The option http-tunnel disables any HTTP processing past the first
transaction. In HTX, it works for full h1 transactions. As for the legacy HTTP,
it is a workaround, but it works. But it is impossible to make it works with an
h2 connection. In such case, it has no effect, the stream is closed at the end
of the transaction. So to avoid any inconsistancies between h1 and h2
connections, this option is now always ignored when the HTX is enabled. It is
also a good opportinity to deprecate an old and ugly option. A warning is
emitted during HAProxy startup to encourage users to remove this option.
Note that in legacy HTTP, this option only works with full h1 transactions
too. If an h2 connection is established on a frontend with this option enabled,
it will have no effect at all. But we keep it for the legacy HTTP for
compatibility purpose. It will be removed with the legacy HTTP.
So to be short, if you have to really (REALLY) use it, it will only work for
legacy HTTP frontends with H1 clients.
The documentation has been updated accordingly.
This patch must be backported to 1.9. It is not strictly speaking required but
it will ease futur backports.
Now that the P2C algorithm for the accept queue is removed, we don't
need to map a number to a thread bit anymore, so let's remove all
these fields which are taking quite some space for no reason.
Historically the default frontend's maxconn used to be quite low (2000),
which was sufficient two decades ago but often proved to be a problem
when users had purposely set the global maxconn value but forgot to set
the frontend's.
There is no point in keeping this arbitrary limit for frontends : when
the global maxconn is lower, it's already too high and when the global
maxconn is much higher, it becomes a limiting factor which causes trouble
in production.
This commit allows the value to be set to zero, which becomes the new
default value, to mean it's not directly limited, or in fact it's set
to the global maxconn. Since this operation used to be performed before
computing a possibly automatic global maxconn based on memory limits,
the calculation of the maxconn value and its propagation to the backends'
fullconn has now moved to a dedicated function, proxy_adjust_all_maxconn(),
which is called once the global maxconn is stabilized.
This comes with two benefits :
1) a configuration missing "maxconn" in the defaults section will not
limit itself to a magically hardcoded value but will scale up to the
global maxconn ;
2) when the global maxconn is not set and memory limits are used instead,
the frontends' maxconn automatically adapts, and the backends' fullconn
as well.
It's pointless to always set and maintain l->maxconn because the accept
loop already enforces the frontend's limit anyway. Thus let's stop setting
this value by default and keep it to zero meaning "no limit". This way the
frontend's maxconn will be used by default. Of course if a value is set,
it will be enforced.
In an attempt to try to provide automatic maxconn settings, we need to
decorrelate a listner's backlog and maxconn so that these values can be
independent. This introduces a listener_backlog() function which retrieves
the backlog value from the listener's backlog, the frontend's, the
listener's maxconn, the frontend's or falls back to 1024. This
corresponds to what was done in cfgparse.c to force a value there except
the last fallback which was not set since the frontend's maxconn is always
known.
global.maxsock used to be augmented by the frontend's maxconn value
for each frontend listener, which is absurd when there are many
listeners in a frontend because the frontend's maxconn fixes an
upper limit to how many connections will be accepted on all of its
listeners anyway. What is needed instead is to add one to count the
listening socket.
In addition, the CLI's and peers' value was incremented twice, the
first time when creating the listener and the second time in the
main init code.
Let's now make sure we only increment global.maxsock by the required
amount of sockets. This means not adding maxconn for each listener,
and relying on the global values when they are correct.
Threads have long matured by now, still for most users their usage is
not trivial. It's about time to enable them by default on platforms
where we know the number of CPUs bound. This patch does this, it counts
the number of CPUs the process is bound to upon startup, and enables as
many threads by default. Of course, "nbthread" still overrides this, but
if it's not set the default behaviour is to start one thread per CPU.
The default number of threads is reported in "haproxy -vv". Simply using
"taskset -c" is now enough to adjust this number of threads so that there
is no more need for playing with cpu-map. And thanks to the previous
patches on the listener, the vast majority of configurations will not
need to duplicate "bind" lines with the "process x/y" statement anymore
either, so a simple config will automatically adapt to the number of
processors available.
In order to quickly pick a thread ID when accepting a connection, we'll
need to know certain pre-computed values derived from the thread mask,
which are counts of bits per position multiples of 1, 2, 4, 8, 16 and
32. In practice it is sufficient to compute only the 4 first ones and
store them in the bind_conf. We update the count every time the
bind_thread value is adjusted.
The fields in the bind_conf struct have been moved around a little bit
to make it easier to group all thread bit values into the same cache
line.
The function used to return a thread number is bind_map_thread_id(),
and it maps a number between 0 and 31/63 to a thread ID between 0 and
31/63, starting from the left.
Now that nbproc and nbthread are exclusive, we can still provide more
detailed explanations about what we've found in the config when a bind
line appears on multiple threads and processes at the same time, then
ignore the setting.
This patch reduces the listener's thread mask to a single mask instead
of an array of masks per process. Now we have only one thread mask and
one process mask per bind-conf. This removes ~504 bytes of RAM per
bind-conf and will simplify handling of thread masks.
If a "bind" line only refers to process numbers not found by its parent
frontend or not covered by the global nbproc directive, or to a thread
not covered by the global nbthread directive, a warning is emitted saying
what will be used instead.
When 1.8 was released, we wanted to support both nbthread and nbproc to
observe how things would go. Since then it appeared obvious that the two
are never used together because of the pain to configure affinity in this
case, and instead of bringing benefits, it brings the limitations of both
models, and causes multiple threads to compete for the same CPU. In
addition, it costs a lot to support both in parallel, so let's get rid
of this once for all.
When calling calloc(), cast global.nbthread to unsigned int, so that gcc
doesn't freak out, as it has no way of knowing global.nbthread can't be
negative.
Instead of having one task per thread and per server that does clean the
idling connections, have only one global task for every servers.
That tasks parses all the servers that currently have idling connections,
and remove half of them, to put them in a per-thread list of connections
to kill. For each thread that does have connections to kill, wake a task
to do so, so that the cleaning will be done in the context of said thread.
Add a per-thread counter of idling connections, and use it to determine
how many connections we should kill after the timeout, instead of using
the global counter, or we're likely to just kill most of the connections.
This should be backported to 1.9.
Initialize ->srv peer field for all the peers, the local peer included.
Indeed, a haproxy process needs to connect to the local peer of a remote
process. Furthermore, when a "peer" or "server" line is parsed by parse_server()
the address must be copied to ->addr field of the peer object only if this address
has been also parsed by parse_server(). This is not the case if this address belongs
to the local peer and is provided on a "server" line.
After having parsed the "peer" or "server" lines of a peer
sections, the ->srv part of all the peer must be initialized for SSL, if
enabled. Same thing for the binding part.
Revert 1417f0b commit which is no more required.
No backport is needed, this is purely 2.0.
Now, in the function parse_process_number(), when a process number or a set of
processes is parsed, an error is triggered if an invalid character is found. It
means following syntaxes are not forbidden and will emit an alert during the
HAProxy startup:
1a
1/2
1-2-3
This bug was reported on Github. See issue #36.
This patch may be backported to 1.9 and 1.8.
For some embedded systems, it's pointless to have 32- or even 64- large
arrays of processes when it's known that much fewer processes will be
used in the worst case. Let's introduce this MAX_PROCS define which
contains the highest number of processes allowed to run at once. It
still defaults to LONGBITS but may be lowered.
This also depends on the nbthread count, so it must only be performed after
parsing the whole config file. As a side effect, this removes some code
duplication between servers and server-templates.
This must be backported to 1.9.
The idle conns lists are sized according to the number of threads. As such
they cannot be initialized during the parsing since nbthread can be set
later, as revealed by this simple config which randomly crashes when used.
Let's do this at the end instead.
listen proxy
bind :4445
mode http
timeout client 10s
timeout server 10s
timeout connect 10s
http-reuse always
server s1 127.0.0.1:8000
global
nbthread 8
This fix must be backported to 1.9 and 1.8.
When commit 151e1ca98 ("BUG/MAJOR: config: verify that targets of track-sc
and stick rules are present") added a check for some process inconsistencies
between rules and their stick tables, some errors resulted in a "return 0"
statement, which is taken as "no error" in some cases. Let's fix this.
This must be backported to all versions using the above commit.
Stick and track-sc rules may optionally designate a table in a different
proxy. In this case, a number of verifications are made such as validating
that this proxy actually exists. However, in multi-process mode, the target
table might indeed exist but not be bound to the set of processes the rules
will execute on. This will definitely result in a random behaviour especially
if these tables do require peer synchronization, because some tasks will be
started to try to synchronize form uninitialized areas.
The typical issue looks like this :
peers my-peers
peer foo ...
listen proxy
bind-process 1
stick on src table ip
...
backend ip
bind-process 2
stick-table type ip size 1k peers my-peers
While it appears obvious that the example above will not work, there are
less obvious situations, such as having bind-process in a defaults section
and having a larger set of processes for the referencing proxy than the
referenced one.
The present patch adds checks for such situations by verifying that all
processes from the referencing proxy are present on the other one in all
track-sc* and stick-* rules, and in sample fetch / converters referencing
another table so that sc_inc_gpc0() and similar are safe as well.
This fix must be backported to all maintained versions. It may potentially
disrupt configurations which already randomly crash. There hardly is any
intermediary solution though, such configurations need to be fixed.
At a number of places we used to have null tests on bind_proc for
listeners and proxies. Let's simplify all these tests by always
having the proper bits reported via proc_mask().
When no nbproc is specified, a computation leads to reading bind_thread[-1]
before checking if the thread mask is valid for a bind conf. It may either
report a false warning and compute a wrong mask, or miss some incorrect
configs.
This must be backported to 1.9 and possibly 1.8.
This bug was introduced by 355b203 commit which prevented the peer
addresses to be parsed for the local peer of a "peers" section.
When adding "parse_addr" boolean parameter to parse_server(), this commit
missed the case where the syntax with "peer" keyword should still be
supported in addition to the new syntax with "server"+"bind" keyword.
May be backported as fas as 1.5.
Some servers may wish to limit the total number of requests they execute
over a connection because some of their components might leak resources.
In HTTP/1 it was easy, they just had to emit a "connection: close" header
field with the last response. In HTTP/2, it's less easy because the info
is not always shared with the component dealing with the H2 protocol and
it could be harder to advertise a GOAWAY with a stream limit.
This patch provides a solution to this by adding a new "max-reuse" parameter
to the server keyword. This parameter indicates how many times an idle
connection may be reused for new requests. The information is made available
and the underlying muxes will be able to use it at will.
This patch should be backported to 1.9.
Make "bind" keywork be supported in "peers" sections.
All "bind" settings are supported on this line.
Add "default-bind" option to parse the binding options excepted the bind address.
Do not parse anymore the bind address for local peers on "server" lines.
Do not use anymore list_for_each_entry() to set the "peers" section
listener parameters because there is only one listener by "peers" section.
May be backported to 1.5 and newer.
This patch adds pointer to a struct server to peer structure which
is initialized after having parsed a remote "peer" line.
After having parsed all peers section we run ->prepare_srv to initialize
all SSL/TLS stuff of remote perr (or server).
Remaining thing to do to completely support peer protocol over SSL/TLS:
make "bind" keyword be supported in "peers" sections to make SSL/TLS
incoming connections to local peers work.
May be backported to 1.5 and newer.
With this patch "default-server" lines are supported in "peers" sections
to setup the default settings of peers which are from now setup
when parsing both "peer" and "server" lines.
May be backported to 1.5 and newer.
Even if not already the case, we suppose that the frontend "peers" section
may have been already initialized outside of "peer" line, we seperate
their initializations from their binding initializations.
May be backported to 1.5 and newer.
Use ->local "peers" struct member to flag a "peers" section frontend
has being initialized. This is to be able to initialize the frontend
of "peers" sections on lines different from "peer" lines.
May be backported to 1.5 and newer.
Create init_peers_frontend() function to allocate and initialize
the frontend of "peers" sections (->peers_fe) so that to reuse it later.
May be backported to 1.5 and newer.
This one is a proxy option which can be inherited from defaults even
if the LB algo changes. Move it out of the lb_chash struct so that we
don't need to keep anything separate between these structs. This will
allow us to merge them into an union later. It even takes less room
now as it fills a hole and removes another one.
In session, don't keep an infinite number of connection that can idle.
Add a new frontend parameter, "max-session-srv-conns" to set a max number,
with a default value of 5.
Instead of the old "idle-timeout" mechanism, add a new option,
"pool-purge-delay", that sets the delay before purging idle connections.
Each time the delay happens, we destroy half of the idle connections.
Add a new command, "pool-max-conn" that sets the maximum number of connections
waiting in the orphan idling connections list (as activated with idle-timeout).
Using "-1" means unlimited. Using pools is now dependant on this.
Change the default for http-reuse from "never" to "safe", as it has been
the recommended setting for a few versions now and backend H2 makes little
sense without it.
Some warnings were removed from the config parser since it can dynamically
be disabled depending on the server's configuration, so there's no need to
disable it on a whole backend just for one server.
Currently a mux may be forced on a bind or server line by specifying the
"proto" keyword. The problem is that the mux may depend on the proxy's
mode, which is not known when parsing this keyword, so a wrong mux could
be picked.
Let's simply update the mux entry while checking its validity. We do have
the name and the side, we only need to see if a better mux fits based on
the proxy's mode. It also requires to remove the side check while parsing
the "proto" keyword since a wrong mux could be picked.
This way it becomes possible to declare multiple muxes with the same
protocol names and different sides or modes.
Wrong variable was used to know if we need to call the callback
post_section_parser() or not. We must use 'cs' and not 'pcs'.
This patch must be backported in 1.8 with the commit 7805e2b ("BUG/MINOR:
cfgparse: Fix transition between 2 sections with the same name").
When a section's parser is registered, it can also define a post section
callback, called at the end of the section parsing. But when 2 sections with the
same name followed each other, the transition between them was missed. This
induced 2 bugs. First, the call to the post section callback was skipped. Then,
the parsing of the second section was mixed with the first one.
This patch must be backported in 1.8.
In some situations, especially when dealing with low latency on processors
supporting a variable frequency or when running inside virtual machines,
each time the process waits for an I/O using the poller, the processor
goes back to sleep or is offered to another VM for a long time, and it
causes excessively high latencies.
A solution to this provided by this patch is to enable busy polling using
a global option. When busy polling is enabled, the pollers never sleep and
loop over themselves waiting for an I/O event to happen or for a timeout
to occur. On multi-processor machines it can significantly overheat the
processor but it usually results in much lower latencies.
A typical test consisting in injecting traffic over a single connection at
a time over the loopback shows a bump from 4640 to 8540 connections per
second on forwarded connections, indicating a latency reduction of 98
microseconds for each connection, and a bump from 12500 to 21250 for
locally terminated connections (redirects), indicating a reduction of
33 microseconds.
It is only usable with epoll and kqueue because select() and poll()'s
API is not convenient for such usages, and the level of performance they
are used in doesn't benefit from this anyway.
The option, which obviously remains disabled by default, can be turned
on using "busy-polling" in the global section, and turned off later
using "no busy-polling". Its status is reported in "show info" to help
troubleshooting suspicious CPU spikes.
Because the HTX is still experimental, we must add special cases during the
configuration check to be sure it is not enabled on a proxy with incompatible
options. Here, for HTX proxies, when a mux protocol is specified on a bind line
or a server line, we must force the HTX mode (PROTO_MODE_HTX).
Concretely, H2 is the only mux protocol that can be forced. And it doesn't yet
support the HTX. So forcing the H2 on an HTX proxy will always fail.
This was the largest function of the whole file, taking a rough second
to build alone. Let's move it to a distinct file along with a few
dependencies. Doing so saved about 2 seconds on the total build time.
The config parser is the largest file to build and its build dominates
the total project's build time. Let's start to split it into multiple
smaller pieces by extracting the "global" section parser into a new
file called "cfgparse-global.c". This removes 1/4th of the file's build
time.