Reset emitted packet length to 21
bytes (5 random bytes + a token). This is the new default length used in
every case, unless received packet which triggered it is 43 bytes or
smaller.
Ensure every Stateless Reset packets emitted are at 1 byte shorter than
the received packet which triggered it. No Stateless reset will be
emitted if this falls under the above limit of 21 bytes. Thus this
should prevent looping issues.
This should be backported up to 2.6.
This commit introduces a new global setting named
harden.reject_privileged_ports.{tcp|quic}. When active, communications
with clients which use privileged source ports are forbidden. Such
behavior is considered suspicious as it can be used as spoofing or
DNS/NTP amplication attack.
Value is configured per transport protocol. For each TCP and QUIC
distinct code locations are impacted by this setting. The first one is
in sock_accept_conn() which acts as a filter for all TCP based
communications just after accept() returns a new connection. The second
one is dedicated for QUIC communication in quic_recv(). In both cases,
if a privileged source port is used and setting is disabled, received
message is silently dropped.
By default, protection are disabled for both protocols. This is to be
able to backport it without breaking changes on stable release.
This should be backported as it is an interesting security feature yet
relatively simple to implement.
Just like vma_set_name() from 51a8f134e ("DEBUG: tools: add vma_set_name()
helper"), but also takes <id> as parameter to append "-$id" suffix after
the name in order to differentiate 2 areas that were named using the same
<type> and <name> combination.
example, using mmap + MAP_SHARED|MAP_ANONYMOUS:
7364c4fff000-736508000000 rw-s 00000000 00:01 3540 [anon_shmem:type:name-id]
Another example, using mmap + MAP_PRIVATE|MAP_ANONYMOUS or using
glibc/malloc() above MMAP_THRESHOLD:
7364c4fff000-736508000000 rw-s 00000000 00:01 3540 [anon:type:name-id]
On todays large systems, it's not always desired to run on all threads
for light loads, and usually users enforce nbthread to a lower value
(e.g. 8). The problem is that this is a fixed value, and moving such
configs to smaller machines continues to enforce the value and this
becomes extremely unproductive due to having more threads than CPUs.
This also happens quite a bit in VMs, containers, or cloud instances
of various sizes.
This commit introduces the thread-hard-limit setting that allows to only
set an upper bound to the number of threads without raising a lower value.
This means that using "thread-hard-limit 8" will make sure that no more
than 8 threads will be used when available, but it will remain two when
run on a dual-core machine.
As diagnosed in GH issue #2569, there's currently an issue in LibreSSL's
CHACHA20 in-place implementation that makes haproxy discard incoming QUIC
packets encrypted with it. It's not very easy to observe the issue because:
- QUIC recommends that CHACHA20 is used in priority
- on x86 with AES-NI, LibreSSL prefers AES-GCM for performance
reasons, so the problem is only observed there if a client
explicitly forces TLS_CHACHA20_POLY1305_SHA256 only.
- discarded packets cause retransmits showing some apparent activity,
and the handshake succeeds so it's not easy to analyze from the
client which thinks that the server is slow to respond.
Thus in practice, on non-x86 machines running LibreSSL, requests made over
QUIC freeze for a long time, unless the client explicitly forces algos
excluding TLS_CHACHA20_POLY1305_SHA256. That's typically the case by
default on modern OpenBSD systems, and was reported in the issue above
for an arm64 machine running OpenBSD -current, and was also observed on a
mips64 one running OpenBSD 7.5.
There is no simple solution to this problem due to some of the protocol's
constraints without digging too low into the stack (and risking to break
more). Here we're taking a pragmatic approach consisting in making the
connection fail hard when TLS_CHACHA20_POLY1305_SHA256 is selected,
regardless of the availability of other ciphers. This means that every
time a connection would have hung, instead it will fail fast, allowing
the client to retry over TLS/TCP.
Theo Buehler recommends that we limit this protection to all LibreSSL
versions before 4.0 since it's where the fix will be implemented. Older
stable versions will just see TLS_CHACHA20_POLY1305_SHA256 disabled,
which should be sufficient to make QUIC work there again as well.
The following config is sufficient to reproduce the issue (on a non-x86
machine, both arm64 & mips64 were confirmed to reproduce it):
global
limited-quic
frontend stats
mode http
#bind :8181
#bind :8443 ssl crt rsa+dh2048.pem
bind quic4@:8443 ssl crt rsa+dh2048.pem alpn h3
timeout client 5s
stats uri /
And the following commands will trigger the problem on affected LibreSSL
versions:
curl --tls13-ciphers TLS_CHACHA20_POLY1305_SHA256 -v --http3 -k https://127.0.0.1:8443/
curl -v --http3 -k https://127.0.0.1:8443/
while these ones must work:
curl --tls13-ciphers TLS_AES_128_GCM_SHA256 -v --http3 -k https://127.0.0.1:8443/
curl --tls13-ciphers TLS_AES_256_GCM_SHA384 -v --http3 -k https://127.0.0.1:8443/
Normally all of them will work with LibreSSL 4, and only the first one
should fail with stable LibreSSL versions higher than 3.9.2. An haproxy
version without this workaround will show an unresponsive command after
the GET is sent, while a version with the workaround will close the
connection on error. On a version with this workaround, if TCP listeners
are uncommented, curl will automatically fall back to TCP and attempt
the reqeust again over HTTP/2. Finally, on OpenSSL 1.1.1 in compat mode
(hence the limited-quic option above) all of them must work.
Many thanks to github user @lgv5 for the detailed report, tests, and
for spotting the issue, and to @botovq (Theo Buehler) for the quick
analysis, patch and help on this workaround.
This needs to be backported to versions 2.6 and above.
Update API for PROXY protocol header encoding. Previously, it requires
stream parameter to be set. Change make_proxy_line() and associated
functions to add an extra session parameter. This is useful in context
where no stream is instantiated. For example, this is the case for rhttp
preconnect.
This change allows to extend PROXY v2 TLV encoding. Replace
build_logline() which requires a stream instance and call directly
sess_build_logline().
Note that stream parameter is kept as it is necessary for unique ID
encoding.
This change has no functional change for standard connections. However,
it is necessary to support TLV encoding on rhttp preconnect.
Modify rhttp preconnect by instantiating a new session for each
connection attempt. Connection is thus linked to a session directly on
its instantiation contrary to previously where no session existed until
listener_accept().
This patch will allow to extend rhttp usage. Most notably, it will be
useful to use various sample fetches on the server line and extend
logging capabilities.
Changes are minimal, yet consequences are considered not trivial as for
the first time a FE connection session is instantiated before
listener_accept(). This requires an extra explicit check in
session_accept_fd() to not overwrite an existing session. Also, flag
SESS_FL_RELEASE_LI is not set immediately as listener counters must note
be decremented if connection and its session are freed before reversal
is completed, or else listener counters will be invalid.
conn_session_free() is used as connection destroy callback to ensure the
session will be freed automatically on connection release.
When a session is allocated for a FE connection, session_free() is
responsible to call listener_release() to decrement listener connection
counters and resume listening.
Until now, <listener> member of session was tested inside session_free()
before invocating listener_release(). To highlight more explicitely the
relation between sessions and listeners, introduce a new flag
SESS_FL_RELEASE_LI. Only session with such flag set will invoke
listener_release() on their cleanup. Flag is set inside
session_accept_fd() on success.
This patch has no functional change. However, it will be useful to
implement session creation for rHTTP preconnect.
Ensure "disable frontend" on a reverse HTTP listener is forbidden by
returing -1 on suspend callback. Suspending such a listener has unknown
effect and so is not properly implemented for now.
This should be backported up to 2.9.
This fixes the fd leak, introduced in the commit d3fc982cd7
("MEDIUM: proto: make common fd checks in sock_create_server_socket").
Initially sock_create_server_socket() was designed to return only created
socket FD or -1. Its callers from upper protocol layers were required to test
the returned errno and were required then to apply different configuration
related checks to obtained positive sock_fd. A lot of this code was duplicated
among protocols implementations.
The new refactored version of sock_create_server_socket() gathers in one place
all duplicated checks, but in order to be complient with upper protocol
layers, it needs the 3rd parameter: 'stream_err', in which it sets the
Stream Error Flag for upper levels, if the obtained sock_fd has passed all
additional checks.
No backport needed since this was introduced in 3.0-dev10.
In commit 55e9e9591 ("MEDIUM: ssl: temporarily load files by detecting
their presence in crt-store"), ssl_sock_load_pem_into_ckch() was
replaced by ssl_sock_load_files_into_ckch() in the crt-store loading.
But the side effect was that we always try to autodetect, and this is
not what we want. This patch reverse this, and add specific code in the
crt-list loading, so we could autodetect in crt-list like it was done
before, but still try to load files when a crt-store filename keyword is
specified.
Example:
These crt-list lines won't autodetect files:
foobar.crt [key foobar.key issuer foobar.issuer ocsp-update on] *.foo.bar
foobar.crt [key foobar.key] *.foo.bar
These crt-list lines will autodect files:
foobar.pem [ocsp-update on] *.foo.bar
foobar.pem
Following David Carlier's work in 98d22f21 ("MEDIUM: shctx: Naming shared
memory context"), let's provide an helper function to set a name hint on
a virtual memory area (ie: anonymous map created using mmap(), or memory
area returned by malloc()).
Naming will only occur if available, and naming errors will be ignored.
The function takes mandatory <type> and <name> parameterss to build the
map name as follow: "type:name". When looking at /proc/<pid>/maps, vma
named using this helper function will show up this way (provided that
the kernel has prtcl support for PR_SET_VMA_ANON_NAME):
example, using mmap + MAP_SHARED|MAP_ANONYMOUS:
7364c4fff000-736508000000 rw-s 00000000 00:01 3540 [anon_shmem:type:name]
Another example, using mmap + MAP_PRIVATE|MAP_ANONYMOUS or using
glibc/malloc() above MMAP_THRESHOLD:
7364c4fff000-736508000000 rw-s 00000000 00:01 3540 [anon:type:name]
Since 40d1c84bf0 ("BUG/MAJOR: ring: free the ring storage not the ring
itself when using maps"), munmap() call for startup_logs's ring and
file-backed rings fails to work (EINVAL) and causes memory leaks during
process cleanup.
munmap() fails because it is called with the ring's usable area pointer
which is an offset from the underlying original memory block allocated
using mmap(). Indeed, ring_area() helper function was misused because
it didn't explicitly mention that the returned address corresponds to
the usable storage's area, not the allocated one.
To fix the issue, we add an explicit ring_allocated_area() helper to
return the allocated area for the ring, just like we already have
ring_allocated_size() for the allocated size, and we properly use both
the allocated size and allocated area to manipulate them using munmap()
and msync().
No backport needed.
crt-store is maint to be stricter than your common crt argument on a
bind line, and is supposed to be a declarative format.
However, since the 'ocsp-update' was migrated from ssl_conf to
ckch_conf, the .issuer file is not autodetected anymore when adding a
ocsp-update keyword in a crt-list file, which breaks retro-compatibility.
This patch is a quick fix that will disappear once we are able to be
strict on a crt-store and autodetect on a crt-list.
The ckch_conf_cmp() function allow to compare multiple ckch_conf
structures in order to check that multiple usage of the same crt in the
configuration uses the same ckch_conf definition.
A crt-list allows to use "crt-store" keywords that defines a ckch_store,
that can lead to inconsistencies when a crt is called multiple time with
different parameters.
This function compare and dump a list of differences in the err variable
to be output as error.
The variant ckch_conf_cmp_empty() compares the ckch_conf structure to an
empty one, which is useful for bind lines, that are not able to have
crt-store keywords.
These functions are used when a crt-store is already inialized and we
need to verify if the parameters are compatible.
ckch_conf_cmp() handles multiple cases:
- When the previous ckch_conf was declared with CKCH_CONF_SET_EMPTY, we
can't define any new keyword in the next initialisation
- When the previous ckch_conf was declared with keywords in a crtlist
(CKCH_CONF_SET_CRTLIST), the next initialisation must have the exact
same keywords.
- When the previous ckch_conf was declared in a "crt-store"
(CKCH_CONF_SET_CRTSTORE), the next initialisaton could use no keyword
at all or the exact same keywords.
This patch adds crt-store keywords from the crt-list on the CLI.
- keywords from crt-store can be used over the CLI when inserting
certificate in a crt-list
- keywords from crt-store are dumped when showing a crt-list content
over the CLI
The ckch_conf_kws.func function pointer needed a new "cli" parameter, in
order to differenciate loading that come from the CLI or from the
startup, as they don't behave the same. For example it must not try to
load a file on the filesystem when loading a crt-list line from the CLI.
dump_crtlist_sslconf() was renamed in dump_crtlist_conf() and takes a
new ckch_conf parameter in order to dump relevant crt-store keywords.
This option allow to disable completely the ocsp-update.
To achieve this, the ocsp-update.mode global keyword don't rely anymore
on SSL_SOCK_OCSP_UPDATE_OFF during parsing to call
ssl_create_ocsp_update_task().
Instead, we will inherit the SSL_SOCK_OCSP_UPDATE_* value from
ocsp-update.mode for each certificate which does not specify its own
mode.
To disable completely the ocsp without editing all crt entries,
ocsp-update.disable is used instead of "ocsp-update.mode" which is now
only used as the default value for crt.
Use the ocsp-update keyword in the crt-store section. This is not used
as an exception in the crtlist code anymore.
This patch introduces the "ocsp_update_mode" variable in the ckch_conf
structure.
The SSL_SOCK_OCSP_UPDATE_* enum was changed to a define to match the
ckch_conf on/off parser so we can have off to -1.
The callback used by ckch_store_load_files() only works with
PARSE_TYPE_STR.
This allows to use a callback which will use a integer type for PARSE_TYPE_INT
and PARSE_TYPE_ONOFF.
This require to change the type of the callback to void * to pass either
a char * or a int depending of the parsing type.
The ssl_sock_load_* functions were encapsuled in ckch_conf_load_*
function just to match the type.
This will allow to handle crt-store keywords that are ONOFF or INT
types.
Remove the "ocsp-update" keyword handling from the crt-list.
The code was made as an exception everywhere so we could activate the
ocsp-update for an individual certificate.
The feature will still exists but will be parsed as a "crt-store"
keyword which will still be usable in a "crt-list". This will appear in
future commits.
This commit also disable the reg-tests for now.
This patch allows the usage of "crt-store" keywords from a "crt-list".
The crtstore_parse_load() function was splitted into 2 functions, so the
keywords parsing is done in ckch_conf_parse().
With this patch, crt are loaded with ckch_store_new_load_files_conf() or
ckch_store_new_load_files_path() depending on weither or not there is a
"crt-store" keyword.
More checks need to be done on "crt" bind keywords to ensure that
keywords are compatible.
This patch does not introduce the feature on the CLI.
ckch_store_new_load_files_conf() is the equivalent of
new_ckch_store_load_files_path() but instead of trying to find the files
using a base filename, it will load them from a list of files.
This mask value is unused, so we can safely remove it. It is a chance
because its value was wrong. But there is no bug here, even in stable
versions, because it is no longer used in all versions.
There was a flag to skip the response payload on output, if any, by stating
it is bodyless. It is used for responses to HEAD requests or for 204/304
responses. This allow rewrites during analysis. For instance a HEAD request
can be rewrite to a GET request for any reason (ie, a server not supporting
HEAD requests). In this case, the server will send a response with a
payload. On frontend side, the payload will be skipped and a valid response
(without payload) will be sent to the client.
With this patch we introduce the corresponding flag for the request. It will
be used to skip the request payload. In addition, when payload must be
skipped for a request or a response, The zero-copy data forwarding is now
disabled.
After every release we say that MIN/MAX should be changed to be an
expression that only evaluates each operand once, and before every
version we forget to change it and we recheck that the code doesn't
misuse them. Let's fix them now.
Aurlien reported that clang's build was broken by the recent fix
845fb846c7 ("BUG/MEDIUM: stick-tables: properly mark stktable_data
as packed"), because it now wants to use a helper for some atomic
ops (to increment std_t_uint). While this makes no sense to do
something that slow on modern architectures like x86 and arm64 which
are fine with unaligned accesses, we actually we can simply mark the
struct as aligned to its smallest element which is 32-bit (but still
packed). With this, it was verified that it is enough for clang to
see that its 32-bit operations will always be aligned, while making
64-bit operations safe on 64-bit platforms that do not support unaligned
accesses.
This should be backported wherever the patch above is backported.
Implement basic support for glitches on QUIC multiplexer. This is mostly
identical too glitches for HTTP/2.
A new configuration option named tune.quic.frontend.glitches-threshold
is defined to limit the number of glitches on a connection before
closing it.
Glitches counter is incremented via qcc_report_glitch(). A new
qcc_app_ops callback <report_susp> is defined. On threshold reaching, it
allows to set an application error code to close the connection. For
HTTP/3, value H3_EXCESSIVE_LOAD is returned. If not defined, default
code INTERNAL_ERROR is used.
For the moment, no glitch are reported for QUIC or HTTP/3 usage. This
will be added in future patches as needed.
Rename enum values used for HTTP/3 and QPACK RFC defined codes. First
uses a prefix H3_ERR_* which serves as identifier between them. Also
separate QPACK values in a new dedicated enum qpack_err. This is deemed
cleaner.
There is two distinct enums both related to QPACK error management. The
first one is dedicated to RFC defined code. The other one is a set of
internal values returned by qpack_decode_fs(). There has been issues
discovered recently due to the confusion between them.
Rename internal values with the prefix QPACK_RET_*. The older name
QPACK_ERR_* will be used in a future commit for the first enum.
In order to forcefully unregister a buffer waiter during an inter-thread
takeover under isolation, we'll need to that the function works without
th_ctx but the target thread's ctx instead. Let's implement this by
passing the target thread as an argument. Now b_dequeue() simply calls
this one with tid. It's OK it's not on that critical a path, especially
since the list has been checked for existence before performing the call.
The stktable_data union is made of types of varying sizes, and depending
on which types are stored in a table, some offsets might not necessarily
be aligned. This results in a bus error for certain regtests (e.g.
lb-services) on MIPS64. This bug may impact MIPS64, SPARC64, armv7 when
accessing a 64-bit counter (e.g. bytes) and depending on how the compiler
emitted the operation, and cause a trap that's emulated by the OS on RISCV
(heavy cost). x86_64 and armv8 are not affected at all.
Let's properly mark the struct with __attribute__((packed)) so that the
compiler emits the suitable unaligned-compatible instructions when
accessing the fields.
This should be backported to all versions where it applies.
A test on MIPS64 revealed that the following reg tests would all
fail at the same place in htx_replace_stline() when updating
parts of the request line:
reg-tests/cache/if-modified-since.vtc
reg-tests/http-rules/h1or2_to_h1c.vtc
reg-tests/http-rules/http_after_response.vtc
reg-tests/http-rules/normalize_uri.vtc
reg-tests/http-rules/path_and_pathq.vtc
While the status line is normally aligned since it's the first block
of the HTX, it may become unaligned once replaced. The problem is, it
is a structure which contains some u16 and u32, and dereferencing them
on machines not natively supporting unaligned accesses makes them crash
or handle crap. Typically, MIPS/MIPS64/SPARC will crash, ARMv5 will
either crash or (more likely) return swapped values and do crap, and
RISCV will trap and turn to slow emulation.
We can assign the htx_sl struct the packed attribute, but then this
also causes the ints to fill the 2-bytes gap before them, always causing
unaligned accesses for this part on such machines. The patch does a bit
better, by explicitly filling this two-bytes hole, and packing the
struct.
This should be backported to all versions.
qpack_decode_fs() is used to decode QPACK field section on HTTP/3
headers parsing. Its return value is incoherent as it returns either
QPACK_DECOMPRESSION_FAILED defined in RFC 9204 or any other internal
values defined in qpack-dec.h. On failure, such return code is reused by
HTTP/3 layer to be reported via a CONNECTION_CLOSE frame. This is
incorrect if an internal error values was reported as it is not defined
by any specification.
Fir return values of qpack_decode_fs() in two ways. Firstly, fix invalid
usages of QPACK_DECOMPRESSION_FAILED when decoded content is too large
for the correct internal error QPACK_ERR_TOO_LARGE.
Secondly, adjust qpack_decode_fs() API to only returns internal code
values. A new internal enum QPACK_ERR_DECOMP is defined to replace
QPACK_DECOMPRESSION_FAILED. Caller is responsible to convert it to a
suitable error value. For other internal values, H3_INTERNAL_ERROR is
used. This is done through a set of convert functions.
This should be backported up to 2.6. Note that trailers are not
supported in 2.6 so chunk related to h3_trailers_to_htx() can be safely
skipped.
Now, if a pool_alloc() fails for a buffer and if conditions are met
based on the queue number, we'll try to get an emergency buffer.
Thanks to this the situation is way more stable now. With only 4 reserve
buffers and 1 buffer it's possible to reliably serve 500 concurrent end-
to-end H1 connections and consult stats in parallel in loops showing the
growing number of buf_wait events in "show activity" without facing an
instant stall like in the past. Lower values still cause quick stalls
though.
It's also apparent that some subsystems do not seem to detach from the
buffer_wait lists when leaving. For example several crashes in the H1
part showed list elements still present after a free(), so maybe some
operations performed inside h1_release() after the b_dequeue() call
can sometimes result in a new allocation. Same for streams, where
the dequeue is done relatively early.
The buffer reserve set by tune.buffers.reserve has long been unused, and
in order to deal gracefully with failed memory allocations we'll need to
resort to a few emergency buffers that are pre-allocated per thread.
These buffers are only for emergency use, so every time their count is
below the configured number a b_free() will refill them. For this reason
their count can remain pretty low. We changed the default number from 2
to 4 per thread, and the minimum value is now zero (e.g. for low-memory
systems). The tune.buffers.limit setting has always been a problem when
trying to deal with the reserve but now we could simplify it by simply
pushing the limit (if set) to match the reserve. That was already done in
the past with a static value, but now with threads it was a bit trickier,
which is why the per-thread allocators increment the limit on the fly
before allocating their own buffers. This also means that the configured
limit is saner and now corresponds to the regular buffers that can be
allocated on top of emergency buffers.
At the moment these emergency buffers are not used upon allocation
failure. The only reason is to ease bisecting later if needed, since
this commit only has to deal with resource management.
Now when trying to allocate a channel buffer, we can check if we've been
notified of availability via the producer stream connector callback, in
which case we should not consult the queue, or if we're doing a first
allocation and check the queue.
When the buffer allocation callback is notified of a buffer availability,
it will now set a MAYALLOC flag in addition to clearing the ALLOC one, for
each of the 3 levels where we may fail an allocation. The flag will be
cleared upon a successful allocation. This will soon be used to decide to
re-allocate without waiting again in the queue. For now it has no effect.
There's just a trick, we need to clear the various *_ALLOC flags before
testing h1_recv_allowed() otherwise it will return false!
When appctx_buf_available() is called, it now sets APPCTX_FL_IN_MAYALLOC
or APPCTX_FL_OUT_MAYALLOC depending on the reportedly permitted buffer
allocation, and these flags are cleared when the said buffers are
allocated. For now they're not used for anything else.
When the buffer allocation callback is notified of a buffer availability,
it will now set a MAYALLOC flag on the stream so that the stream knows it
is allowed to bypass the queue checks. For now this is not used.
We used to have two states for the channel's input buffer used by the SC,
NEED_BUFF or not, flipped by sc_need_buff() and sc_have_buff(). We want to
have a 3rd state, indicating that we've just got a desired buffer. Let's
add an HAVE_BUFF flag that is set by sc_have_buff() and that is cleared by
sc_used_buff(). This way by looking at HAVE_BUFF we know that we're coming
back from the allocation callback and that the offered buffer has not yet
been used.
Now b_alloc() will check the queues at the same and higher criticality
levels before allocating a buffer, and will refrain from allocating one
if these are not empty. The purpose is to put some priorities in the
allocation order so that most critical allocators are offered a chance
to complete.
However in order to permit a freshly dequeued task to allocate again while
siblings are still in the queue, there is a special DB_F_NOQUEUE flag to
pass to b_alloc() that will take care of this special situation.
When we want to allocate an in buffer, it's in order to pass data to
the applet, that will consume it, so it must be seen as the same as
a send() from the higher level, i.e. MUX_TX. And for the outbuf, it's
a stream endpoint returning data, i.e. DB_SE_RX.
Instead of having each caller of appctx_get_buf() think about setting
the blocking flag, better have the function do it, since it's already
handling the queue anyway. This way we're sure that both are consistent.
Now that we need to keep the bitmap in sync with the list heads, we don't
want tasks to leave just doing a LIST_DEL_INIT() without updating the map.
Let's provide a b_dequeue() function for that purpose. The function detects
when it's going to remove the last element and figures the queue number
based on the pointer since it points to the root. It's not used yet.
The introduction of buffer_wq[] in thread_ctx pushed a few fields around
and the cache line alignment is less satisfying. And more importantly, even
before this, all the lists in the local parts were 8-aligned, with the first
one split across two cache lines.
We can do better:
- sched_profile_entry is not atomic at all, the data it points to is
atomic so it doesn't need to be in the atomic-only region, and it can
fill the 8-hole before the lists
- the align(2*void) that was only before tasklets[] moves before all
lists (and it's a nop for now)
This now makes the lists and buffer_wq[] start on a cache line boundary,
leaves 48 bytes after the lists before the atomic-only cache line, and
leaves a full cache line at the end for 128-alignment. This way we still
have plenty of room in both parts with better aligned fields.
Let's turn the buffer_wq into an array of 4 list heads. These are chosen
by criticality. The DB_CRIT_TO_QUEUE() macro maps each criticality level
into one of these 4 queues. The goal here clearly is to make it possible
to wake up the most critical queues in priority in order to let some tasks
finish their job and release buffers that others can use.
In order to avoid having to look up all queues, a bit map indicates which
queues are in use, which also allows to avoid looping in the most common
case where queues are empty..
The code places that were used to manipulate the buffer_wq manually
now just call b_queue() or b_requeue(). This will simplify the multiple
list management later.
When failing an allocation we always do the same dance, add the
buffer_wait struct to a list if it's not, and return. Let's just add
dedicated functions to centralize this, this will be useful to implement
a bit more complex logic.
For now they're not used.
The goal is to indicate how critical the allocation is, between the
least one (growing an existing buffer ring) and the topmost one (boot
time allocation for the life of the process).
The 3 tcp-based muxes (h1, h2, fcgi) use a common allocation function
to try to allocate otherwise subscribe. There's currently no distinction
of direction nor part that tries to allocate, and this should be revisited
to improve this situation, particularly when we consider that mux-h2 can
reduce its Tx allocations if needed.
For now, 4 main levels are planned, to translate how the data travels
inside haproxy from a producer to a consumer:
- MUX_RX: buffer used to receive data from the OS
- SE_RX: buffer used to place a transformation of the RX data for
a mux, or to produce a response for an applet
- CHANNEL: the channel buffer for sync recv
- MUX_TX: buffer used to transfer data from the channel to the outside,
generally a mux but there can be a few specificities (e.g.
http client's response buffer passed to the application,
which also gets a transformation of the channel data).
The other levels are a bit different in that they don't strictly need to
allocate for the first two ones, or they're permanent for the last one
(used by compression).
There are 2 new ctl commands that may be used to retrieve the current number
of streams openned for a connection and its limit (the maximum number of
streams a mux connection supports).
For the PT and H1 muxes, the limit is always 1 and the current number of
streams is 0 for idle connections, otherwise 1 is returned.
For the H2 and the FCGI muxes, info are already available in the mux
connection.
For the QUIC mux, the limit is also directly available. It is the maximum
initial sub-ID of bidirectional stream allowed for the connection. For the
current number of streams, it is the number of SC attached on the connection
and the number of not already attached streams present in the "opening_list"
list.
A reason is now passed as parameter to muxes shutdowns to pass additional
info about the abort, if any. No info means no abort or only generic one.
For now, the reason is composed of 2 32-bits integer. The first on represents
the abort code and the other one represents the info about the code (for
instance the source). The code should be interpreted according to the associated
info.
One info is the source, encoding on 5 bits. Other bits are reserverd for now.
For now, the muxes are the only supported source. But we can imagine to extend
it to applets, streams, health-checks...
The current design is quite simple and will most probably evolved.. But the
idea is to let the opposite side forward some errors and let's a mux know
why its stream was aborted. At first glance, a abort reason must only be
evaluated if SE_SHW_SILENT flag is set.
The main goal at short term, is to forward some H2 RST_STREAM codes because
it is mandatory for gRPC applications, mainly to forward gRPC cancellation
from an H2 client to an H2 server. But we can imagine to alter this reason
at the applicative level to enrich it. It would also be used to report more
accurate errors in logs.
Instead of chaining 2 switchcases and performing encoding checks for all
nodes let's actually split the logic in 2: first handle simple node types
(text/separator), and then handle dynamic node types (tag, expr). Encoding
options are only evaluated for dynamic node types.
Also, last_isspace is always set to 0 after next_fmt label, since next_fmt
label is only used for dynamic nodes, thus != LOG_FMT_SEPARATOR.
Since LF_NODE_WITH_OPT() macro (which was introduced recently) is now
unused, let's get rid of it.
No functional change should be expected.
(Use diff -w to check patch changes since reindentation makes the patch
look heavy, but in fact it remains fairly small)
Split code related to proxies list looping in cli_parse_clear_counters()
to a new dedicated function. This function is placed in the new module
stats-proxy.
Create a new module stats-proxy. Move stats functions related to proxies
list looping in it. This allows to reduce stats source file dividing its
size by half.
Convert FN_AGE in stat_cols_px[] as generic columns. These values will
be automatically used for dump/preload of a stats-file.
Remove srv_lastsession() / be_lastsession() function which are now
useless as last_sess is calculated via me_generate_field().
last_change was a member present in both proxy and server struct. It is
used as an age statistics to report the last update of the object.
Move last_change into fe_counters/be_counters. This is necessary to be
able to manipulate it through generic stat column and report it into
stats-file.
Note that there is a change for proxy structure with now 2 different
last_change values, on frontend and backend side. Special care was taken
to ensure that the value is initialized only on the proxy side. The
other value is set to 0 unless a listen proxy is instantiated. For the
moment, only backend counter is reported in stats. However, with now two
distinct values, stats could be extended to report it on both side.
Implement support for FN_RATE stat column into stat-file.
For the output part, only minimal change is required. Reuse the function
read_freq_ctr() to print the same value in both stats output and
stats-file dump.
For counter preloading, define a new utility function
preload_freq_ctr(). This can be used to initialize a freq-ctr type by
preloading previous period value. Reuse this function in load_ctr()
during stats-file parsing.
At the moment, no rate column is defined as generic. Thus, this commit
does not have functional change. This will be changed as soon as FN_RATE
are converted to generic columns.
Move freq-ctr defined in proxy or server structures into their dedicated
fe_counters/be_counters struct.
Functionnaly no change here. This commit will allow to convert rate
stats column to generic one, which is mandatory to manipulate them in
the stats-file.
Currently, only FN_COUNTER are dumped and preloaded via a stats-file.
Thus in several places we relied on the assumption that only FN_COUNTER
are valid in stats-file context.
New stats types will soon be implemented as they are also eligilible to
statistics reloading on process startup. Thus, prepare stats-file
functions to remove any FN_COUNTER restriction.
As one of this change, generate_stat_tree() now uses stcol_is_generic()
for stats name tree indexing before stats-file parsing.
Also related to stats-file parsing, individual counter preloading step
as been extracted from line parsing in a dedicated new function
load_ctr(). This will allow to extend it to support multiple mechanism
of counter preloading depending on the stats type.
If 'namespace' keyword is used in the backend server settings or/and in the
bind string, it means that haproxy process will call setns() to change its
default namespace to the configured one and then, it will create a
socket in this new namespace. setns() syscall requires CAP_SYS_ADMIN
capability in the process Effective set (see man 2 setns). Otherwise, the
process must be run as root.
To avoid to run haproxy as root, let's add cap_sys_admin capability in the
same way as we already added the support for some other network capabilities.
As CAP_SYS_ADMIN belongs to CAP_SYS_* capabilities type, let's add a separate
flag LSTCHK_SYSADM for it. This flag is set, if the 'namespace' keyword was
found during configuration parsing. The flag may be unset only in
prepare_caps_for_setuid() or in prepare_caps_from_permitted_set(), which
inspect process EUID/RUID and Effective and Permitted capabilities sets.
If system doesn't support Linux capabilities or 'cap_sys_admin' was not set
in 'setcap', but 'namespace' keyword is presented in the configuration, we
keep the previous strict behaviour. Process, that has changed uid to the
non-priviledged user, will terminate with alert. This alert invites the user
to recheck its configuration.
In the case, when haproxy will start and run under a non-root user and
'cap_sys_admin' is not set, but 'namespace' keyword is presented, this patch
does not change previous behaviour as well. We'll still let the user to try
its configuration, but we inform via warning, that unexpected things, like
socket creation errors, may occur.