quic_rx_packet struct had a reference to the quic_conn instance. This is
useless as qc instance is always passed through function argument. In
fact, pkt.qc is used only in qc_pkt_decrypt() on key update, even though
qc is also passed as argument.
Simplify this by removing qc field from quic_rx_packet structure
definition. Also clean up qc_pkt_decrypt() documentation and interface
to align it with other quic-conn related functions.
This should be backported up to 2.7.
Rename the structure "cert_key_and_chain" to "ckch_data" in order to
avoid confusion with the store whcih often called "ckchs".
The "cert_key_and_chain *ckch" were renamed "ckch_data *data", so we now
have store->data instead of ckchs->ckch.
Marked medium because it changes the API.
Adding base code to provide subscribe/publish API for internal
events processing.
event_hdl provides two complementary APIs, both are implemented
in src/event_hdl.c and include/haproxy/event_hdl{-t.h,.h}:
One API targeting developers that want to register event handlers
that will be notified on specific events.
(SUBSCRIBE)
One API targeting developers that want to notify registered handlers
about an event.
(PUBLISH)
This feature is being considered to address the following scenarios:
- mailers code refactoring (getting rid of deprecated
tcp-check ruleset implementation)
- server events from lua code (registering user defined
lua function that is executed with relevant data when a
server is dynamically added/removed or on server state change)
- providing a stable and easy to use API for upcoming
developments that rely on specific events to perform actions.
(e.g: ressource cleanup when a server is deleted from haproxy)
At this time though, we don't have much use cases in mind in addition to
server events handling, but the API is aimed at being multipurpose
so that new event families, with their own particularities, can be
easily implemented afterwards (and hopefully) without requiring breaking
changes to the API.
Moreover, you should know that the API was not designed to cope well
with high rate event publishing.
Mostly because publishing means iterating over unsorted subscriber list.
So it won't scale well as subscriber list increases, but it is intended in
order to keep the code simple and versatile.
Instead, it is assumed that events implemented using this API
should be periodic events, and that events related to critical
io/networking processing should be handled using
dedicated facilities anyway.
(After all, this is meant to be a general purpose event API)
Apart from being easily extensible, one of the main goals of this API is
to make subscriber code as simple and safe as possible.
This is done by offering multiple event handling modes:
- SYNC mode:
publishing code directly
leverages handler code (callback function)
and handler code has a direct access to "live" event data
(pointers mostly, alongside with lock hints/context
so that accessing data pointers can be done properly)
- normal ASYNC mode:
handler is executed in a backward compatible way with sync mode,
so that it is easy to switch from and to SYNC/ASYNC mode.
Only here the handler has access to "offline" event data, and
not "live" data (ptrs) so that data consistency is guaranteed.
By offline, you should understand "snapshot" of relevant data
at the time of the event, so that the handler can consume it
later (even if associated ressource is not valid anymore)
- advanced ASYNC mode
same as normal ASYNC mode, but here handler is not a function
that is executed with event data passed as argument: handler is a
user defined tasklet that is notified when event occurs.
The tasklet may consume pending events and associated data
through its own message queue.
ASYNC mode should be considered first if you don't rely on live event
data and you wan't to make sure that your code has the lowest impact
possible on publisher code. (ie: you don't want to break stuff)
Internal API documentation will follow:
You will find more details about the notions we roughly approached here.
WolfSSL does not implement the TLS1_3_CK_AES_128_CCM_SHA256 cipher as
well as the SSL_ERROR_WANT_ASYNC, SSL_ERROR_WANT_ASYNC_JOB and
SSL_ERROR_WANT_CLIENT_HELLO_CB error codes.
This patch disables them for WolfSSL.
Signed-off-by: William Lallemand <wlallemand@haproxy.org>
The function used to calculate the shard number currently requires a
stktable_key on input for this. Unfortunately, it happens that peers
currently miss this calculation and they do not provide stktable_key
at all, instead they're open-coding all the low-level stick-table work
(hence why it's missing). Thus we'll need to be able to calculate the
shard number in keys coming from peers as well but the current API does
not make it possible.
This commit addresses this by inverting the order where the length and
the shard number are used. Now the low-level function is independent on
stksess and stktable_key, it takes a table, pointer and length and does
all the job. The upper function takes care of the type and key to get
the its length, and is for use only from stick-table code.
This doesn't change anything except that the low-level one will be usable
from outside (hence why it's exported now).
ncbuf API relies on lot of small functions. Mark these functions as
inline to reduce call invocations and facilitate compiler optimizations
to reduce code size.
This should be backported up to 2.6.
Instead of using memcpy() to concatenate the table's name to the key when
allocating an stksess, let's compute once for all a per-table seed at boot
time and use it to calculate the key's hash. This saves two memcpy() and
the usage of a chunk, it's always nice in a fast path.
When tested under extreme conditions with a 80-byte long table name, it
showed a 1% performance increase.
With an OpenSSL library which use the wrong OPENSSLDIR, HAProxy tries to
load the OPENSSLDIR/certs/ into @system-ca, but emits a warning when it
can't.
This patch fixes the issue by allowing to shut the error when the SSL
configuration for the httpclient is not explicit.
Must be backported in 2.6.
This adds a USE_OPENSSL_WOLFSSL option, wolfSSL must be used with the
OpenSSL compatibility layer. This must be used with USE_OPENSSL=1.
WolfSSL build options:
./configure --prefix=/opt/wolfssl --enable-haproxy
HAProxy build options:
USE_OPENSSL=1 USE_OPENSSL_WOLFSSL=1 WOLFSSL_INC=/opt/wolfssl/include/ WOLFSSL_LIB=/opt/wolfssl/lib/ ADDLIB='-Wl,-rpath=/opt/wolfssl/lib'
Using at least the commit 54466b6 ("Merge pull request #5810 from
Uriah-wolfSSL/haproxy-integration") from WolfSSL. (2022-11-23).
This is still to be improved, reg-tests are not supported yet, and more
tests are to be done.
Signed-off-by: William Lallemand <wlallemand@haproxy.org>
A number of internal flags started to be exposed to external programs
at the location of their definition since commit 77acaf5af ("MINOR:
flags: add a new file to host flag dumping macros"). This allowed the
"flags" utility to decode many more of them and always correctly. The
condition to expose them was to rely on the preliminary definition of
EOF that indicates that stdio is already included. But this was a
wrong approach. It only guarantees that snprintf() can safely be used
but still causes large functions to be built. But stdio is often
included before some of these includes, so these heavy inline functions
actually have to be compiled in many cases. The result is that the
build time significantly increased, especially with fast compilers
like gcc -O0 which took +50% or TCC which took +100%!
This patch addresses the problem by instead relying on an explicit
macro HA_EXPOSE_FLAGS that the calling program must explicitly define
before including these files. flags.c does this and that's all. The
previous build time is now restored with a speed up of 20 to 50%
depending on the build options.
These includes brought by commit 9c76637ff ("MINOR: anon: add new macros
and functions to anonymize contents") resulted in an increase of exactly
20% of the number of lines to build. These include are not needed there,
only tools.c needs xxhash.h.
Building with TCC caused a warning on __attribute__() being redefined,
because we do define it on compilers that don't have it, but we didn't
include the compiler's definitions first to leave it a chance to expose
its definitions. The correct way to do this would be to include
sys/cdefs.h but we currently don't include it explicitly and a few
reports on the net mention some platforms where it could be missing
by default. Let's use inttypes.h instead, it always causes it (or its
equivalent) to be included and we know it's present on supported
platforms since we already depend on it.
No backport is needed.
The issue addressed by commit fbb934da9 ("BUG/MEDIUM: stick-table: fix
a race condition when updating the expiration task") is still present
when thread groups are enabled, but this time it lies in the scheduler.
What happens is that a task configured to run anywhere might already
have been queued into one group's wait queue. When updating a stick
table entry, sometimes the task will have to be dequeued and requeued.
For this a lock is taken on the current thread group's wait queue lock,
but while this is necessary for the queuing, it's not sufficient for
dequeuing since another thread might be in the process of expiring this
task under its own group's lock which is different. This is easy to test
using 3 stick tables with 1ms expiration, 3 track-sc rules and 4 thread
groups. The process crashes almost instantly under heavy traffic.
One approach could consist in storing the group number the task was
queued under in its descriptor (we don't need 32 bits to store the
thread id, it's possible to use one short for the tid and another
one for the tgrp). Sadly, no safe way to do this was figured, because
the race remains at the moment the thread group number is checked, as
it might be in the process of being changed by another thread. It seems
that a working approach could consist in always having it associated
with one group, and only allowing to change it under this group's lock,
so that any code trying to change it would have to iterately read it
and lock its group until the value matches, confirming it really holds
the correct lock. But this seems a bit complicated, particularly with
wait_expired_tasks() which already uses upgradable locks to switch from
read state to a write state.
Given that the shared tasks are not that common (stick-table expirations,
rate-limited listeners, maybe resolvers), it doesn't seem worth the extra
complexity for now. This patch takes a simpler and safer approach
consisting in switching back to a single wq_lock, but still keeping
separate wait queues. Given that shared wait queues are almost always
empty and that otherwise they're scanned under a read lock, the
contention remains manageable and most of the time the lock doesn't
even need to be taken since such tasks are not present in a group's
queue. In essence, this patch reverts half of the aforementionned
patch. This was tested and confirmed to work fine, without observing
any performance degradation under any workload. The performance with
8 groups on an EPYC 74F3 and 3 tables remains twice the one of a
single group, with the contention remaining on the table's lock first.
No backport is needed.
In order to evenly pick idle connections from other threads, there is
a "next_takeover" index in the server, that is incremented each time
a connection is picked from another thread, and indicates which one to
start from next time.
With thread groups this doesn't work well because the index is the same
regardless of the group, and if a group has more threads than another,
there's even a risk to reintroduce an imbalance.
This patch introduces a new per-tgroup storage in servers which, for now,
only contains an instance of this next_takeover index. This way each
thread will now only manipulate the index specific to its own group, and
the takeover will become fair again. More entries may come soon.
In 2.2, some idle conns usage metrics were added by commit cf612a045
("MINOR: servers: Add a counter for the number of currently used
connections."), which mentioned that the operation doesn't need to be
atomic since we're not seeking exact values. This is true but at least
we should use atomic stores to make sure not to cause invalid values
to appear on archs that wouldn't guarantee atomicity when writing an
int, such as writing two 16-bit words. This is pretty unlikely on our
targets but better keep the code safe against this.
This may be backported as far as 2.2.
The "show pools" command is used a lot for debugging but didn't get much
love over the years. This patch brings new capabilities:
- sorting the output by pool names to ese their finding ("byname").
- sorting the output by reverse item size to spot the biggest ones("bysize")
- sorting the output by reverse number of allocated bytes ("byusage")
The last one (byusage) also omits displaying the ones with zero allocation.
In addition, an optional max number of output entries may be passed so as
to dump only the N most relevant ones.
This previous patch was not sufficient to prevent haproxy from
crashing when some Handshake packets had to be inspected before being possibly
retransmitted:
"BUG/MAJOR: quic: Crash upon retransmission of dgrams with several packets"
This patch introduced another issue: access to packets which have been
released because still attached to others (in the same datagram). This was
the case for instance when discarding the Initial packet number space before
inspecting an Handshake packet in the same datagram through its ->prev or
member in our case.
This patch implements quic_tx_packet_dgram_detach() which detaches a packet
from the adjacent ones in the same datagram to be called when ackwowledging
a packet (as done in the previous commit) and when releasing its memory. This
was, we are sure the released packets will not be accessed during retransmissions.
Thank you to @gabrieltz for having reported this issue in GH #1903.
Must be backported to 2.6.
As revealed by some traces provided by @gabrieltz in GH #1903 issue,
there are clients (chrome I guess) which acknowledge only one packet among others
in the same datagram. This is the case for the first datagram sent by a QUIC haproxy
listener made an Initial packet followed by an Handshake one. In this identified
case, this is the Handshake packet only which is acknowledged. But if the
client is able to respond with an Handshake packet (ACK frame) this is because
it has successfully parsed the Initial packet. So, why not also acknowledging it?
AFAIK, this is mandatory. On our side, when restransmitting this datagram, the
Handshake packet was accessed from the Initial packet after having being released.
Anyway. There is an issue on our side. Obviously, we must not expect an
implementation to respect the RFC especially when it want to build an attack ;)
With this simple patch for each TX packet we send, we also set the previous one
in addition to the next one. When a packet is acknowledged, we detach the next one
and the next one in the same datagram from this packet, so that it cannot be
resent when resending these packets (the previous one, in our case).
Thank you to @gabrieltz for having reported this issue.
Must be backported to 2.6.
In diag mode, the section position is checked and a warning is emitted if a
global section is defined after any non-global one. Now, this check is
always performed. But the warning is still only emitted in diag mode. In
addition, the result of this check is now stored in a global variable, to be
used from anywhere.
The aim of this patch is to be able to restrict usage of some global
directives to the very first global sections. It will be useful to avoid
undefined behaviors. Indeed, some config parts may depend on global settings
and it is a problem if these settings are changed after.
h1_process_mux() is written to allow partial headers formatting. For now,
all headers are forwarded in one time. But it is still good to keep this
ability at the H1 mux level. So we must rely on a H1S flag instead of a
local variable to know a WebSocket key was found in headers to be able to
generate a key if necessary.
There is no reason to backport this patch.
Similarly to the H1 and H2 multiplexers, FCFI_CF_ERR_PENDING is now used to
report an error when we try to send data and FCGI_CF_ERROR to report an
error when we try to read data. In other funcions, we rely on these flags
instead of connection ones. Only FCGI_CF_ERROR is considered as a final
error. FCGI_CF_ERR_PENDING does not block receive attempt.
In addition, FCGI_CF_EOS flag was added. we rely on it to test if a read0
was received or not.
Some fields in h2c structures are not used: .mfl, .mft and .mff. Just remove
them.
.msi field is also removed. It is tested but never set, except when a H2
connection is initialized. It also means h2c_mux_busy() function is useless
because it always returns 0 (.msi is always -1). And thus, by transitivity,
H2_CF_DEM_MBUSY is also useless because it is never set. So .msi field,
h2c_mux_busy() function and H2C_MUX_BUSY flag are removed.
Similarly to the H1 multiplexer, H2_CF_ERR_PENDING is now used to report an
error when we try to send data and H2_CF_ERROR to report an error when we
try to read data. In other funcions, we rely on these flags instead of
connection ones. Only H2_CF_ERROR is considered as a final error.
H2_CF_ERR_PENDING does not block receive attempt.
In addition, we rely on H2_CF_RCVD_SHUT flag to test if a read0 was received
or not.
When the H1 connection is aborted, we no longer set a final error. To do so,
the flag H1C_F_ABORTED was added. For now, it is only set when a error is
detected on the H1 stream. Idea is to use ERR_PENDING/ERROR for upgoing
errors and ABRT_PENDING/ABRTED for downgoing errors.
read0 is now handled with a H1 connection flag (H1C_F_EOS). Corresponding
flag was removed on the H1 stream and we fully rely on the SE descriptor at
the stream level.
Concretly, it means we rely on the H1 connection flags instead of the
connection one. H1C_F_EOS is only set in h1_recv() or h1_rcv_pipe() after a
read if a read0 was detected.
A new error is added on H1 stream to deal with internal errors. For now,
this error is only reported when we fail to create a stream-connector. This
way, the error is reported at the H1 stream level and not the H1 connection
level.
H1C_F_ERR_PENDING flags will be used to refactor error handling at the H1
connection level. It will be used to notify error during sends. Thus, the
flag to notify an error must be sent before closing the connection is now
named H1C_F_ABRT_PENDING.
This introduce a naming convertion: ERROR must be used to notify upper layer
of an event at the lower ones while ABORT must be used in the opposite
direction.
The H1 connection state is now handled in a dedicated state. H1C_F_ST_*
flags are removed. All states are now exclusives. It is easier to know the
H1 connection states. It is alive, or usable, if it is not CLOSING or
CLOSED. It is CLOSING if it should be closed ASAP but a stream is still
attached and/or the output buffer is not empty. CLOSED is used when the H1
connection is ready to be closed. Other states are quite easy to understand.
There is no special changes in the H1 connection behavior. Except in
h1_send(). When a CLOSING connection is CLOSED, the function now reports an
activity. In addition, when an embryonic H1 stream is aborted, it is
destroyed. This way, the H1 connection can be switched to CLOSED state.
The H1 connection state will be handled is a dedicated field. To do so,
h1_cs enum was added. The different states are more or less equivalent to
H1C_F_ST_* flags:
* H1_CS_IDLE <=> H1C_F_ST_IDLE
* H1_CS_EMBRYONIC <=> H1C_F_ST_EMBRYONIC
* H1_CS_UPGRADING <=> H1C_F_ST_ATTACHED && !H1C_F_ST_READY
* H1_CS_RUNNING <=> H1C_F_ST_ATTACHED && H1C_F_ST_READY
* H1_CS_CLOSING <=> H1C_F_ST_SHUTDOWN && (H1C_F_ST_ATTACHED || b_data(&h1c->ibuf))
* H1_CS_CLOSED <=> H1C_F_ST_SHUTDOWN && !H1C_F_ST_ATTACHED && !b_data(&h1c->ibuf)
In addition, in this patch, the h1_is_alive() and h1_close() function are
added. The first one will be used to know if a H1 connection is alive or
not. The second one will be used to set the connection in CLOSING or CLOSED
state, depending on the output buffer state and if there is still a H1
stream or not.
For now, the H1 connection state is not used.
There's quite a large barely readable functions block in the makefile
dedicated to compiler option support. It provides no value here and
makes it harder to find user-configurable stuff, so let's move it to
include/make/compiler.mk to keep the makefile a bit cleaner. It's better
to keep the options themselves in the makefile however.
It's better to see "make" entering a subdir than seeing nothing, so
let's use a command name for make. Since make 3.81, "+" needs to be
prepended in front of the command to pass the job server to the subdir.
The $(Q), $(V), $(cmd_xx) handling needs to be reused in sub-project
makefiles and it's a pain to maintain inside the main makefile. Let's
just move that into a new subdir include/make/ with a dedicated file
"verbose.mk". It slightly cleans up the makefile in addition.
When building with DEBUG_MEM_STATS, we only see b_alloc() and b_free() as
users of the "buffer" pool, because all call places rely on these more
convenient functions. It's annoying because it makes it very hard to see
which parts of the code are consuming buffers.
By switching the b_alloc() and b_free() inline functions to macros, we
can now finally track the users of struct buffer, e.g:
mux_h1.c:513 P_FREE size: 1275002880 calls: 38910 size/call: 32768 buffer
mux_h1.c:498 P_ALLOC size: 1912438784 calls: 58363 size/call: 32768 buffer
stream.c:763 P_FREE size: 4121493504 calls: 125778 size/call: 32768 buffer
stream.c:759 P_FREE size: 2061697024 calls: 62918 size/call: 32768 buffer
stream.c:742 P_ALLOC size: 3341123584 calls: 101963 size/call: 32768 buffer
stream.c:632 P_FREE size: 1275068416 calls: 38912 size/call: 32768 buffer
stream.c:631 P_FREE size: 637435904 calls: 19453 size/call: 32768 buffer
channel.h:850 P_ALLOC size: 4116480000 calls: 125625 size/call: 32768 buffer
channel.h:850 P_ALLOC size: 720896 calls: 22 size/call: 32768 buffer
dynbuf.c:55 P_FREE size: 65536 calls: 2 size/call: 32768 buffer
Let's do this since it doesn't change anything for the output code
(beyond adding the call places). Interestingly the code even got
slightly smaller now.
This macro just serves as an intermediary for __pool_alloc() and forwards
the flag. When DEBUG_MEM_STATS is set, it will be used to collect all
pool allocations including those which need to pass an explicit flag.
It's now used by b_alloc() which previously couldn't be tracked by
DEBUG_MEM_STATS, causing some free() calls to have no corresponding
allocations.
Similarly to the previous patch, it's better to keep a local copy of
the new node's key instead of accessing it every time. This slightly
reduces the code's size in the descent and further improves the load
time to 7.45s.
looking at a perf profile while loading a conf with a huge map, it
appeared that there was a hot spot on the access to the new node's
prefix, which is unexpectedly being reloaded for each visited node
during the tree descent. Better keep a copy of it because with large
trees that don't fit into the L3 cache the memory bandwidth is scarce.
Doing so reduces the load time from 8.0 to 7.5 seconds.
Once in a while we spot a bug in the deinit code that is complex,
especially when it has to deal with incomplete initializations, and the
ability to bypass this step has regularly been raised. In addition for
fast-reloading setups it could theoretically save some time. Tests have
shown that very large configs can barely save ~100-150ms by skipping the
deinit step. However the ability not to crash if a bug is encountered can
occasionally help.
This patch adds an option to do exactly this. It's obviously not enabled
by default and the documentation discourages from using it, but this might
be useful in the future.
The ->exp_next field of the stick-table was probably useful in 1.5 but
it currently only carries a copy of what the future value of the table's
task's expire value will be, while it's systematically copied over there
immediately after being assigned. As such it provides exactly a local
variable. Let's remove it, as it costs atomic operations.
Coverity raised a potential overflow issue in these new functions that
work on unsigned long long objects. They were added in commit 9b25982
"BUG/MEDIUM: ssl: Verify error codes can exceed 63".
This patch needs to be backported alongside 9b25982.
When the code is preprocessed first and compiled later, such as when
built under distcc, a lot of fallthrough warnings are emitted because
the preprocessor has already stripped the comments.
As an alternative, a "fallthrough" attribute was added with the same
compilers as those which started to emit those warnings. However it's
not portable to older compilers. Let's just define a __fallthrough
statement that corresponds to this attribute on supported compilers
and only switches to the classical empty do {} while (0) on other ones.
This way the code will support being cleaned up using __fallthrough.
It happens that gcc since 5.x has this macro which is only mentioned
once in the doc, associated with __builtin_has_attribute(). Clang had
it at least since 3.0. In addition it validates #ifdef when present,
so it's easy to detect it. Here we're providing a fallback to another
macro __has_attribute_<name> so that it's possible to define that macro
to the value 1 for older compilers when the attribute is supported.
In order to simplify compiler-specific checks, we'll need to check if some
attributes exist. In order to ease declarations, we'll only focus on those
that exist and will set them to 1. Let's first add a macro aimed at doing
this. Passed a macro name in argument, it will return 1 if the macro is
defined and equals 1, otherwise it will return 0. This is based on the
concatenation of the macro's value with a name to form the name of a macro
which contains one comma, resulting in some other macros arguments being
shifted by one when the macro is defined. As such it's only a matter of
pushing both a 1 and a 0 and picking the correct argument to see the
desired one. It was verified to work since at least gcc-3.4 so it should
be portable enough.
When the code is preprocessed first and compiled later, such as when
built under distcc, the "fall through" comments are dropped and warnings
are emitted. Let's use the alternative "fallthrough" attribute instead,
that is supported by versions of gcc and clang that also produce this
warning.
This is libslz upstream commit 0fdf8ae218f3ecb0b7f22afd1a6b35a4f94053e2
This is the latest released version and a minor update on top of the
current one (0.8.0). It addresses a few build issues (some for which
patches were already backported), and particularly the fallthrough
issue by using an attribute instead of a comment.
HA_WEAK() is supposed to take a symbol in argument, not a string, since
the asm statements it produces already quote the argument. Having it
quoted twice doesn't work on older compilers and was the only reason
why DEBUG_MEM_STATS didn't work on older compilers.
CLI 'add server' handler relies on usermsgs_ctx to display errors in
internal function on CLI output. This may be also extended to other
handlers.
However, to not clutter stderr from another contextes, usermsgs_ctx must
be resetted when it is not needed anymore. This operation cannot be
conducted in the CLI parse handler as display is conducted after it.
To achieve this, define new CLI states CLI_ST_PRINT_UMSG /
CLI_ST_PRINT_UMSGERR. Their principles is nearly identical to states for
dynamic messages printing.
Rename CLI_ST_PRINT_FREE to CLI_ST_PRINT_DYNERR.
Most notably, this highlights that this is reserved to error printing.
This is done to ensure consistency between CLI_ST_PRINT/CLI_ST_PRINT_DYN
and CLI_ST_PRINT_ERR/CLI_ST_PRINT_DYNERR. The name is also consistent
with the function cli_dynerr() which activates it.
The ca-ignore-err and crt-ignore-err directives are now able to use the
openssl X509_V_ERR constant names instead of the numerical values.
This allow a configuration to survive an OpenSSL upgrade, because the
numerical ID can change between versions. For example
X509_V_ERR_INVALID_CA was 24 in OpenSSL 1 and is 79 in OpenSSL 3.
The list of errors must be updated when a new major OpenSSL version is
released.
The CRT and CA verify error codes were stored in 6 bits each in the
xprt_st field of the ssl_sock_ctx meaning that only error code up to 63
could be stored. Likewise, the ca-ignore-err and crt-ignore-err options
relied on two unsigned long longs that were used as bitfields for all
the ignored error codes. On the latest OpenSSL1.1.1 and with OpenSSLv3
and newer, verify errors have exceeded this value so these two storages
must be increased. The error codes will now be stored on 7 bits each and
the ignore-err bitfields are replaced by a big enough array and
dedicated bit get and set functions.
It can be backported on all stable branches.
[wla: let it be tested a little while before backport]
Signed-off-by: William Lallemand <wlallemand@haproxy.org>
Add a new counter "quic_rxbuf_full". It is incremented each time
quic_sock_fd_iocb() is interrupted on full buffer.
This should help to debug github issue #1903. It is suspected that
QUIC receiver buffers are full which in turn cause quic_sock_fd_iocb()
to be called repeatedly resulting in a high CPU consumption.
Subscribing was not properly designed between quic-conn and quic MUX
layers. Align this as with in other haproxy components : <subs> field is
moved from the MUX to the quic-conn structure. All mention of qcc MUX is
cleaned up in quic_conn_subscribe()/quic_conn_unsubscribe().
Thanks to this change, ACK reception notification has been simplified.
It's now unnecessary to check for the MUX existence before waking it.
Instead, if <subs> quic-conn field is set, just wake-up the upper layer
tasklet without mentionning MUX. This should probably be extended to
other part in quic-conn code.
This should be backported up to 2.6.
Add "shards" new keyword for "peers" section to configure the number
of peer shards attached to such secions. This impact all the stick-tables
attached to the section.
Add "shard" new "server" parameter to configure the peers which participate to
all the stick-tables contents distribution. Each peer receive the stick-tables updates
only for keys with this shard value as distribution hash. The "shard" value
is stored in ->shard new server struct member.
cfg_parse_peers() which is the function which is called to parse all
the lines of a "peers" section is modified to parse the "shards" parameter
stored in ->nb_shards new peers struct member.
Add srv_parse_shard() new callback into server.c to pare the "shard"
parameter.
Implement stksess_getkey_hash() to compute the distribution hash for a
stick-table key as the 64-bits xxhash of the key concatenated to the stick-table
name. This function is called by stksess_setkey_shard(), itself
called by the already implemented function which create a new stick-table
key (stksess_new()).
Add ->idlen new stktable struct member to store the stick-table name length
to not have to compute it each time a stick-table key hash is computed.
This patch complete the previous incomplete commit. The new counter
sendto_err_unknown is now displayed on stats page/CLI show stats.
This is related to github issue #1903.
This should be backported up to 2.6.
Remove ABORT_NOW() statement on unhandled sendto error. Instead use a
dedicated counter sendto_err_unknown to report these cases.
If we detect increment of this counter, strace can be used to detect
errno value :
$ strace -p $(pidof haproxy) -f -e trace=sendto -Z
This should be backported up to 2.6.
This should help to debug github issue #1903.
Max stream data was not enforced and respect for local/remote uni
streams. Previously, qcs instances incorrectly reused the limit defined
from bidirectional ones.
This is now fixed. Two fields are added in qcc structure connection :
* value for local flow control to enforce on remote uni streams
* value for remote flow control to respect on local uni streams
These two values can be reused to properly initialized msd field of a
qcs instance in qcs_new(). The rest of the code is similar.
This must be backported up to 2.6.
adding a new mt macro: MT_LIST_APPEND_LOCKED.
This macro may be used to append an item to an existing
list, like MT_LIST_APPEND.
But here the item will be forced into locked/busy state
prior to appending, so that it is already referenced
in the list while still preventing concurrent accesses
until we decide to unlock it.
The macro returns a struct mt_list "np", that is needed
at unlock time using regular MT_LIST_UNLOCK_ELT macro.
MT_LIST_LOCK_ELT macro was documented with an ambiguous
usage restriction, implying that concurrent list deletion
was not supported.
But it seems that either the code has evolved, or the comment is
wrong because the locking behavior implemented here is exactly
the same one used in MT_LIST_DELETE, and no such restriction is
described for MT_LIST_DELETE.
I made some tests to make sure concurrent MT_LIST_DELETE (or deletion
from mt_list_for_each_entry_safe) don't cause unexepected results.
At the present time, this macro is not used, this fix only
targets upcoming developments that might rely on this.
No backport needed.
A minor typo was made in MT_LIST_LOCK_ELT, preventing
haproxy from compiling if MT_LIST_LOCK_ELT is
used in the code.
Today, the macro is unused, and that's the reason why
the typo has remained unnoticed for such a long time.
Fixing it so it can be used in upcoming developments.
No backport required.
When the lua task finished before the httpclient that are associated to
it, there is a risk that the httpclient try to task_wakeup() the lua
task which does not exist anymore.
To fix this issue the httpclient used in a lua task are stored in a
list, and the httpclient are destroyed at the end of the lua task.
Must be backported in 2.5 and 2.6.
Received packets treatment has some difference regarding if this is the
first one or not of the encapsulating datagram. Previously, this was set
via a function argument. Simplify this by defining a new Rx packet flag
named QUIC_FL_RX_PACKET_DGRAM_FIRST.
This change does not have functional impact. It will simplify API when
qc_lstnr_pkt_rcv() is broken into several functions : their number of
arguments will be reduced thanks to this patch.
This should be backported up to 2.6.
pn_offset field was only set if header protection cannot be removed.
Extend the usage of this field : it is now set everytime on packet
parsing in qc_lstnr_pkt_rcv().
This change helps to clean up API of Rx functions by removing
unnecessary variables and function argument.
This change has no functional impact. It is a part of a refactoring
series on qc_lstnr_pkt_rcv(). The objective is facilitate integration of
FD-owned socket patches.
This should be backported up to 2.6.
Add a new field version on quic_rx_packet structure. This is set on
header parsing in qc_lstnr_pkt_rcv() function.
This change has no functional impact. It is a part of a refactoring
series on qc_lstnr_pkt_rcv(). The objective is facilitate integration of
FD-owned socket patches.
This should be backported up to 2.6.
Right now the QUIC thread mapping derives the thread ID from the CID
by dividing by global.nbthread. This is a problem because this makes
QUIC work on all threads and ignores the "thread" directive on the
bind lines. In addition, only 8 bits are used, which is no more
compatible with the up to 4096 threads we may have in a configuration.
Let's modify it this way:
- the CID now dedicates 12 bits to the thread ID
- on output we continue to place the TID directly there.
- on input, the value is extracted. If it corresponds to a valid
thread number of the bind_conf, it's used as-is.
- otherwise it's used as a rank within the current bind_conf's
thread mask so that in the end we still get a valid thread ID
for this bind_conf.
The extraction function now requires a bind_conf in order to get the
group and thread mask. It was better to use bind_confs now as the goal
is to make them support multiple listeners sooner or later.
When compiled with USE_SHM_OPEN=1 the startup-logs are now able to use
an shm which is used to keep the logs when switching to mworker wait
mode. This allows to keep the failed reload logs.
When allocating the startup-logs at first start of the process, haproxy
will do a shm_open with a unique path using the PID of the process, the
file is unlink immediatly so we don't let unwelcomed files be. The fd
resulting from this shm is stored in the HAPROXY_STARTUPLOGS_FD
environment variable so it can be mmap again when switching to wait
mode.
When forking children, the process is copying the mmap to a a mallocated
ring so we never share the same memory section between the master and
the workers. When switching to wait mode, the shm is not used anymore as
it is also copied to a mallocated structure.
This allow to use the "show startup-logs" command over the master CLI,
to get the logs of the latest startup or reload. This way the logs of
the latest failed reload are also kept.
This is only activated on the linux-glibc target for now.
Split the b_force_xfer() into b_ncat() and b_force_xfer().
The previous b_force_xfer() implementation was basically a copy with a
b_del on the src buffer. Keep this implementation to make b_ncat(), and
just call b_ncat() + b_del() into b_force_xfer().
Cast an unified ring + storage area to a ring from area, without
reinitializing the data buffer. Reinitialize the waiters and the lock.
It helps retrieving a previously allocated ring, from an mmap for
example.
QUIC datagrams are read from a random thread. They are then redispatch
to the connection thread according to the first packet DCID. These
operations are implemented through a special buffer designed to avoid
locking.
Refactor this code with the following changes :
* <rxbuf> type is renamed <quic_receiver_buf>. Its list element is also
renamed to highligh its attach point to a receiver.
* <quic_dgram> and <quic_receiver_buf> definition are moved to
quic_sock-t.h. This helps to reduce the size of quic_conn-t.h.
* <quic_dgram> list elements are renamed to highlight their attach point
into a <quic_receiver_buf> and a <quic_dghdlr>.
This should be backported up to 2.6.
rxbuf is the structure used to store QUIC datagrams and redispatch them
to the connection thread.
Each receiver manages a list of rxbuf. This was stored both as an array
and a mt_list. Currently, only mt_list is needed so removed <rxbufs>
member from receiver structure.
This should be backported up to 2.6.
Implement quic_tls_secrets_keys_alloc()/quic_tls_secrets_keys_free() to allocate
the memory for only one direction (RX or TX).
Modify ha_quic_set_encryption_secrets() to call these functions for one of this
direction (or both). So, for now on we can rely on the value of the secret keys
to know if it was derived.
Remove QUIC_FL_TLS_SECRETS_SET flag which is no more useful.
Consequently, the secrets are dumped by the traces only if derived.
Must be backported to 2.6.
This issue was reproduced with -Q picoquic client option to split a big ClientHello
message into two Initial packets and haproxy as server without any knowledged of
any previous ORTT session (restarted after a firt 0RTT session). The ORTT received
packets were removed from their queue when the second Initial packet was parsed,
and the QUIC handshake state never progressed and remained at Initial state.
To avoid such situations, after having treated some Initial packets we always
check if there are ORTT packets to parse and we never remove them from their
queue. This will be done after the hanshake is completed or upon idle timeout
expiration.
Also add more traces to be able to analize the handshake progression.
Tested with ngtcp2 and picoquic
Must be backported to 2.6.
Implement quic_get_ncbuf() to dynamically allocate a new ncbuf to be attached to
any quic_cstream struct which needs such a buffer. Note that there is no quic_cstream
for 0RTT encryption level. quic_free_ncbuf() is added to release the memory
allocated for a non-contiguous buffer.
Modify qc_handle_crypto_frm() to call this function and allocate an ncbuf for
crypto data which are not received in order. The crypto data which are received in
order are not buffered but provide to the TLS stack (calling qc_provide_cdata()).
Modify qc_treat_rx_crypto_frms() which is called after having provided the
in order received crypto data to the TLS stack to provide again the remaining
crypto data which has been buffered, if possible (if they are in order). Each time
buffered CRYPTO data were consumed, we try to release the memory allocated for
the non-contiguous buffer (ncbuf).
Also move rx.crypto.offset quic_enc_level struct member to rx.offset quic_cstream
struct member.
Must be backported to 2.6.
Add new quic_cstream struct definition to implement the CRYPTO data stream.
This is a simplication of the qcs object (QUIC streams) for the CRYPTO data
without any information about the flow control. They are not attached to any
tree, but to a QUIC encryption level, one by encryption level except for
the early data encryption level (for 0RTT). A stream descriptor is also allocated
for each CRYPTO data stream.
Must be backported to 2.6
The CPU usage pattern was found to be high (5%) on a machine with
48 threads and only 100 servers checked every second That was
supposed to be only 100 connections per second, which should be very
cheap. It was figured that due to the check tasks unbinding from any
thread when going back to sleep, they're queued into the shared queue.
Not only this requires to manipulate the global queue lock, but in
addition it means that all threads have to check the global queue
before going to sleep (hence take a lock again) to figure how long
to sleep, and that they would all sleep only for the shortest amount
of time to the next check, one would pick it and all other ones would
go down to sleep waiting for the next check.
That's perfectly visible in time-to-first-byte measurements. A quick
test consisting in retrieving the stats page in CSV over a 48-thread
process checking 200 servers every 2 seconds shows the following tail:
percentile ttfb(ms)
99.98 2.43
99.985 5.72
99.99 32.96
99.995 82.176
99.996 82.944
99.9965 83.328
99.997 83.84
99.9975 84.288
99.998 85.12
99.9985 86.592
99.999 88
99.9995 89.728
99.9999 100.352
One solution could consist in forcefully binding checks to threads at
boot time, but that's annoying, will cause trouble for dynamic servers
and may cause some skew in the load depending on some server patterns.
Instead here we take a different approach. A check remains bound to its
thread for as long as possible, but upon every wakeup, the thread's load
is compared with another random thread's load. If it's found that that
other thread's load is less than half of the current one's, the task is
bounced to that thread. In order to prevent that new thread from doing
the same, we set a flag "CHK_ST_SLEEPING" that indicates that it just
woke up and we're bouncing the task only on this condition.
Tests have shown that the initial load was very unfair before, with a few
checks threads having a load of 15-20 and the vast majority having zero.
With this modification, after two "inter" delays, the load is either zero
or one everywhere when checks start. The same test shows a CPU usage that
significantly drops, between 0.5 and 1%. The same latency tail measurement
is much better, roughly 10 times smaller:
percentile ttfb(ms)
99.98 1.647
99.985 1.773
99.99 4.912
99.995 8.76
99.996 8.88
99.9965 8.944
99.997 9.016
99.9975 9.104
99.998 9.224
99.9985 9.416
99.999 9.8
99.9995 10.04
99.9999 10.432
In fact one difference here is that many threads work while in the past
they were waking up and going down to sleep after having perturbated the
shared lock. Thus it is anticipated that this will scale way smoother
than before. Under strace it's clearly visible that all threads are
sleeping for the time it takes to relaunch a check, there's no more
thundering herd wakeups.
However it is also possible that in some rare cases such as very short
check intervals smaller than a scheduler's timeslice (such as 4ms),
some users might have benefited from the work being concentrated on
less threads and would instead observe a small increase of apparent
CPU usage due to more total threads waking up even if that's for less
work each and less total work. That's visible with 200 servers at 4ms
where show activity shows that a few threads were overloaded and others
doing nothing. It's not a problem, though as in practice checks are not
supposed to eat much CPU and to wake up fast enough to represent a
significant load anyway, and the main issue they could have been
causing (aside the global lock) is an increase last-percentile latency.
The new functions fconn_show_flags() and fstrm_show_flags() decode the flags
state into a string, and are used by dev/flags:
$ /dev/flags/flags fconn 0x3100
fconn->flags = FCGI_CF_GET_VALUES | FCGI_CF_KEEP_CONN | FCGI_CF_MPXS_CONNS
./dev/flags/flags fstrm 0x3300
fstrm->flags = FCGI_SF_WANT_SHUTW | FCGI_SF_WANT_SHUTR | FCGI_SF_OUTGOING_DATA | FCGI_SF_BEGIN_SENT
The same was performed for the H2 and H1 multiplexers. FCGI connection and
stream flags are moved in a dedicated header file. It will be mainly used to
be able to decode mux-fcgi flags from the flags utility.
In this patch, we move the flags and enums to mux_fcgi-t.h, as well as the
two state decoding inline functions.
We're generalizing the change performed in previous commit "MEDIUM:
stick-table: requeue the expiration task out of the exclusive lock"
to stktable_requeue_exp() so that it can also be used by callers of
__stktable_store(). At the moment there's still no visible change
since it's still called under the write lock. However, the previous
code in stitable_touch_with_exp() was updated to use this function.
stream_store_counters() calls stksess_kill_if_expired() for each active
counter. And this one takes an exclusive lock on the table before
checking if it has any work to do (hint: it almost never has since it
only wants to delete expired entries). However a lock is still neeed for
now to protect the ref_cnt, but we can do it atomically under the read
lock.
Let's change the mechanism. Now what we do is to check out of the lock
if the entry is expired. If it is, we take the write lock, expire it,
and decrement the refcount. Otherwise we just decrement the refcount
under a read lock. With this change alone, the config based on 3
trackers without the previous patches saw a 2.6x improvement, but here
it doesn't yet change anything because some heavy contention remains
on the lookup part.
Taking the write lock prior to entering that function is a problem
because this function is full of conditions that most of the time can
lead to eliminating the lock.
This commit first moves the write lock inside the function and passes
the extra argument required to implement stktable_touch_remote() and
stktable_touch_local(). It also renames the function to remove the
underscores since there's no other variant and it's exported under
this name (probably an old rename that was not propagated). The code
was stressed under 48 threads using 3 trackers on the same table. It
already shows a tiny 3% improvement from 187k to 193k rps.
Right now a spinlock is used, but most accesses are for reads, so let's
switch the lock to an rwlock and switch all accesses to exclusive locks
for now. There should be no visible difference at this point.
Right now when dealing with freq_ctr updates, we're using the process-
wide monotinic time, and accessing it is expensive since every thread
needs to update it, so this adds some contention. However we don't need
it all the time, the thread's local time is most of the time strictly
equal to the global time, and may be off by one millisecond when the
global time is switched to the next one by another thread, and in this
case we don't want to use the local time because it would risk to cause
a rotation of the counter. But that's precisely the condition we're
already relying on for the slow path!
What this patch does is to add a check for the period against the
local time prior to anything else, and immediately return after
updating the counter if still within the period, otherwise fall back
to the existing code. Given that the function starts to inflate a bit,
it was split between s very short inline part that does the hot path,
and the slower fallback that's in a cold function. It was measured that
on a 24-CPU machine it was called ~0.003% of the time.
The resulting improvement sits between 2 and 3% at 500k req/s tracking
an http_req_rate counter.
The new macro PLOCK_DISABLE_EBO may be defined to disable exponential
backoff. This can be useful to more easily spot functions that cause
contention. In this case the CPU will be spent inside the functions
themselves instead of the pl_wait_unlock_{long,int}() functions, making
them easier to spot using "perf top" even if that causes a significant
degradation of the thread scalability.
The tx_qrings[] and tx_qring_list in the receiver are not used
anymore since commit f2476053f ("MINOR: quic: replace custom buf on Tx
by default struct buffer"), the only place where they're referenced
was in quic_alloc_tx_rings_listener(), which by the way implies that
these were not even freed on exit.
Let's just remove them. This should be backported to 2.6 since the
commit above also was.
Retrieve the frontend destination address for a QUIC connection. This
address is retrieve from the first received datagram and then stored in
the associated quic-conn.
This feature relies on IP_PKTINFO or affiliated flags support on the
socket. This flag is set for each QUIC listeners in
sock_inet_bind_receiver(). To retrieve the destination address,
recvfrom() has been replaced by recvmsg() syscall. This operation and
parsing of msghdr structure has been extracted in a wrapper quic_recv().
This change is useful to finalize the implementation of 'dst' sample
fetch. As such, quic_sock_get_dst() has been edited to return local
address from the quic-conn. As a best effort, if local address is not
available due to kernel non-support of IP_PKTINFO, address of the
listener is returned instead.
This should be backported up to 2.6.
Continue on the cleanup of QUIC stack and components.
quic_conn uses internally a ssl_sock_ctx to handle mandatory TLS QUIC
integration. However, this is merely as a convenience, and it is not
equivalent to stackable ssl xprt layer in the context of HTTP1 or 2.
To better emphasize this, ssl_sock_ctx usage in quic_conn has been
removed wherever it is not necessary : namely in functions not related
to TLS. quic_conn struct now contains its own wait_event for tasklet
quic_conn_io_cb().
This should be backported up to 2.6.
In issue #1866 an issue was reported under docker, by which a user cannot
lower the number of FD needed. It looks like a restriction imposed in this
environment, but it results in an error while it ought not have to in the
case of shrinking.
This patch adds a new function raise_rlim_nofile() that takes the desired
new setting, compares it to the current one, and only calls setrlimit() if
one of the values in the new setting is larger than the older one. As such
it will continue to emit warnings and errors in case of failure to raise
the limit but will never shrink it.
This patch is only preliminary to another one, but will have to be
backported where relevant (likely only 2.6).
xprt_quic module was too large and did not reflect the true architecture
by contrast to the other protocols in haproxy.
Extract code related to XPRT layer and keep it under xprt_quic module.
This code should only contains a simple API to communicate between QUIC
lower layer and connection/MUX.
The vast majority of the code has been moved into a new module named
quic_conn. This module is responsible to the implementation of QUIC
lower layer. Conceptually, it overlaps with TCP kernel implementation
when comparing QUIC and HTTP1/2 stacks of haproxy.
This should be backported up to 2.6.
There was some identical code between xprt_quic and quic_enc modules.
This concerns helper on QUIC varint type. Keep only the version in
quic_enc file : this should help to reduce dependency on xprt_quic
module.
Note that quic_max_int_by_size() has been removed and is replaced by the
identical quic_max_int().
This should be backported up to 2.6.
Clean up quic sources by adjusting headers list included depending
on the actual dependency of each source file.
On some occasion, xprt_quic.h was removed from included list. This is
useful to help reducing the dependency on this single file and cleaning
up QUIC haproxy architecture.
This should be backported up to 2.6.
Two prototypes in quic_tls module were not identical to the actual
function definition.
* quic_tls_decrypt2() : the second argument const attribute is not
present, to be able to use it with EVP_CIPHER_CTX_ctlr(). As a
consequence of this change, token field of quic_rx_packet is now
declared as non-const.
* quic_tls_generate_retry_integrity_tag() : the second argument type
differ between the two. Adjust this by fixing it to as unsigned char
to match EVP_EncryptUpdate() SSL function.
This situation did not seem to have any visible effect. However, this is
clearly an undefined behavior and should be treated as a bug.
This should be backported up to 2.6.
Some variables related to QUIC TLS were defined in a header file : their
definitions are now moved properly in the implementation file, with only
declarations in the header.
This should be backported up to 2.6.
In github issue #1878, Bart Butler reported observing turn-around states
(1 second pause) after connection retries going to different servers,
while this ought not happen.
In fact it does happen because back_handle_st_cer() enforces the TAR
state for any algo that's not round-robin. This means that even leastconn
has it, as well as hashes after the number of servers changed.
Prior to doing that, the call to stream_choose_redispatch() has already
had a chance to perform the correct choice and to check the algo and
the number of retries left. So instead we should just let that function
deal with the algo when needed (and focus on deterministic ones), and
let the former just obey. Bart confirmed that the fixed version works
as expected (no more delays during retries).
This may be backported to older releases, though it doesn't seem very
important. At least Bart would like to have it in 2.4 so let's go there
for now after it has cooked a few weeks in 2.6.
Idle connections do not work on 32-bit machines due to an alignment issue
causing the connection nodes to be indexed with their lower 32-bits set to
zero and the higher 32 ones containing the 32 lower bitss of the hash. The
cause is the use of ebmb_node with an aligned data, as on this platform
ebmb_node is only 32-bit aligned, leaving a hole before the following hash
which is a uint64_t:
$ pahole -C conn_hash_node ./haproxy
struct conn_hash_node {
struct ebmb_node node; /* 0 20 */
/* XXX 4 bytes hole, try to pack */
int64_t hash; /* 24 8 */
struct connection * conn; /* 32 4 */
/* size: 40, cachelines: 1, members: 3 */
/* sum members: 32, holes: 1, sum holes: 4 */
/* padding: 4 */
/* last cacheline: 40 bytes */
};
Instead, eb64 nodes should be used when it comes to simply storing a
64-bit key, and that is what this patch does.
For backports, a variant consisting in simply marking the "hash" member
with a "packed" attribute on the struct also does the job (tested), and
might be preferable if the fix is difficult to adapt. Only 2.6 and 2.5
are affected by this.
Correct a commentary in in include/haproxy/global-t.h and include/haproxy/tools.h
Replace the CLI command 'set global-key <key>' by 'set anon global-key <key>' in
order to find it easily when you don't remember it, the recommandation can guide
you when you just tap 'set anon'.
No backport needed, except if anonymization mechanism is backported.
Add an option to dump the number lines of the configuration file when
it's dumped. Other options can be easily added. Options are separated
by ',' when tapping the command line:
'./haproxy -dC[key],line -f [file]'
No backport needed, except if anonymization mechanism is backported.
Add a parameter hasport to return a simple hash or ipstring when
ipstring has no port. Doesn't hash if scramble is null. Add
option PA_O_PORT_RESOLVE to str2sa_range. Add a case UNIX.
Those modification permit to use hash_ipanon in cli section
in order to dump the same anonymization of address in the
configuration file and with CLI.
No backport needed, except if anonymization mechanism is backported.
While reading the recent changes around mt_list_for_each_entry_safe() I
noticed a spurious "q" at the beginning of a line introduced by commit
455843721 ("CLEANUP: list: Fix mt_list_for_each_entry_safe indentation")
and that visually confusing multi-line comments missing the trailing '\'
character were introduced by previous commit 60cffbaca ("MINOR: list:
documenting mt_list_for_each_entry_safe() macro"), which at first glance
made the macro look broken. In addition, multi-line comments must end
with a "*/" on its own line to instantly spot where it ends without
having to read the whole line, like this:
/* we know from the above that foo is always valid
* here so it's safe to end the string:
*/
*(unsigned char *)foo = 0;
Not like this:
/* we know from the above that foo is always valid
* here so it's safe to end the string: */
*(unsigned char *)foo = 0;
Finally, macro's main comment mentionned the wrong macro name and types,
and was randomly indented.
Upon a reload with the master CLI, the FD of the master CLI session is
received by the internal socketpair listener.
This session is used to display the status of the reload and then will
close.
- Adding some comments in mt_list_for_each_entry_safe() macro to make it
somehow understandable.
The macro is performing critical stuff but was not documented at all.
Moreover, nested loops with conditional tricks are used,
making it even harder to understand the steps performed in it.
- Updating mt_list_for_each_entry_safe usage example.
- Added a "FIXME:" comment in a specific condition that seems to
never be reached even when deeply stress-testing mt_lists
(using test_list binary provided in the repository).
Pollers that support busy polling spend a lot of time (and cause
contention) updating the global date when they're looping over themselves
while it serves no purpose: what's needed is only an update on the local
date to know when to stop looping.
This patch splits clock_pudate_date() into a pair of local and global
update functions, so that pollers can be easily improved.
Patrick Hemmer reported an improper log behavior when using
log-format to escape log data (+E option):
Some bytes were truncated from the output:
- escape_string() function now takes an extra parameter that
allow the caller to specify input string stop pointer in
case the input string is not guaranteed to be zero-terminated.
- Minors checks were added into lf_text_len() to make sure dst
string will not overflow.
- lf_text_len() now makes proper use of escape_string() function.
This should be backported as far as 1.8.
MUX QUIC snd_buf operation whill return early if a qcs instance is
resetted. In this case, HTX is left untouched and the callback returns
the whole bufer size. This lead to an undefined behavior as the stream
layer is notified about a transfer but does not see its HTX buffer
emptied. In the end, the transfer may stall which will lead to a leak on
session.
To fix this, HTX buffer is now resetted when snd_buf is short-circuited.
This should fix the issue as now the stream layer can continue the
transfer until its completion.
This patch has already been tested by Tristan and is reported to solve
the github issue #1801.
This should be backported up to 2.6.
Factorize common code between h3 and hq-interop snd_buf operation. This
is inserted in MUX QUIC snd_buf own callback.
The h3/hq-interop API has been adjusted to directly receive a HTX
message instead of a plain buf. This led to extracting part of MUX QUIC
snd_buf in qmux_http module.
This should be backported up to 2.6.
Extract function dealing with HTX outside of MUX QUIC. For the moment,
only rcv_buf stream operation is concerned.
The main objective is to be able to support both TCP and HTTP proxy mode
with a common base and add specialized modules on top of it.
This should be backported up to 2.6.
QUIC MUX implements several APIs to interface with stream, quic-conn and
app-ops layers. It is planified to better separate this roles, possibly
by using several files.
The first step is to extract QUIC MUX traces in a dedicated source
files. This will allow to reuse traces in multiple files.
The main objective is to be
able to support both TCP and HTTP proxy mode with a common base and add
specialized modules on top of it.
This should be backported up to 2.6.
nb_hreq is a counter on qcc for active HTTP requests. It is incremented
for each qcs where a full HTTP request was received. It is decremented
when the stream is closed locally :
- on HTTP response fully transmitted
- on stream reset
A bug will occur if a stream is resetted without having processed a full
HTTP request. nb_hreq will be decremented whereas it was not
incremented. This will lead to a crash when building with
DEBUG_STRICT=2. If BUG_ON_HOT are not active, nb_hreq counter will wrap
which may break the timeout logic for the connection.
This bug was triggered on haproxy.org. It can be reproduced by
simulating the reception of a STOP_SENDING frame instead of a STREAM one
by patching qc_handle_strm_frm() :
+ if (quic_stream_is_bidi(strm_frm->id))
+ qcc_recv_stop_sending(qc->qcc, strm_frm->id, 0);
+ //ret = qcc_recv(qc->qcc, strm_frm->id, strm_frm->len,
+ // strm_frm->offset.key, strm_frm->fin,
+ // (char *)strm_frm->data);
To fix this bug, a qcs is now flagged with a new QC_SF_HREQ_RECV. This
is set when the full HTTP request is received. When the stream is closed
locally, nb_hreq will be decremented only if this flag was set.
This must be backported up to 2.6.
This commit adds a new command line option -dC to dump the configuration
file. An optional key may be appended to -dC in order to produce an
anonymized dump using this key. The anonymizing process uses the same
algorithm as the CLI so that the same key will produce the same hashes
for the same identifiers. This way an admin may share an anonymized
extract of a configuration to match against live dumps. Note that key 0
will not anonymize the output. However, in any case, the configuration
is dumped after tokenizing, thus comments are lost.
In order to allow users to dump internal states using a specific key
without changing the global one, we're introducing a key in the CLI's
appctx. This key is preloaded from the global one when "set anon on"
is used (and if none exists, a random one is assigned). And the key
can optionally be assigned manually for the whole CLI session.
A "show anon" command was also added to show the anon state, and the
current key if the users has sufficient permissions. In addition, a
"debug dev hash" command was added to test the feature.
Add a uint32_t key in global to hash words with it. A new CLI command
'set global-key <key>' was added to change the global anonymizing key.
The global may also be set in the configuration using the global
"anonkey" directive. For now this key is not used.
These macros and functions will be used to anonymize strings by producing
a short hash. This will allow to match config elements against dump elements
without revealing the original data. This will later be used to anonymize
configuration parts and CLI commands output. For now only string, identifiers
and addresses are supported, but the model is easily extensible.
Small cleanup on snd_buf for application protocol layer.
* do not export h3_snd_buf
* replace stconn by a qcs argument. This is better as h3/hq-interop only
uses the qcs instance.
This should be backported up to 2.6.
The new functions h1c_show_flags() and h1s_show_flags() decode the flags
state into a string, and are used by dev/flags:
$ /dev/flags/flags h1c 0x2200
h1c->flags = H1C_F_ST_READY | H1C_F_ST_ATTACHED
./dev/flags/flags h1s 0x190
h1s->flags = H1S_F_BODYLESS_RESP | H1S_F_NOT_FIRST | H1S_F_WANT_KAL
The same was performed for the H2 multiplexer. H1C and H1S flags are moved
in a dedicated header file. It will be mainly used to be able to decode
mux-h1 flags from the flags utility.
In this patch, we only move the flags to mux_h1-t.h.
H3 SETTINGS emission has recently been delayed. The idea is to send it
with the first STREAM to reduce sendto syscall invocation. This was
implemented in the following patch :
3dd79d378c
MINOR: h3: Send the h3 settings with others streams (requests)
This patch works fine under nominal conditions. However, it will cause a
crash if a HTTP/3 connection is released before having sent any data,
for example when receiving an invalid first request. In this case,
qc_release will first free qcc.app_ops HTTP/3 application protocol layer
via release callback. Then qc_send is called to emit any closing frames
built by app_ops release invocation. However, in qc_send, as no data has
been sent, it will try to complete application layer protocol
intialization, with a SETTINGS emission for HTTP/3. Thus, qcc.app_ops is
reused, which is invalid as it has been just freed. This will cause a
crash with h3_finalize in the call stack.
This bug can be reproduced artificially by generating incomplete HTTP/3
requests. This will in time trigger http-request timeout without any
data send. This is done by editing qc_handle_strm_frm function.
- ret = qcc_recv(qc->qcc, strm_frm->id, strm_frm->len,
+ ret = qcc_recv(qc->qcc, strm_frm->id, strm_frm->len - 1,
strm_frm->offset.key, strm_frm->fin,
(char *)strm_frm->data);
To fix this, application layer closing API has been adjusted to be done
in two-steps. A new shutdown callback is implemented : it is used by the
HTTP/3 layer to generate GOAWAY frame in qc_release prologue.
Application layer context qcc.app_ops is then freed later in qc_release
via the release operation which is now only used to liberate app layer
ressources. This fixes the problem as the intermediary qc_send
invocation will be able to reuse app_ops before it is freed.
This patch fixes the crash, but it would be better to adjust H3 SETTINGS
emission in case of early connection closing : in this case, there is no
need to send it. This should be implemented in a future patch.
This should fix the crash recently experienced by Tristan in github
issue #1801.
This must be backported up to 2.6.
With quicTLS the set_encruption_secrets callback is always called with
the read_secret and the write_secret.
However this is not the case with libreSSL, which uses the
set_read_secret()/set_write_secret() mecanism. It still provides the
set_encryption_secrets() callback, which is called with a NULL
parameter for the write_secret during the read, and for the read_secret
during the write.
The exchange key was not designed in haproxy to be called separately for
read and write, so this patch allow calls with read or write key to
NULL.
httpclient_new_from_proxy() is a variant of httpclient_new() which
allows to create the requests from a different proxy.
The proxy and its 2 servers are now stored in the httpclient structure.
The proxy must have been created with httpclient_create_proxy() to be
used.
The httpclient_postcheck() callback will finish the initialization of
all proxies created with PR_CAP_HTTPCLIENT.
httpclient_create_proxy() is a function which creates a proxy that could
be used for the httpclient. It will allocate a proxy, a raw server and
an ssl server.
This patch moves most of the code from httpclient_precheck() into a
generic function httpclient_create_proxy().
The proxy will have the PR_CAP_HTTPCLIENT capability.
This could be used for specifics httpclient instances that needs
different proxy settings.
The init of tcp sink, particularly for SSL, was done
too early in the code, during parsing, and this can cause
a crash specially if nbthread was not configured.
This was detected by William using ASAN on a new regtest
on log forward.
This patch adds the 'struct proxy' created for a sink
to a list and this list is now submitted to the same init
code than the main proxies list or the log_forward's proxies
list. Doing this, we are assured to use the right init sequence.
It also removes the ini code for ssl from post section parsing.
This patch should be backported as far as v2.2
Note: this fix uses 'goto' labels created by commit
'BUG/MAJOR: log-forward: Fix log-forward proxies not fully initialized'
but this code didn't exist before v2.3 so this patch needs to be
adapted for v2.2.
The new functions h2c_show_flags() and h2s_show_flags() decode the flags
state into a string, and are used by dev/flags:
$ ./dev/flags/flags h2c 0x0600
h2c->flags = H2_CF_DEM_IN_PROGRESS | H2_CF_DEM_SHORT_READ
$ ./dev/flags/flags h2s 0x7003
h2s->flags = H2_SF_HEADERS_RCVD | H2_SF_OUTGOING_DATA | H2_SF_HEADERS_SENT \
| H2_SF_ES_SENT | H2_SF_ES_RCVD
Originally in 1.8 we wanted to have an independent mux that could possibly
be disabled and would not impose dependencies on the outside. Everything
would fit into a single C file and that was fine.
Nowadays muxes are unavoidable, and not being able to easily inspect them
from outside is sometimes a bit of a pain. In particular, the flags utility
still cannot be used to decode their flags.
As a first step towards this, this patch moves the flags and enums to
mux_h2-t.h, as well as the two state decoding inline functions. It also
dropped the H2_SS_*_BIT defines that nobody uses. The mux_h2.c file remains
the only one to include that for now.
The new function is fd_show_flags() and it reports known FD flags:
$ ./dev/flags/flags fd 0x000121
fd->flags = FD_POLL_IN | FD_EV_READY_W | FD_EV_ACTIVE_R
The fallback macros for when stdio is not there didn't have the "..."
and were causing build issues on platforms with stricter dependencies
between includes.
This patch is a prerequisite for #1626.
Adding PAUSED state to the list of available proxy states.
The flag is set when the proxy is paused at runtime (pause_listener()).
It is cleared when the proxy is resumed (resume_listener()).
It should be backported to 2.6, 2.5 and 2.4
A minor API change was performed in listener(.c/.h) to restore consistency
between stop_listener() and (resume/pause)_listener() functions.
LISTENER_LOCK was never locked prior to calling stop_listener():
lli variable hint is thus not useful anymore.
Added PROXY_LOCK locking in (resume/pause)_listener() functions
with related lpx variable hint (prerequisite for #1626).
It should be backported to 2.6, 2.5 and 2.4
The new function is strm_et_show_flags(). Only the error type is
handled at the moment, as a bit more complex logic is needed to
mix the values and enums present in some fields.
The two new functions are se_show_flags() and sc_show_flags().
Maybe something could be done for SC_ST_* values but as it's a
small enum, a simple switch/case should work fine.
The two new functions are chn_show_analysers() and chn_show_flags().
They work on an existing buffer so one was declared in flags.c for this
purpose. File flags.c does not have to know about channel flags anymore.
Some of our flags have enums inside a mask. The new macro __APPEND_ENUM
is able to deal with that by comparing the flag's value against an exact
one under the mask. One needs to take care of eliminating the zero value
though, otherwise delimiters will not always be properly placed (e.g. if
some flags were dumped before and what remains is exactly zero). The
bits of the mask are cleared only upon exact matches.
The "flags" utility is useful but painful to maintain up to date. This
commit aims at providing a low-maintenance solution to keep flags up to
date, by proposing some macros that build a string from a set of flags
in a way that requires the least possible verbosity.
The idea will be to add an inline function dedicated to this just after
the flags declaration, and enumerate the flags one is interested in, and
that function will fill a string based on them.
Placing this inside the type files allows both haproxy and external tools
like "flags" to use it, but comes with a few constraints. First, the
files will be slightly less readable if these functions are huge, so they
need to stay as compact as possible. Second, the function will need
anprintf() and we don't want to include stdio.h in type files as it
proved to be particularly heavy and to cause definition headaches in
the past.
As such the file here only contains a macro enclosed in #ifdef EOF (that
is defined in stdio), and provides an alternate empty one when no stdio
is defined. This way it's the caller that has to include stdio first or
it won't get anything back, and in practice the locations relying on
this always have it.
The macro has to be used in 3 steps:
- prologue: dumps 0 and exits if the value is zero
- flags: the macro can be recursively called and it will push the
flag from bottom to top so that they appear in the same order as
today without requiring to be declared the other way around
- epilogue: dump remaining flags that were not identified
The macro was arranged so that a single character can be used with no
other argument to declare all flags at once. Example:
#define _(n, ...) __APPEND_FLAG(buf, len, del, flg, n, #n, __VA_ARGS__)
_(0);
_(X_FLAG1, _(X_FLAG2, _(X_FLAG3, _(X_FLAG4))));
_(~0);
#undef _
Existing files will have to be updated to rely on it, and more files
could come soon.
This is the ->finalize application callback which prepares the unidirectional STREAM
frames for h3 settings and wakeup the mux I/O handler to send them. As haproxy is
at the same time always waiting for the client request, this makes haproxy
call sendto() to send only about 20 bytes of stream data. Furthermore in case
of heavy loss, this give less chances to short h3 requests to succeed.
Drawback: as at this time the mux sends its streams by their IDs ascending order
the stream 0 is always embedded before the unidirectional stream 3 for h3 settings.
Nevertheless, as these settings may be lost and received after other h3 request
streams, this is permitted by the RFC.
Perhaps there is a better way to do. This will have to be checked with Amaury.
Must be backported to 2.6.
It is possible to speed up the handshake completion but only one time
by connection as mentionned in RFC 9002 "6.2.3. Speeding up Handshake Completion".
Add a flag to prevent this process to be run several times
(see https://www.rfc-editor.org/rfc/rfc9002#name-speeding-up-handshake-compl).
Must be backported to 2.6.
This removes all the hard-coded 8-bit and 256 entries to use a pair of
macros instead so that we can more easily experiment with larger table
sizes if needed.
There used to be one tid for tasklets and a thread_mask for tasks. Since
2.7, both tasks and tasklets now use a tid (albeit with a very slight
semantic difference for the negative value), to in order to limit code
duplication and to ease debugging it makes sense to move tid into the
common part. One limitation is that it will leave a hole in the structure,
but we now have the wake_date that is always present and can move there as
well to plug the hole.
This results in something overall pretty clean (and cleaner than before),
with the low-level stuff (state,tid,process,context) appearing first, then
the caller stuff (caller,wake_date,calls,debug) next, and finally the
type-specific stuff (rq/wq/expire/nice).
Instead of storing an index that's swapped at every call, let's use the
two pointers as a shifting history. Now we have a permanent "caller"
field that records the last caller, and an optional prev_caller in the
debug section enabled by DEBUG_TASK that keeps a copy of the previous
caller one. This way, not only it's much easier to follow what's
happening during debugging, but it saves 8 bytes in the struct task in
debug mode and still keeps it under 2 cache lines in nominal mode, and
this will finally be usable everywhere and later in profiling.
The caller_idx was also used as a hint that the entry was freed, in order
to detect wakeup-after-free. This was changed by setting caller to -1
instead and preserving its value in caller[1].
Finally, the operations were made atomic. That's not critical but since
it's used for debugging and race conditions represent a significant part
of the issues in multi-threaded mode, it seems wise to at least eliminate
some possible factors of faulty analysis.
appctx_wakeup() relies on task_wakeup(), but since it calls it from a
function, the calling place is always appctx_wakeup() itself, which is
not very useful.
Let's turn it to a macro so that we can log the location of the caller
instead. As an example, the cli_io_handler() which used to be seen as
this:
(gdb) p *appctx->t.debug.caller[0]
$10 = {
func = 0x9ffb78 <__func__.37996> "appctx_wakeup",
file = 0x9b336a "include/haproxy/applet.h",
line = 110,
what = 1 '\001',
arg8 = 0 '\000',
arg32 = 0
}
Now shows the more useful:
(gdb) p *appctx->t.debug.caller[0]
$6 = {
func = 0x9ffe80 <__func__.38641> "sc_app_chk_snd_applet",
file = 0xa00320 "src/stconn.c",
line = 996,
what = 6 '\006',
arg8 = 0 '\000',
arg32 = 0
}
This reduces the task struct by 8 bytes, reduces the code size a little
bit by simplifying the calling convention (one argument dropped), and
as a bonus provides the function name in the caller.
The memstats code currently defines its own file/function/line number,
type and extra pointer. We don't need to keep them separate and we can
easily replace them all with just a struct ha_caller. Note that the
extra pointer could be converted to a pool ID stored into arg8 or
arg32 and be dropped as well, but this would first require to define
IDs for pools (which we currently do not have).
The purpose of this structure is to assemble all constant parts of a
generic calling point for a specific event. These ones are created by
the compiler as a static const element outside of the code path, so
they cost nothing in terms of CPU, and a pointer to that descriptor
can be passed to the place that needs it. This is very similar to what
is being done for the mem_stat stuff.
This will be useful to simplify and improve DEBUG_TASK.
There are a few places where it's convenient to hash a pointer to compute
a statistics bucket. Here we're basically reusing the hash that was used
by memory profiling with a minor update that the multiplier was corrected
to be prime and stand by its promise to have equal numbers of 1 and 0,
and that 32-bit platforms won't lose range anymore.
A two-pointer variant was also added.
It was a mistake to put these two fields in the struct task. This
was added in 1.9 via commit 9efd7456e ("MEDIUM: tasks: collect per-task
CPU time and latency"). These fields are used solely by streams in
order to report the measurements via the lat_ns* and cpu_ns* sample
fetch functions when task profiling is enabled. For the rest of the
tasks, this is pure CPU waste when profiling is enabled, and memory
waste 100% of the time, as the point where these latencies and usages
are measured is in the profiling array.
Let's move the fields to the stream instead, and have process_stream()
retrieve the relevant info from the thread's context.
The struct task is now back to 120 bytes, i.e. almost two cache lines,
with 32 bit still available.
The profile entry that corresponds to the current task/tasklet being
profiled is now stored into the thread's context. This will allow it
to be accessed from the tasks themselves. This is needed for an upcoming
fix.
When task profiling is enabled, the scheduler can measure and report
the cumulated time spent in each task and their respective latencies. But
this was wrong for tasks with few wakeups as well as for self-waking ones,
because the call date needed to measure how long it takes to process the
task is retrieved in the task itself (->wake_date was turned to the call
date), and we could face two conditions:
- a new wakeup while the task is executing would reset the ->wake_date
field before returning and make abnormally low values being reported;
that was likely the case for taskrun_applet for self-waking applets;
- when the task dies, NULL is returned and the call date couldn't be
retrieved, so that CPU time was not being accounted for. This was
particularly visible with process_stream() which is usually called
only twice per request, and whose time was systematically halved.
The cleanest solution here is to keep in mind that the scheduler already
uses quite a bit of local context in th_ctx, and place the intermediary
values there so that they cannot vanish. The wake_date has to be reset
immediately once read, and only its copy is used along the function. Note
that this must be done both for tasks and tasklet, and that until recently
tasklets were also able to report wrong values due to their sole dependency
on TH_FL_TASK_PROFILING between tests.
One nice benefit for future improvements is that such information will now
be available from the task without having to be stored into the task itself
anymore.
Since the tasklet part was computed on wrapping 32-bit arithmetics and
the task one was on 64-bit, the values were now consistently moved to
32-bit as it's already largely sufficient (4s spent in a task is more
than twice what the watchdog would tolerate). Some further cleanups might
be necessary, but the patch aimed at staying minimal.
Task profiling output after 1 million HTTP request previously looked like
this:
Tasks activity:
function calls cpu_tot cpu_avg lat_tot lat_avg
h1_io_cb 2012338 4.850s 2.410us 12.91s 6.417us
process_stream 2000136 9.594s 4.796us 34.26s 17.13us
sc_conn_io_cb 2000135 1.973s 986.0ns 30.24s 15.12us
h1_timeout_task 137 - - 2.649ms 19.34us
accept_queue_process 49 152.3us 3.107us 321.7yr 6.564yr
main+0x146430 7 5.250us 750.0ns 25.92us 3.702us
srv_cleanup_idle_conns 1 559.0ns 559.0ns 918.0ns 918.0ns
task_run_applet 1 - - 2.162us 2.162us
Now it looks like this:
Tasks activity:
function calls cpu_tot cpu_avg lat_tot lat_avg
h1_io_cb 2014194 4.794s 2.380us 13.75s 6.826us
process_stream 2000151 20.01s 10.00us 36.04s 18.02us
sc_conn_io_cb 2000148 2.167s 1.083us 32.27s 16.13us
h1_timeout_task 198 54.24us 273.0ns 3.487ms 17.61us
accept_queue_process 52 158.3us 3.044us 409.9us 7.882us
main+0x1466e0 18 16.77us 931.0ns 63.98us 3.554us
srv_cleanup_toremove_conns 8 282.1us 35.26us 546.8us 68.35us
srv_cleanup_idle_conns 3 149.2us 49.73us 8.131us 2.710us
task_run_applet 3 268.1us 89.38us 11.61us 3.871us
Note the two-fold difference on process_stream().
This feature is essentially used for debugging so it has extremely limited
impact. However it's used quite a bit more in bug reports and it would be
desirable that at least 2.6 gets this fix backported. It depends on at least
these two previous patches which will then also have to be backported:
MINOR: task: permanently enable latency measurement on tasklets
CLEANUP: task: rename ->call_date to ->wake_date
This field is misnamed because its real and important content is the
date the task was woken up, not the date it was called. It temporarily
holds the call date during execution but this remains confusing. In
fact before the latency measurements were possible it was indeed a call
date. Thus is will now be called wake_date.
This change is necessary because a subsequent fix will require the
introduction of the real call date in the thread ctx.
When tasklet latency measurement was enabled in 2.4 with commit b2285de04
("MINOR: tasks: also compute the tasklet latency when DEBUG_TASK is set"),
the feature was conditionned on DEBUG_TASK because the field would add 8
bytes to the struct tasklet.
This approach was not a very good idea because the struct ends on an int
anyway thus it does finish with a 32-bit hole regardless of the presence
of this field. What is true however is that adding it turned a 64-byte
struct to 72-byte when caller debugging is enabled.
This patch revisits this with a minor change. Now only the lowest 32
bits of the call date are stored, so they always fit in the remaining
hole, and this allows to remove the dependency on DEBUG_TASK. With
debugging off, we're now seeing a 48-byte struct, and with debugging
on it's exactly 64 bytes, thus still exactly one cache line. 32 bits
allow a latency of 4 seconds on a tasklet, which already indicates a
completely dead process, so there's no point storing the upper bits at
all. And even in the event it would happen once in a while, the lost
upper bits do not really add any value to the debug reports. Also, now
one tasklet wakeup every 4 billion will not be sampled due to the test
on the value itself. Similarly we just don't care, it's statistics and
the measurements are not 9-digit accurate anyway.
There's a subtle (harmless) bug in task_instant_wakeup(). As it uses
some tasklet code instead of some task code, the debug part also acts
on the tasklet equivalent, and the call_date is only set when DEBUG_TASK
is set instead of inconditionally like with tasks. As such, without this
debugging macro, call dates are not updated for tasks woken this way.
There isn't any impact yet because this function was introduced in 2.6 to
solve certain classes of issues and is not used yet, and in the worst case
it would only affect the reported latency time.
This may be backported to 2.6 in case a future fix would depend on it but
currently will not fix existing code.
The tasklet's call date was not reset, so if profiling was enabled while
some tasklets were in the run queue, their initial random value could be
used to preload a bogus initial latency value into the task profiling bin.
Let's just zero the initial value.
This should be backported to 2.4 as it was brought with initial commit
b2285de04 ("MINOR: tasks: also compute the tasklet latency when DEBUG_TASK
is set"). The impact is very low though.
To work, quic_pin_cid_to_tid() must set cid[0] to a value with <target_id>
as <global.nbthread> modulo. For each integer n, (n - (n % m)) + d has always
d as modulo m (with d < m).
So, this statement seemed correct:
cid[0] = cid[0] - (cid[0] % global.nbthread) + target_tid;
except when n wraps or when another modulo is applied to the addition result.
Here, for 8bit modulo arithmetic, if m does not divides 256, this cannot
works for values which wraps when we increment them by d.
For instance n=255 m=3 and d=1 the formula result is 0 (should be d).
To fix this, we first limit c[0] to 255 - <target_id> to prevent c[0] from wrapping.
Thank you to @esb for having reported this issue in GH #1855.
Must be backported to 2.6
LibreSSL does not implement EVP_chacha20_poly1305() with EVP_CIPHER but
uses the EVP_AEAD API instead:
https://man.openbsd.org/EVP_AEAD_CTX_init
This patch disables this cipher for libreSSL for now.
When building HAProxy with USE_QUIC and libressl 3.6.0, the
ssl_sock_switchtx_cbk symbol is not found because libressl does not
implement the client_hello_cb.
A ssl_sock_switchtx_cbk version for the servername callback is available
but wasn't exported correctly.
This helper will be called for muxes that provide it and will be used
to let the mux provide extra information about the stream attached to
a stream descriptor. A line prefix is passed in argument so that the
mux is free to break long lines without breaking indent. No prefix
means no line breaks should be produced (e.g. for short dumps).
Some recent traces started to show confusing stream pointers ending with
0xe. The reason was that the stream's obj_type was almost unused in the
past and was stuffed in a hole in the structure. But now it's present in
all "show sess all" outputs and having to mentally match this value against
another one that's 0x17e lower is painful. The solution here is to move the
obj_type at the top, like in almost every other structure, but without
breaking the efficient layout.
This patch moves a few fields around and manages to both plug some holes
(16 bytes saved, 976 to 960) and avoid channels needlessly crossing cache
boundaries (res was spread over 3 lines vs 2 now).
Nothing else was changed. It would be desirable to backport this to 2.6
since it's where dumps are currently being processed the most.
As outlined in commit f7ebe584d7 ("BUILD: debug: Add braces to if
statement calling only CHECK_IF()"), the BUG_ON() family of macros
is incorrectly defined to be empty when debugging is disabled, and
that can lead to trouble. Make sure they always fall back to the
usual "do { } while (0)". This may be backported to 2.6 if needed,
though no such issue was met there to date.
This bug arrived with this commit:
"MINOR: quic: Add reusable cipher contexts for header protection"
haproxy could crash because of missing cipher contexts initializations for
the header protection and draft-v2 Initial secrets. This was due to the fact
that these initialization both for RX and TX secrets were done outside of
qc_new_isecs(). The role of this function is definitively to initialize these
cipher contexts in addition to the derived secrets. Indeed this function is called
by qc_new_conn() which initializes the connection but also by qc_conn_finalize()
which also calls qc_new_isecs() in case of a different QUIC version was negotiated
by the peers from the one used by the client for its first Initial packet.
This was reported by "v2" QUIC interop test with at least picoquic as client.
Must be backported to 2.6.
Shut the connect() warning of resolvers_finalize_config() when the
configuration was not emitted manually.
This shuts the warning for the "default" resolvers which is created
automatically for the httpclient.
Must be backported in 2.6.
It is only a real problem for agent-checks when there is no agent string to
send. The condition to disable TCP_QUICKACK was only based on the action
type following the connect one. But it is not always accurate. indeed, for
agent-checks, there is always a SEND action. But if there is no "agent-send"
string defined, nothing is sent. In this case, this adds 200ms of latency
with no reason.
To fix the bug, a flag is now used on the CONNECT action to instruct there
are data that should be sent after the connect. For health-checks, this flag
is set if the action following the connect is a SEND action. For
agent-checks, it is set if an "agent-send" string is defined.
This patch should fix the issue #1836. It must be backported as far as 2.2.
Replace ->rx.pqpkts quic_enc_level struct member MT_LIST by an LIST.
Same thing for ->list quic_rx_packet struct member MT_LIST.
Update the code consequently. This was a reminisence of the multithreading
support (several threads by connection).
Must be backported to 2.6
Some clients send CONNECTION_CLOSE frame without acknowledging the STREAM
data haproxy has sent. In this case, when closing the connection if
there were remaining data in QUIC stream buffers, they were not released.
Add a <closing> boolean option to qc_stream_desc_free() to force the
stream buffer memory releasing upon closing connection.
Thank you to Tristan for having reported such a memory leak issue in GH #1801.
Must be backported to 2.6.
In ticket #1805 an user is impacted by the limitation of size of the CLI
buffer when updating a ca-file.
This patch allows a user to append new certificates to a ca-file instead
of trying to put them all with "set ssl ca-file"
The implementation use a new function ssl_store_dup_cafile_entry() which
duplicates a cafile_entry and its X509_STORE.
ssl_store_load_ca_from_buf() was modified to take an apped parameter so
we could share the function for "set" and "add".
In order to be able to append new CA in a cafile_entry,
ssl_store_load_ca_from_buf() was reworked and a "append" parameter was
added.
The function is able to keep the previous X509_STORE which was already
present in the cafile_entry.
Implement quic_tls_rx_hp_ctx_init() and quic_tls_tx_hp_ctx_init() to initiliaze
such header protection cipher contexts for each RX and TX parts and for each
packet number spaces, only one time by connection.
Make qc_new_isecs() call these two functions to initialize the cipher contexts
of the Initial secrets. Same thing for ha_quic_set_encryption_secrets() to
initialize the cipher contexts of the subsequent derived secrets (ORTT, 1RTT,
Handshake).
Modify qc_do_rm_hp() and quic_apply_header_protection() to reuse these
cipher contexts.
Note that there is no need to modify the key update for the header protection.
The header protection secrets are never updated.
The CLI needs to reset the svcctx between commands, and there was nothing
done to handle this. Let's add appctx_reset_svcctx() to do that, it's the
closing equivalent of appctx_reserve_svcctx().
This will have to be backported to 2.6 as it will be used by a subsequent
patch to fix a bug.
As specified by RFC 7540, multiple cookie headers are merged in a single
entry before passing it to a HTTP/1.1 connection. This step is
implemented during headers parsing in h2 module.
Extract this code in the generic http_htx module. This will allow to
reuse it quickly for HTTP/3 implementation which has the same
requirement for cookie headers.
MUX notification on TX has been edited recently : it will be notified
only when sending its own data, and not for example on retransmission by
the quic-conn layer. This is subject of the patch :
b29a1dc2f4
BUG/MINOR: quic: do not notify MUX on frame retransmit
A new flag QUIC_FL_CONN_RETRANS_LOST_DATA has been introduced to
differentiate qc_send_app_pkts invocation by MUX and directly by the
quic-conn layer in quic_conn_app_io_cb(). However, this is a first
problem as internal quic-conn layer usage is not limited to
retransmission. For example for NEW_CONNECTION_ID emission.
Another problem much important is that send functions are also called
through quic_conn_io_cb() which has not been protected from MUX
notification. This could probably result in crash when trying to notify
the MUX.
To fix both problems, quic-conn flagging has been inverted : when used
by the MUX, quic-conn is flagged with QUIC_FL_CONN_TX_MUX_CONTEXT. To
improve the API, MUX must now used qc_send_mux which ensure the flag is
set. qc_send_app_pkts is now static and can only be used by the
quic-conn layer.
This must be backported wherever the previously mentionned patch is.
On STREAM emission, quic-conn notifies MUX through a callback named
qcc_streams_sent_done(). This also happens on retransmission : in this
case offset are examined and notification is ignored if already seen.
However, this behavior has slightly changed since
e53b489826
BUG/MEDIUM: mux-quic: fix server chunked encoding response
Indeed, if offset diff is NULL, frame is now not ignored. This is to
support FIN notification with a final empty STREAM frame. A side-effect
of this is that if the last stream frame is retransmitted, it won't be
ignored in qcc_streams_sent_done().
In most cases, this side-effect is harmless as qcs instance will soon be
freed after being closed. But if qcs is still alive, this will cause a
BUG_ON crash as it is considered as locally closed.
This bug depends on delay condition and seems to be extremely rare. But
it might be the reason for a crash seen on interop with s2n client on
http3 testcase :
FATAL: bug condition "qcs->st == QC_SS_CLO" matched at src/mux_quic.c:372
call trace(16):
| 0x558228912b0d [b8 01 00 00 00 c6 00 00]: main-0x1c7878
| 0x558228917a70 [48 8b 55 d8 48 8b 45 e0]: qcc_streams_sent_done+0xcf/0x355
| 0x558228906ff1 [e9 29 05 00 00 48 8b 05]: main-0x1d3394
| 0x558228907cd9 [48 83 c4 10 85 c0 0f 85]: main-0x1d26ac
| 0x5582289089c1 [48 83 c4 50 85 c0 75 12]: main-0x1d19c4
| 0x5582288f8d2a [48 83 c4 40 48 89 45 a0]: main-0x1e165b
| 0x5582288fc4cc [89 45 b4 83 7d b4 ff 74]: qc_send_app_pkts+0xc6/0x1f0
| 0x5582288fd311 [85 c0 74 12 eb 01 90 48]: main-0x1dd074
| 0x558228b2e4c1 [48 c7 c0 d0 60 ff ff 64]: run_tasks_from_lists+0x4e6/0x98e
| 0x558228b2f13f [8b 55 80 29 c2 89 d0 89]: process_runnable_tasks+0x7d6/0x84c
| 0x558228ad9aa9 [8b 05 75 16 4b 00 83 f8]: run_poll_loop+0x80/0x48c
| 0x558228ada12f [48 8b 05 aa c5 20 00 48]: main-0x256
| 0x7ff01ed2e609 [64 48 89 04 25 30 06 00]: libpthread:+0x8609
| 0x7ff01e8ca163 [48 89 c7 b8 3c 00 00 00]: libc:clone+0x43/0x5e
To reproduce it locally, code was artificially patched to produce
retransmission and avoid qcs liberation.
In order to fix this and avoid future class of similar problem, the best
way is to not call qcc_streams_sent_done() to notify MUX for
retranmission. To implement this, we test if any of
QUIC_FL_CONN_RETRANS_OLD_DATA or the new flag
QUIC_FL_CONN_RETRANS_LOST_DATA is set. A new wrapper
qc_send_app_retransmit() has been added to set the new flag as a
complement to already existing qc_send_app_probing().
This must be backported up to 2.6.
Adjust qc_send_app_pkts function : remove <old_data> arg and provide a
new wrapper function qc_send_app_probing() which should be used instead
when probing with old data.
This simplifies the interface of the default function, most notably for
the MUX which does not interfer with retransmission.
QUIC_FL_CONN_RETRANS_OLD_DATA flag is set/unset directly in the wrapper
qc_send_app_probing().
At the same time, function documentation has been updated to clarified
arguments and return values.
This commit will be useful for the next patch to differentiate MUX and
retransmission send context. As a consequence, the current patch should
be backported wherever the next one will be.
Emit STREAM_LIMIT_ERROR if a client tries to open an unidirectional
stream with an ID greater than the value specified by our flow-control
limit. The code is similar to the bidirectional stream opening.
MAX_STREAMS_UNI emission is not implement for the moment and is left as
a TODO. This should not be too urgent for the moment : in HTTP/3, a
client has only a limited use for unidirectional streams (H3 control
stream + 2 QPACK streams). This is covered by the value provided by
haproxy in transport parameters.
This patch has been tagged with BUG as it should have prevented last
crash reported on github issue #1808 when opening a new unidirectional
streams with an invalid ID. However, it is probably not the main cause
of the bug contrary to the patch
commit 11a6f4007b
BUG/MINOR: quic: Wrong status returned by qc_pkt_decrypt()
This must be backported up to 2.6.
As specified by RFC 9204, encoder and decoder streams must not be
closed. If the peer behaves incorrectly and closes one of them, emit a
H3_CLOSED_CRITICAL_STREAM connection error.
To implement this, QPACK stream decoding API has been slightly adjusted.
Firstly, fin parameter is passed to notify about FIN STREAM bit.
Secondly, qcs instance is passed via unused void* context. This allows
to use qcc_emit_cc_app() function to report a CONNECTION_CLOSE error.
This function is responsible for all calls to pool_alloc(trash), whose
total size can be huge. As such it's quite a pain that it doesn't provide
more hints about its users. However, since the function is tiny, it fully
makes sense to inline it, the code is less than 0.1% larger with this.
This way we can now detect where the callers are via "show profiling",
e.g.:
0 1953671 0 32071463136| 0x59960f main+0x10676f p_free(-16416) [pool=trash]
0 1 0 16416| 0x59960f main+0x10676f p_free(-16416) [pool=trash]
1953672 0 32071479552 0| 0x599561 main+0x1066c1 p_alloc(16416) [pool=trash]
0 976835 0 16035723360| 0x576ca7 http_reply_to_htx+0x447/0x920 p_free(-16416) [pool=trash]
0 1 0 16416| 0x576ca7 http_reply_to_htx+0x447/0x920 p_free(-16416) [pool=trash]
976835 0 16035723360 0| 0x576a5d http_reply_to_htx+0x1fd/0x920 p_alloc(16416) [pool=trash]
1 0 16416 0| 0x576a5d http_reply_to_htx+0x1fd/0x920 p_alloc(16416) [pool=trash]
Storing the pointer to the pool along with the stats is quite useful as
it allows to report the name. That's what we're doing here. We could
store it in place of another field but that's not convenient as it would
require to change all functions that manipulate counters. Thus here we
store one extra field, as well as some padding because the struct turns
56 bytes long, thus better go to 64 directly. Example of output from
"show profiling memory":
2 0 48 0| 0x4bfb2c ha_quic_set_encryption_secrets+0xcc/0xb5e p_alloc(24) [pool=quic_tls_iv]
0 55252 0 10608384| 0x4bed32 main+0x2beb2 free(-192)
15 0 2760 0| 0x4be855 main+0x2b9d5 p_alloc(184) [pool=quic_frame]
1 0 1048 0| 0x4be266 ha_quic_add_handshake_data+0x2b6/0x66d p_alloc(1048) [pool=quic_crypto]
3 0 552 0| 0x4be142 ha_quic_add_handshake_data+0x192/0x66d p_alloc(184) [pool=quic_frame]
31276 0 6755616 0| 0x4bb8f9 quic_sock_fd_iocb+0x689/0x69b p_alloc(216) [pool=quic_dgram]
0 31424 0 6787584| 0x4bb7f3 quic_sock_fd_iocb+0x583/0x69b p_free(-216) [pool=quic_dgram]
152 0 32832 0| 0x4bb4d9 quic_sock_fd_iocb+0x269/0x69b p_alloc(216) [pool=quic_dgram]
Pools are being used so well that it becomes difficult to profile their
usage via the regular memory profiling. Let's add new entries for pools
there, named "p_alloc" and "p_free" that correspond to pool_alloc() and
pool_free(). Ideally it would be nice to only report those that fail
cache lookups but that's complicated, particularly on the free() path
since free lists are released in clusters to the shared pools.
It's worth noting that the alloc_tot/free_tot fields can easily be
determined by multiplying alloc_calls/free_calls by the pool's size, and
could be better used to store a pointer to the pool itself. However it
would require significant changes down the code that sorts output.
If this were to cause a measurable slowdown, an alternate approach could
consist in using a different value of USE_MEMORY_PROFILING to enable pools
profiling. Also, this profiler doesn't depend on intercepting regular malloc
functions, so we could also imagine enabling it alone or the other one alone
or both.
Tests show that the CPU overhead on QUIC (which is already an extremely
intensive user of pools) jumps from ~7% to ~10%. This is quite acceptable
in most deployments.
Right now it's not possible to feed memory profiling info from outside
activity.c, so let's export the function and move the enum and struct
to the include file.
This mmaps a file which will serve as the backing-store for the ring's
contents. The idea is to provide a way to retrieve sensitive information
(last logs, debugging traces) even after the process stops and even after
a possible crash. Right now this was possible by connecting to the CLI
and dumping the contents of the ring live, but this is not handy and
consumes quite a bit of resources before it is needed.
With a backing file, the ring is effectively RAM-mapped file, so that
contents stored there are the same as those found in the file (the OS
doesn't guarantee immediate sync but if the process dies it will be OK).
Note that doing that on a filesystem backed by a physical device is a
bad idea, as it will induce slowdowns at high loads. It's really
important that the device is RAM-based.
Also, this may have security implications: if the file is corrupted by
another process, the storage area could be corrupted, causing haproxy
to crash or to overwrite its own memory. As such this should only be
used for debugging.