The number of async fd is computed considering the maxconn, the number
of sides using ssl and the number of engines using async mode.
This patch should be backported on haproxy 1.8
There's a nasty case related to signaling all processes via SIGUSR1.
Since the master process still holds the peers sockets, the old process
trying to connect to the new one to teach it its tables has a risk to
connect to the master instead, which will not do anything, causing the
old process to hang instead of quitting.
This patch ensures we correctly close the peers in the master process
on startup, just like it is done for proxies. Ultimately we would rather
have a complete list of listeners to avoid such issues. But that's a bit
trickier as it would require using unbind_all() and avoiding side effects
the master could cause to other processes (like unlinking unix sockets).
To be backported to 1.8.
As with the call to cpuset_setaffinity(), FreeBSD expects the argument to
pthread_setaffinity_np() to be a cpuset_t, not an unsigned long, so the call
was silently failing.
This should probably be backported to 1.8.
This allows a calling script to show the first startup output and
know when to stop reading from stdout so haproxy can daemonize.
To be backpored to 1.8.
Check if master-worker pipe getenv succeeded, also allow pipe fd 0 as
valid. On FreeBSD in quiet mode the stdin/stdout/stderr are closed
which lets the mworker_pipe to use fd 0 and fd 1. Additionally exit()
upon failure to create or get the master-worker pipe.
This needs to be backported to 1.8.
This patch changes the behavior of the master during the exit of a
worker.
When a worker exits with an error code, for example in the case of a
segfault, all workers are now killed and the master leaves.
If you don't want this behavior you can use the option
"master-worker no-exit-on-failure".
During the migration to the second version of the pools, the new
functions and pool pointers were all called "pool_something2()" and
"pool2_something". Now there's no more pool v1 code and it's a real
pain to still have to deal with this. Let's clean this up now by
removing the "2" everywhere, and by renaming the pool heads
"pool_head_something".
Rename the global variable "proxy" to "proxies_list".
There's been multiple proxies in haproxy for quite some time, and "proxy"
is a potential source of bugs, a number of functions have a "proxy" argument,
and some code used "proxy" when it really meant "px" or "curproxy". It worked
by pure luck, because it usually happened while parsing the config, and thus
"proxy" pointed to the currently parsed proxy, but we should probably not
rely on this.
[wt: some of these are definitely fixes that are worth backporting]
Now, it is possible to bind CPU at the thread level instead of the process level
by defining a thread set in "cpu-map" directives. Thus, its format is now:
cpu-map [auto:]<process-set>[/<thread-set>] <cpu-set>...
where <process-set> and <thread-set> must follow the format:
all | odd | even | number[-[number]]
Having a process range and a thread range in same time with the "auto:" prefix
is not supported. Only one range is supported, the other one must be a fixed
number. But it is allowed when there is no "auto:" prefix.
Because it is possible to define a mapping for a process and another for a
thread on this process, threads will be bound on the intersection of their
mapping and the one of the process on which they are attached. If the
intersection is null, no specific binding will be set for the threads.
While using mmap() to allocate pools for debugging purposes, kill -USR1 caused
libc aborts in deinit() on two calls to free() on proxies' tasks and the global
listener task. The issue comes from the fact that we're using free() to release
a task instead of task_free(), so the task was allocated from a pool and released
using a different method.
This bug has been there since at least 1.5, so a backport is desirable to all
maintained versions.
Since we switched to notify mode in the systemd unit file in commit
d6942c8, haproxy won't start if the daemon keyword is present in the
configuration.
This change makes sure that haproxy remains in foreground when using
systemd mode and adds a note in the documentation.
This patch adds support for `Type=notify` to the systemd unit.
Supporting `Type=notify` improves both starting as well as reloading
of the unit, because systemd will be let known when the action completed.
See this quote from `systemd.service(5)`:
> Note however that reloading a daemon by sending a signal (as with the
> example line above) is usually not a good choice, because this is an
> asynchronous operation and hence not suitable to order reloads of
> multiple services against each other. It is strongly recommended to
> set ExecReload= to a command that not only triggers a configuration
> reload of the daemon, but also synchronously waits for it to complete.
By making systemd aware of a reload in progress it is able to wait until
the reload actually succeeded.
This patch introduces both a new `USE_SYSTEMD` build option which controls
including the sd-daemon library as well as a `-Ws` runtime option which
runs haproxy in master-worker mode with systemd support.
When haproxy is running in master-worker mode with systemd support it will
send status messages to systemd using `sd_notify(3)` in the following cases:
- The master process forked off the worker processes (READY=1)
- The master process entered the `mworker_reload()` function (RELOADING=1)
- The master process received the SIGUSR1 or SIGTERM signal (STOPPING=1)
Change the unit file to specify `Type=notify` and replace master-worker
mode (`-W`) with master-worker mode with systemd support (`-Ws`).
Future evolutions of this feature could include making use of the `STATUS`
feature of `sd_notify()` to send information about the number of active
connections to systemd. This would require bidirectional communication
between the master and the workers and thus is left for future work.
applets_active_queue is the active queue size. It is a global variable. So it is
underoptimized because we may be lead to consider there are active applets for a
thread while in fact all active applets are assigned to the otherthreads. So, in
such cases, the polling loop will be evaluated many more times than necessary.
Instead, we now check if the thread id is set in the bitfield active_applets_mask.
This is specific to threads, no backport is needed.
tasks_run_queue is the run queue size. It is a global variable. So it is
underoptimized because we may be lead to consider there are active tasks for a
thread while in fact all active tasks are assigned to the other threads. So, in
such cases, the polling loop will be evaluated many more times than necessary.
Instead, we now check if the thread id is set in the bitfield active_tasks_mask.
Another change has been made in process_runnable_tasks. Now, we always limit the
number of tasks processed to 200.
This is specific to threads, no backport is needed.
Since the commit cd7879adc ("BUG/MEDIUM: threads: Run the poll loop on the main
thread too"), the log buffers are allocated after the proxies startup. So log
messages produced during this startup was ignored.
To fix the bug, we restore the initialization of these buffers before proxies
startup.
This is specific to threads, no backport is needed.
At the end of the master initialisation, a call to protocol_unbind_all()
was made, in order to close all the FDs.
Unfortunately, this function closes the inherited FDs (fd@), upon reload
the master wasn't able to reload a configuration with those FDs.
The create_listeners() function now store a flag to specify if the fd
was inherited or not.
Replace the protocol_unbind_all() by mworker_cleanlisteners() +
deinit_pollers()
Does not use the deinit() function during a reload, it's dangerous and
might be subject to double free, segfault and hazardous behavior if
it's called twice in the case of a execvp fail.
After execvp fails, the signals were ignored, preventing to try a reload
again. It is now fixed by reaching the top of the mworker_wait()
function once the execvp failed.
When the master worker fail the execvp, it returns the wrong error
"Cannot allocate memory".
We now display the accurate error corresponding to the errno value.
If haproxy is started using the name of the binary only (i.e.
not using a relative or absolute path) the `execv` in
`mworker_reload` fails with `ENOENT`, because it does not
examine the `PATH`:
[WARNING] 315/161139 (7) : Reexecuting Master process
[WARNING] 315/161139 (7) : Cannot allocate memory
[WARNING] 315/161139 (7) : Failed to reexecute the master processs [7]
The error messages are misleading, because the return value of
`execv` is not checked. This should be fixed in a separate commit.
Once this happened the master process ignores any further
signals sent by the administrator.
Replace `execv` with `execvp` to establish the expected
behaviour.
This bug was introduced in commit 73b85e75b3.
At a number of places, bitmasks are used for process affinity and to map
listeners to processes. Every time 1UL<<(relative_pid-1) is used. Let's
create a "pid_bit" variable corresponding to this value to clean this up.
The first pid in the pidfile is now the parent, it's more convenient for
supervising the processus.
You can now reload haproxy in master-worker mode with convenient command
like: kill -USR2 $(head -1 /tmp/haproxy.pid)
This patch introduces a new struct conn_stream. It's the stream-side of
a multiplexed connection. A pool is created and destroyed on exit. For
now the conn_streams are not used at all.
There was a flaw in the way the threads was created. the main one was just used
to create all the others and just wait to exit. Now, it is used to run a poll
loop. So we only create nbthread-1 threads.
This also fixes a bug about the compression filter when there is only 1 thread
(nbthread == 1 or no threads support). The bug was in the way thread-local
resources was initialized. per-thread init/deinit callbacks were never called
for the main process. So, with nthread set to 1, some buffers remained
uninitialized.
By default, no affinity is set for threads. To bind threads on CPU, you must
define a "thread-map" in the global section. The format is the same than the
"cpu-map" parameter, with a small difference. The process number must be
defined, with the same format than cpu-map ("all", "even", "odd" or a number
between 1 and 31/63).
A thread will be bound on the intersection of its mapping and the one of the
process on which it is attached. If the intersection is null, no specific bind
will be set for the thread.
A lock for LB parameters has been added inside the proxy structure and atomic
operations have been used to update server variables releated to lb.
The only significant change is about lb_map. Because the servers status are
updated in the sync-point, we can call recalc_server_map function synchronously
in map_set_server_status_up/down function.
This list is used to save changes on the servers state. So when serveral threads
are used, it must be locked. The changes are then applied in the sync-point. To
do so, servers_update_status has be moved in the sync-point. So this is useless
to lock it at this step because the sync-point is a protected area by iteself.
Now, each proxy contains a lock that must be used when necessary to protect
it. Moreover, all proxy's counters are now updated using atomic operations.
2 global locks have been added to protect, respectively, the run queue and the
wait queue. And a process mask has been added on each task. Like for FDs, this
mask is used to know which threads are allowed to process a task.
For many tasks, all threads are granted. And this must be your first intension
when you create a new task, else you have a good reason to make a task sticky on
some threads. This is then the responsibility to the process callback to lock
what have to be locked in the task context.
Nevertheless, all tasks linked to a session must be sticky on the thread
creating the session. It is important that I/O handlers processing session FDs
and these tasks run on the same thread to avoid conflicts.
Many changes have been made to do so. First, the fd_updt array, where all
pending FDs for polling are stored, is now a thread-local array. Then 3 locks
have been added to protect, respectively, the fdtab array, the fd_cache array
and poll information. In addition, a lock for each entry in the fdtab array has
been added to protect all accesses to a specific FD or its information.
For pollers, according to the poller, the way to manage the concurrency is
different. There is a poller loop on each thread. So the set of monitored FDs
may need to be protected. epoll and kqueue are thread-safe per-se, so there few
things to do to protect these pollers. This is not possible with select and
poll, so there is no sharing between the threads. The poller on each thread is
independant from others.
Finally, per-thread init/deinit functions are used for each pollers and for FD
part for manage thread-local ressources.
Now, you must be carefull when a FD is created during the HAProxy startup. All
update on the FD state must be made in the threads context and never before
their creation. This is mandatory because fd_updt array is thread-local and
initialized only for threads. Because there is no pollers for the main one, this
array remains uninitialized in this context. For this reason, listeners are now
enabled in run_thread_poll_loop function, just like the worker pipe.
The function sync_poll_loop is called at the end of each loop inside
run_poll_loop function. It is a protected area where all threads have a chance
to execute tricky tasks with the warranty that no concurrent access is
possible. Of course, it comes with a cost because all threads must be
syncrhonized. So changes must be uncommon.
[WARNING] For now, HAProxy is not thread-safe, so from this commit, it will be
broken for a while, when compiled with threads.
When nbthread parameter is greater than 1, HAProxy will create the corresponding
number of threads. If nbthread is set to 1, nothing should be done. So if there
are concurrency issues (and be sure there will be, unfortunatly), an obvious
workaround is to disable the multithreading...
Each created threads will run a polling loop. So, in a certain way, it is pretty
similar to the nbproc mode ("outside" the bugs and the lock
contention). Nevertheless, there are an init and a deinit steps for each thread
to deal with per-thread allocation.
Each thread has a tid (thread-id), numbered from 0 to (nbtread-1). It is used in
many place to do bitwise operations or to improve debugging information.
hap_register_per_thread_init and hap_register_per_thread_deinit functions has
been added to register functions to do, for each thread, respectively, some
initialization and deinitialization. These functions are added in the global
lists per_thread_init_list and per_thread_deinit_list.
These functions are called only when HAProxy is started with more than 1 thread
(global.nbthread > 1).
This is a huge patch with many changes, all about the DNS. Initially, the idea
was to update the DNS part to ease the threads support integration. But quickly,
I started to refactor some parts. And after several iterations, it was
impossible for me to commit the different parts atomically. So, instead of
adding tens of patches, often reworking the same parts, it was easier to merge
all my changes in a uniq patch. Here are all changes made on the DNS.
First, the DNS initialization has been refactored. The DNS configuration parsing
remains untouched, in cfgparse.c. But all checks have been moved in a post-check
callback. In the function dns_finalize_config, for each resolvers, the
nameservers configuration is tested and the task used to manage DNS resolutions
is created. The links between the backend's servers and the resolvers are also
created at this step. Here no connection are kept alive. So there is no needs
anymore to reopen them after HAProxy fork. Connections used to send DNS queries
will be opened on demand.
Then, the way DNS requesters are linked to a DNS resolution has been
reworked. The resolution used by a requester is now referenced into the
dns_requester structure and the resolution pointers in server and dns_srvrq
structures have been removed. wait and curr list of requesters, for a DNS
resolution, have been replaced by a uniq list. And Finally, the way a requester
is removed from a DNS resolution has been simplified. Now everything is done in
dns_unlink_resolution.
srv_set_fqdn function has been simplified. Now, there is only 1 way to set the
server's FQDN, independently it is done by the CLI or when a SRV record is
resolved.
The static DNS resolutions pool has been replaced by a dynamoc pool. The part
has been modified by Baptiste Assmann.
The way the DNS resolutions are triggered by the task or by a health-check has
been totally refactored. Now, all timeouts are respected. Especially
hold.valid. The default frequency to wake up a resolvers is now configurable
using "timeout resolve" parameter.
Now, as documented, as long as invalid repsonses are received, we really wait
all name servers responses before retrying.
As far as possible, resources allocated during DNS configuration parsing are
releases when HAProxy is shutdown.
Beside all these changes, the code has been cleaned to ease code review and the
doc has been updated.
In order to prepare multi-thread development, code was re-worked
to propagate changes asynchronoulsy.
Servers with pending status changes are registered in a list
and this one is processed and emptied only once 'run poll' loop.
Operational status changes are performed before administrative
status changes.
In a case of multiple operational status change or admin status
change in the same 'run poll' loop iteration, those changes are
merged to reach only the targeted status.