When appctx_buf_available() is called, it now sets APPCTX_FL_IN_MAYALLOC
or APPCTX_FL_OUT_MAYALLOC depending on the reportedly permitted buffer
allocation, and these flags are cleared when the said buffers are
allocated. For now they're not used for anything else.
When we want to allocate an in buffer, it's in order to pass data to
the applet, that will consume it, so it must be seen as the same as
a send() from the higher level, i.e. MUX_TX. And for the outbuf, it's
a stream endpoint returning data, i.e. DB_SE_RX.
Instead of having each caller of appctx_get_buf() think about setting
the blocking flag, better have the function do it, since it's already
handling the queue anyway. This way we're sure that both are consistent.
The code places that were used to manipulate the buffer_wq manually
now just call b_queue() or b_requeue(). This will simplify the multiple
list management later.
The goal is to indicate how critical the allocation is, between the
least one (growing an existing buffer ring) and the topmost one (boot
time allocation for the life of the process).
The 3 tcp-based muxes (h1, h2, fcgi) use a common allocation function
to try to allocate otherwise subscribe. There's currently no distinction
of direction nor part that tries to allocate, and this should be revisited
to improve this situation, particularly when we consider that mux-h2 can
reduce its Tx allocations if needed.
For now, 4 main levels are planned, to translate how the data travels
inside haproxy from a producer to a consumer:
- MUX_RX: buffer used to receive data from the OS
- SE_RX: buffer used to place a transformation of the RX data for
a mux, or to produce a response for an applet
- CHANNEL: the channel buffer for sync recv
- MUX_TX: buffer used to transfer data from the channel to the outside,
generally a mux but there can be a few specificities (e.g.
http client's response buffer passed to the application,
which also gets a transformation of the channel data).
The other levels are a bit different in that they don't strictly need to
allocate for the first two ones, or they're permanent for the last one
(used by compression).
appctx_is_back() function may be used to know if an applet was create on
frontend side or on backend side. It may be handy for some applets that may
exist on both sides, like peer applets.
se_shutdown() function is now used to perform a shutdown on a connection
endpoint and an applet endpoint. The same function is used for
both. sc_conn_shut() function was removed and appctx_shut() function was
updated to only deal with the applet stuff.
It is the same than the previous patch but for applets. Here there is
already only one function. But with this patch, appctx_shut() function was
modified to explicitly get shutdown mode as parameter. In addition
appctx_shutw() was removed.
applet_putblk and co were added to simplify applets. In 2.8, a fix was
pushed to deal with all errors as a room error because the vast majority of
applets didn't expect other kind of errors. The API was changed with the
commit 389b7d1f7b ("BUG/MEDIUM: applet: Fix API for function to push new
data in channels buffer").
Unfortunately and for unknown reason, the fix was totally failed. Checks on
channel functions were just wrong and not consistent. applet_putblk()
function is especially affected because the error is returned but no flag
are set on the SC to request more room. Because of this bug, applets relying
on it may be blocked, waiting for more room, and never woken up.
It is an issue for the peer and spoe applets.
This patch must be backported as far as 2.8.
applet_putchk() and other similar functions are now testing the applet's
type to use the applet's outbuf instead of the channel's buffer. This will
ease applets convertion because most of them relies on these functions.
The code now looks cleaner and more easily shows what still needs to be
addressed. There are not that many changes in practice, these are mostly
mechanical, essentially hiding the buffer from the callers.
This function takes a buffer on input, and offset and a length, and
consumes the block from that buffer to send it to the appctx's output
buffer. This will be used to simplify the ring reader code.
In fact there is already flags on the SE to state a shutdown for reads or
writes was performed. But for applets, this notion does not exist. Both
flags are set in same time when the applet is released. But at the SC level,
there are functions to perform a shutdown (formely the shutw) and an abort
(formely the shutr). For applets, when a shutdown is performed on the SC, if
the applet is not immediately released, nothing is acknowledge at the SE
level.
With old way to implement applets, this was not an real issue until recently
because applets accessed to the channel/SC flags. It was thus possible to
catch the shutdowns. But the "wait" command on the CLI reveals the
flaw. Indeed, when this command is executed, nothing is read or sent. So, it
is not possible to detect the shutdowns. As a workaround, a dedicated test
on the SC flags was added at the end of the wait command I/O handler. But it
is pretty ugly.
With new way to implement applets, there is no longer access to the channel
or SC. So we must add a way to acknowledge shutdown into the SE.
This patch solves the both sides of the issue. The shutw notion is added for
applets. Its only purpose is to set SE_FL_SHWN flags. This flag is tested by
all applets, so, it solves the issue quite simply.
Note that it is described as a bug fix but there is no real issue, just a
design flaw. However, if the "wait" command is backported, this patch must
be backported too. Unfortinately it will require an adaptation because there
is no appctx flags on older versions.
Default .rcv_buf and .snd_buf functions that applets can use are now
specialized to manipulate raw buffers or HTX buffers.
Thus a TCP applet should use appctx_raw_rcv_buf() and appctx_raw_snd_buf()
while HTTP applet should use appctx_htx_rcv_buf() and appctx_htx_snd_buf().
Note that the appctx is now directly passed to these functions instead of
the SC.
Thanks to this patch, it is possible to an applet to directly send data to
the opposite endpoint. To do so, it must implement <fastfwd> appctx callback
function and set SE_FL_MAY_FASTFWD flag.
Everything will be handled by appctx_fastfwd() function. The applet is only
responsible to transfer data. If it sets <to_forward> value, it is used to
limit the amount of data to forward.
Dedicated appctx flags to report EOI, EOS and errors (pending or terminal) were
added with the functions to set these flags. It is pretty similar to what it
done on most of muxes.
Till now, we've extended the appctx state to add some flags. However, the
field name is misleading. So a bitfield was added to handle real flags. And
helper functions to manipulate this bitfield were added.
A dedicated function to run applets was introduced, in addition to the old
one, to deal with applets that use their own buffers. The main differnce
here is that this handler does not use channels at all. It performs a
synchronous send before calling the applet and performs a synchronous
receive just after.
No applets are plugged on this handler for now.
In this patch, we add default functions to copy data from a channel to the
<inbuf> buffer of an applet (appctx_rcv_buf) and another on to copy data
from <outbuf> buffer of an applet to a channel (appctx_snd_buf).
These functions are not used for now, but they will be used by applets to
define their <rcv_buf> and <snd_buf> callback functions. Of course, it will
be possible for a specific applet to implement its own functions but these
ones should be good enough for most of applets. HTX and RAW buffers are
supported.
It is the first patch of a series aimed to align applets on connections.
Here, dedicated buffers are added for applets. For now, buffers are
initialized and helpers function to deal with allocation are added. In
addition, flags to report allocation failures or full buffers are also
introduced. <inbuf> will be used to push data to the applet from the stream
and <outbuf> will be used to push data from the applet to the stream.
All applets only check the -1 error value (need room) for applet_put*
functions while the underlying functions may also return -2 if the input is
closed or -3 if the data length is invalid. It means applets already handle
other cases by their own.
The API should be fixed but for now, to ease backports, we only fix
applet_put* functions to always return -1 on error. This way, at least for
the applets point of view, the API is consistent.
This patch should be backported to 2.8. Probably not further. Except if we
suspect it could fix a bug.
sc_need_room() now takes the required free space to receive more data as
parameter. All calls to this function are updated accordingly. For now, this
value is set but not used. When we are waiting for a buffer, 0 is used. So
we expect to be unblocked ASAP. However this must be reviewed because
SC_FL_NEED_BUF is probably enough in this case and this flag is already set
if the input buffer allocation fails.
When the endpoint (applet or mux) is now willing to consume data while it
said it wouldn't, a send activity is reported. Indeed, the writes was
blocked because of the endpoint. It is now ready to consume outgoing
data. So an send activity must be reported to reset corresponding timers.
Concretly, when the flag SE_FL_WONT_CONSULE is removed, a send activity is
reported.
An endpoint should now set SE_FL_EXP_NO_DATA flag if it does not expect any
data from the opposite endpoint. This way, the stream will be able to
disable any read timeout on the opposite endpoint. Applets should use
applet_expect_no_data() and applet_expect_data() functions to set or clear
the flag. For now, only dns and sink forwarder applets are concerned.
appctx_wakeup() relies on task_wakeup(), but since it calls it from a
function, the calling place is always appctx_wakeup() itself, which is
not very useful.
Let's turn it to a macro so that we can log the location of the caller
instead. As an example, the cli_io_handler() which used to be seen as
this:
(gdb) p *appctx->t.debug.caller[0]
$10 = {
func = 0x9ffb78 <__func__.37996> "appctx_wakeup",
file = 0x9b336a "include/haproxy/applet.h",
line = 110,
what = 1 '\001',
arg8 = 0 '\000',
arg32 = 0
}
Now shows the more useful:
(gdb) p *appctx->t.debug.caller[0]
$6 = {
func = 0x9ffe80 <__func__.38641> "sc_app_chk_snd_applet",
file = 0xa00320 "src/stconn.c",
line = 996,
what = 6 '\006',
arg8 = 0 '\000',
arg32 = 0
}
The CLI needs to reset the svcctx between commands, and there was nothing
done to handle this. Let's add appctx_reset_svcctx() to do that, it's the
closing equivalent of appctx_reserve_svcctx().
This will have to be backported to 2.6 as it will be used by a subsequent
patch to fix a bug.
This removes the mask-based variant so that from now on the low-level
function becomes appctx_new_on() and it takes either a thread number or
a negative value for "any thread". This way we can use task_new_on() and
task_new_anywhere() instead of task_new() which will soon disappear.
This macro was used both for binding and for lookups. When binding tasks
or FDs, using all_threads_mask instead is better as it will later be per
group. For lookups, ~0UL always does the job. Thus in practice the macro
was already almost not used anymore since the rest of the code could run
fine with a constant of all ones there.
This flag was the only remaining one that was inverted as a blocking
condition, requiring special handling to preset it on sedesc allocation.
Let's flip it in its definition and accessors.
There's no more reason for keepin the code and definitions in conn_stream,
let's move all that to stconn. The alphabetical ordering of include files
was adjusted.
This file contains all the stream-connector functions that are specific
to application layers of type stream. So let's name it accordingly so
that it's easier to figure what's located there.
The alphabetical ordering of include files was preserved.
An equivalent applet_need_more_data() was added as well since that function
is mostly used from applet code. It makes it much clearer that the applet
is waiting for data from the stream layer.
These ones are essentially for the stream endpoint, let's give them a
name that matches the intent. Equivalent versions were provided in the
applet namespace to ease code legibility.
The following flags are not at all related to the endpoint but to the
connector itself:
- SE_FL_RXBLK_ROOM
- SE_FL_RXBLK_BUFF
- SE_FL_RXBLK_CHAN
As such they have no business staying in the endpoint descriptor and
they must move to the stream connector. They've also been renamed
accordingly to better match what they correspond to (the same name
as the function that sets them).
The rare occurrences of cs_rx_blocked() were replaced by an explicit
test on the list of flags. The reason is that cs_rx_blocked() used to
preserve some tests that are not needed at certain places since already
known. For the same reason SE_FL_RXBLK_ANY wasn't converted. As such it
will later be possible to carefully review these few locations and
eliminate the unneeded flags from the tests. No particular function
was made to test them since they're explicit enough.
It now looks like ci_putchk() and friends could very well place the flag
themselves on the connector when they detect a buffer full condition, as
this would significantly simplify the high-level API. But all usages must
first be reviewed before this simplification can be done. For now it
remains done by applet_put*() instead.
It's more explicit this way. The cs_rx_endp_ready() function could be
removed so that the flag is directly tested. In the future it should
be inverted and the few places where it's set (or preserved via
SE_FL_APP_MASK) could be dropped.
The analysis of cs_rx_endp_more() showed that the purpose is for a stream
endpoint to inform the connector that it's ready to deliver more data to
that one, and conversely cs_rx_endp_done() that it's done delivering data
so it should not be bothered again for this.
This was modified two ways:
- the operation is no longer performed on the connector but on the
endpoint so that there is no more doubt when reading applet code
about what this rx refers to; it's the endpoint that has more or
no more data.
- an applet implementation is also provided and mostly used from
applet code since it saves the caller from having to access the
endpoint descriptor.
It's visible that the flag ought to be inverted because some places
have to set it by default for no reason.
These functions return the app-layer associated with an stconn, which
is a check, a stream or a stream's task. They're used a lot to access
channels, flags and for waking up tasks. Let's just name them
appropriately for the stream connector.
We're starting to propagate the stream connector's new name through the
API. Most call places of these functions that retrieve the channel or its
buffer are in applets. The local variable names are not changed in order
to keep the changes small and reviewable. There were ~92 uses of cs_ic(),
~96 of cs_oc() (due to co_get*() being less factorizable than ci_put*),
and ~5 accesses to the buffer itself.
The vast majority of calls to ci_putchk() etc are performed from applets
which directly know an endpoint. Figuring the correct API (writing into
input channel etc) isn't trivial for newcomers, and knowing that they
must mark the flag indicating a buffer full condition isn't trivial
either.
Here we're adding wrappers to these functions but to be used directly
from the appctx. That's already what is being done in multiple steps in
the applet code, where the endp is derived from the appctx, then the cs
from the endp, then the stream from the cs, then the channel from the
stream, and so on. But this time the function doesn't require to know
much of the internals, applet_putchr() writes a char from the appctx,
and marks the buffer full if needed. Period. This will allow to remove
a significant amount of obscure ci_putchk() and cs_ic() calls from the
code, hence a significant number of possible mistakes.
This renames the "struct conn_stream" to "struct stconn" and updates
the descriptions in all comments (and the rare help descriptions) to
"stream connector" or "connector". This touches a lot of files but
the change is minimal. The local variables were not even renamed, so
there's still a lot of "cs" everywhere.
Now at least it makes it obvious that it's the stream endpoint descriptor
and not an endpoint. There were few changes thanks to the previous refactor
of the flags.
After some discussion we found that the cs_endpoint was precisely the
descriptor for a stream endpoint, hence the naturally coming name,
stream endpoint constructor.
This patch renames only the type everywhere and the new/init/free functions
to remain consistent with it. Future patches will address field names and
argument names in various code areas.