This changes all main uses of endp->flags to the se_fl_*() equivalent
by applying coccinelle script endp_flags.cocci. The se_fl_*() functions
themselves were manually excluded from the change, of course.
Note: 144 locations were touched, manually reviewed and found to be OK.
The script was applied with all includes:
spatch --in-place --recursive-includes -I include --sp-file $script $files
It is now possible to start an appctx on a thread subset. Some controls were
added here and there. It is forbidden to start a backend appctx on another
thread than the local one. If a frontend appctx is started on another thread
or a thread subset, the applet .init callback function must be defined. This
callback function is responsible to finalize the appctx startup. It can be
performed synchornously. In this case, the appctx is started on the local
thread. It is not really useful but it is valid. Or it can be performed
asynchronously. In this case, .init callback function is called when the
appctx is woken up for the first time. When this happens, the appctx
affinity is set to the current thread to be able to start the session and
the stream.
In the same way than for the tasks, the applets api was changed to be able
to start a new appctx on a thread subset. For now the feature is
disabled. Only appctx_new_here() is working. But it will be possible to
start an appctx on a specific thread or a subset via a mask.
appctx_free_on_early_error() must be used to release a freshly created
frontend appctx if an error occurred during the init stage. It takes care to
release the stream instead of the appctx if it exists. For a backend appctx,
it just calls appctx_free().
appctx_finalize_startup() may be used to finalize the frontend appctx
startup. It is responsible to create the appctx's session and the frontend
conn-stream. On error, it is the caller responsibility to release the
appctx. However, the session is released if it was created. On success, if
an error is encountered in the caller function, the stream must be released
instead of the appctx.
This function should ease the init stage when new appctx is created.
It is just a helper function that call the .init applet callback function,
if it exists. This will simplify a bit the init stage when a new applet is
started. For now, this callback function is only used when a new service is
started.
Applets were moved at the same level than multiplexers. Thus, gradually,
applets code is changed to be less dependent from the stream. With this
commit, the frontend appctx are ready to own the session. It means a
frontend appctx will be responsible to release the session.
The former takes a conn_stream still attached to a valid appctx,
which also complicates the termination of the applet. Instead, let's
pass the appctx which already points to the endpoint, this allows us
to properly detach the conn_stream before the call, which is cleaner
and safer.
Instead of using existing fields and having to put keyword-specific
contexts in the applet definition, let's have the appctx provide a
generic storage area that's currently large enough for existing CLI
commands and small applets, and a function to allocate that storage.
The function will be responsible for verifying that the requested size
fits in the area so that the caller doesn't need to add specific checks;
it is validated during development as this size is static and will
not change at runtime. In addition the caller doesn't even need to
free() the area since it's part of an existing context. For the
caller's convenience, a context pointer "svcctx" for the command is
also provided so that the allocated area can be placed there (or
possibly any other one in case a larger area is needed).
The struct's layout has been temporarily complicated by adding one
level of anonymous union on top of the "ctx" one. This will allow us
to preserve "ctx" during 2.6 for compatibility with possible external
code and get rid of it in 2.7. This explains why the diff extends to
the whole "ctx" union, but a "git show -b" shows that only one extra
layer was added. In order to make both the svcctx pointer and its
storage accessible without further enlarging the appctx structure,
both svcctx and the storage share the same storage as the ctx part.
This is done by having them placed in the union with a protected
overlapping area for svcctx, for which a shadow member is also
present in the storage area:
union {
void* svcctx; // variable accessed by services
struct {
void *shadow; // shadow of svcctx;
char storage[]; // where most services store their data
};
union { // older commands store here and ignore svcctx
...
} ctx;
};
I.e. new applications will use appctx->svcctx while older ones will be
able to continue to use appctx->ctx.*
The whole area (including the pointer's context) is zeroed before any
applet is initialized, and before CLI keyword processor's first invocation,
as it is an important part of the existing keyword processors, which makes
CLI keywords effectively behave like applets.
The conn-stream endpoint is now shared between the conn-stream and the
applet or the multiplexer. If the mux or the applet is created first, it is
responsible to also create the endpoint and share it with the conn-stream.
If the conn-stream is created first, it is the opposite.
When the endpoint is only owned by an applet or a mux, it is called an
orphan endpoint (there is no conn-stream). When it is only owned by a
conn-stream, it is called a detached endpoint (there is no mux/applet).
The last entity that owns an endpoint is responsible to release it. When a
mux or an applet is detached from a conn-stream, the conn-stream
relinquishes the endpoint to recreate a new one. This way, the endpoint
state is never lost for the mux or the applet.
It is a transient commit to prepare next changes. Now, when a conn-stream is
created from an applet or a multiplexer, an endpoint is always provided. In
addition, the API to create a conn-stream was specialized to have one
function per type.
The next step will be to share the endpoint structure.
The appctx owner is now always a conn-stream. Thus, it can be set during the
appctx allocation. But, to do so, the conn-stream must be created first. It
is not a problem on the server side because the conn-stream is created with
the stream. On the client side, we must take care to create the conn-stream
first.
This change should ease other changes about the applets bootstrapping.
693b23bb1 ("MEDIUM: tree-wide: Use unsafe conn-stream API when it is
relevant") introduced a regression in DEBUG_STRICT mode because some BUG_ON
conditions were inverted. It should ok now.
In addition, ALREADY_CHECKED macro was removed from appctx_wakeup() function
because it is useless now.
Since recent changes related to the conn-stream/stream-interface
refactoring, GCC reports potential null pointer dereferences when we get the
appctx, the stream or the stream-interface from the conn-strem. Of course,
depending on the time, these entities may be null. But at many places, we
know they are defined and it is safe to get them without any check. Thus, we
use ALREADY_CHECKED() macro to silent these warnings.
Note that the refactoring is unfinished, so it is not a real issue for now.
We'll need to improve the API to pass other arguments in the future, so
let's start to adapt better to the current use cases. task_new() is used:
- 18 times as task_new(tid_bit)
- 18 times as task_new(MAX_THREADS_MASK)
- 2 times with a single bit (in a loop)
- 1 in the debug code that uses a mask
This patch provides 3 new functions to achieve this:
- task_new_here() to create a task on the calling thread
- task_new_anywhere() to create a task to be run anywhere
- task_new_on() to create a task to run on a specific thread
The change is trivial and will allow us to later concentrate the
required adaptations to these 3 functions only. It's still possible
to call task_new() if needed but a comment was added to encourage the
use of the new ones instead. The debug code was not changed and still
uses it.
appctx_new() is exclusively called with tid_bit and it only uses the
mask to pass it to the accompanying task. There is no point requiring
the caller to know about a mask there, nor is there any point in
creating an applet outside of the context of its own thread anyway.
Let's drop this and pass tid_bit to task_new() directly.
Since 1.9 with commit 673867c35 ("MAJOR: applets: Use tasks, instead
of rolling our own scheduler.") the thread_mask field of the appctx
became unused, but the code hadn't been cleaned for this. The appctx
has its own task and the task's thread_mask is the one to be displayed.
It's worth noting that all calls to appctx_new() pass tid_bit as the
thread_mask. This makes sense, and it could be convenient to decide
that this becomes the norm and to simplify the API.
The current "ADD" vs "ADDQ" is confusing because when thinking in terms
of appending at the end of a list, "ADD" naturally comes to mind, but
here it does the opposite, it inserts. Several times already it's been
incorrectly used where ADDQ was expected, the latest of which was a
fortunate accident explained in 6fa922562 ("CLEANUP: stream: explain
why we queue the stream at the head of the server list").
Let's use more explicit (but slightly longer) names now:
LIST_ADD -> LIST_INSERT
LIST_ADDQ -> LIST_APPEND
LIST_ADDED -> LIST_INLIST
LIST_DEL -> LIST_DELETE
The same is true for MT_LISTs, including their "TRY" variant.
LIST_DEL_INIT keeps its short name to encourage to use it instead of the
lazier LIST_DELETE which is often less safe.
The change is large (~674 non-comment entries) but is mechanical enough
to remain safe. No permutation was performed, so any out-of-tree code
can easily map older names to new ones.
The list doc was updated.
Both structures are identical except the name of the field starting
the period and its description. Let's call them all freq_ctr and the
period's start "curr_tick" which is generic.
This is only a temporary change and fields are expected to remain
the same with no code change (verified).
This patch replaces roughly all occurrences of an HA_ATOMIC_ADD(&foo, 1)
or HA_ATOMIC_SUB(&foo, 1) with the equivalent HA_ATOMIC_INC(&foo) and
HA_ATOMIC_DEC(&foo) respectively. These are 507 changes over 45 files.
It's been too short for quite a while now and is now full. It's still
time to extend it to 32-bits since we have room for this without
wasting any space, so we now gained 16 new bits for future flags.
The values were not reassigned just in case there would be a few
hidden u16 or short somewhere in which these flags are placed (as
it used to be the case with stream->pending_events).
The patch is tagged MEDIUM because this required to update the task's
process() prototype to use an int instead of a short, that's quite a
bunch of places.
This patch fixes all the leftovers from the include cleanup campaign. There
were not that many (~400 entries in ~150 files) but it was definitely worth
doing it as it revealed a few duplicates.
The type file was slightly tidied. The cli-specific APPCTX_CLI_ST1_* flag
definitions were moved to cli.h. The type file was adjusted to include
buf-t.h and not the huge buf.h. A few call places were fixed because they
did not need this include.