fix include dependency. The header file sample.h don't need to known
the content of the struct arg, so I remove the include, and replace
it by a simple pointer declaration.
This prevent an include dependecy issue with the next patch.
This patch permits to register a new keyword with the keyword "tcp-request content"
'tcp-request connection", tcp-response content", http-request" and "http-response"
which is identified only by matching the start of the keyword.
for example, we register the keyword "set-var" with the option "match_pfx"
and the configuration keyword "set-var(var_name)" matchs this entry.
This type is used to accept any type of sample as input, and prevent
any automatic "cast". It runs like the type "ADDR" which accept the
type "IPV4" and "IPV6".
Implementation of a DNS client in HAProxy to perform name resolution to
IP addresses.
It relies on the freshly created UDP client to perform the DNS
resolution. For now, all UDP socket calls are performed in the
DNS layer, but this might change later when the protocols are
extended to be more suited to datagram mode.
A new section called 'resolvers' is introduced thanks to this patch. It
is used to describe DNS servers IP address and also many parameters.
Basic introduction of a UDP layer in HAProxy. It can be used as a
client only and manages UDP exchanges with servers.
It can't be used to load-balance UDP protocols, but only used by
internal features such as DNS resolution.
Ability to change a server IP address during HAProxy run time.
For now this is provided via function update_server_addr() which
currently is not called.
A log is emitted on each change. For now we do it inconditionally,
but later we'll want to do it only on certain circumstances, which
explains why the logging block is enclosed in if(1).
Since commit 65d805fd witch removes standard.h from compat.h some
values were not properly set on FreeBSD. This caused a segfault
at startup when smp_resolve_args is called.
As FreeBSD have IP_BINDANY, CONFIG_HAP_TRANSPARENT is define. This
cause struct conn_src to be extended with some fields. The size of
this structure was incorrect. Including netinet/in.h fix this issue.
While diving in code preprocessing, I found that limits.h was require
to properly set MAX_HOSTNAME_LEN, ULONG_MAX, USHRT_MAX and others
system limits on FreeBSD.
Following functions are now available in the SSL public API:
* ssl_sock_create_cert
* ssl_sock_get_generated_cert
* ssl_sock_set_generated_cert
* ssl_sock_generated_cert_serial
These functions could be used to create a certificate by hand, set it in the
cache used to store generated certificates and retrieve it. Here is an example
(pseudo code):
X509 *cacert = ...;
EVP_PKEY *capkey = ...;
char *servername = ...;
unsigned int serial;
serial = ssl_sock_generated_cert_serial(servername, strlen(servername));
if (!ssl_sock_get_generated_cert(serial, cacert)) {
SSL_CTX *ctx = ssl_sock_create_cert(servername, serial, cacert, capkey);
ssl_sock_set_generated_cert(ctx, serial, cacert);
}
With this patch, it is possible to configure HAProxy to forge the SSL
certificate sent to a client using the SNI servername. We do it in the SNI
callback.
To enable this feature, you must pass following BIND options:
* ca-sign-file <FILE> : This is the PEM file containing the CA certitifacte and
the CA private key to create and sign server's certificates.
* (optionally) ca-sign-pass <PASS>: This is the CA private key passphrase, if
any.
* generate-certificates: Enable the dynamic generation of certificates for a
listener.
Because generating certificates is expensive, there is a LRU cache to store
them. Its size can be customized by setting the global parameter
'tune.ssl.ssl-ctx-cache-size'.
It lookup a key in a LRU cache for use with specified domain and revision. It
differs from lru64_get as it does not create missing keys. The function returns
NULL if an error or a cache miss occurs.
Now, When a item is committed in an LRU tree, you can define a function to free
data owned by this item. This function will be called when the item is removed
from the LRU tree or when the tree is destroyed..
This diff is the raw C struct definition of all DeviceAtlas module
data needed added to the main global struct haproxy configuration.
The three first members are needed for both init and deinit phases
as some dynamic memory allocations are done.
The useragentid serves to hold during the whole lifecycle of the
module the User-Agent HTTP Header identifier from the DeviceAtlas
data during the init process.
This diff is for the DeviceAtlas convertor.
This patch adds the following converters :
deviceatlas-json-file
deviceatlas-log-level
deviceatlas-property-separator
First, the configuration keywords handling (only the log
level configuration part does not end the haproxy process
if it is wrongly set, it fallbacks to the default level).
Furthermore, init, deinit phases and the API lookup phase,
the da_haproxy function which is fed by the input provided
and set all necessary properties chosen via the configuration
to the output, separated by the separator.
This patch adds the ssl-dh-param-file global setting. It sets the
default DH parameters that will be used during the SSL/TLS handshake when
ephemeral Diffie-Hellman (DHE) key exchange is used, for all "bind" lines
which do not explicitely define theirs.
Actually, the tcp-request and tcp-response custom ation are always final
actions. This patch create a new type of action that can permit to
continue the evaluation of tcp-request and tcp-response processing.
This patch does'nt add any new feature: the functional behavior
is the same than version 1.0.
Technical differences:
In this version all updates on different stick tables are
multiplexed on the same tcp session. There is only one established
tcp session per peer whereas in first version there was one established
tcp session per peer and per stick table.
Messages format was reviewed to be more evolutive and to support
further types of data exchange such as SSL sessions or other sticktable's
data types (currently only the sticktable's server id is supported).
This function checks a string for using it in a CSV output format. If
the string contains one of the following four char <">, <,>, CR or LF,
the string is encapsulated between <"> and the <"> are escaped by a <"">
sequence.
The rounding by <"> is optionnal. It can be canceled, forced or the
function choose automatically the right way.
Sometimes it's problematic not to have "http-response redirect" rules,
for example to perform a browser-based redirect based on certain server
conditions (eg: match of a header).
This patch adds "http-response redirect location <fmt>" which gives
enough flexibility for most imaginable operations. The connection to
the server is closed when this is performed so that we don't risk to
forward any pending data from the server.
Any pending response data are trimmed so that we don't risk to
forward anything pending to the client. It's harmless to also do that
for requests so we don't need to consider the direction.
In order to support http-response redirect, the parsing needs to be
adapted a little bit to only support the "location" type, and to
adjust the log-format parser so that it knows the direction of the
sample fetch calls.
This function tries to spot a proxy by its name, ID and type, and
in case some elements don't match, it tries to determine which ones
could be ignored and reports which ones were ignored so that the
caller can decide whether or not it wants to pick this proxy. This
will be used for maintaining the status across reloads where the
config might have changed a bit.
It does the same as the other one except that it only focuses on the
numeric ID and the capabilities. It's used by proxy_find_by_name()
for numeric names.
These ones were already obsoleted in 1.4, marked for removal in 1.5,
and not documented anymore. They used to emit warnings, and do still
require quite some code to stay in place. Let's remove them now.
First, findproxy() was renamed proxy_find_by_name() so that its explicit
that a name is required for the lookup. Second, we give this function
the ability to search for tables if needed. Third we now provide inline
wrappers to pass the appropriate PR_CAP_* flags and to explicitly look
up a frontend, backend or table.
For backend load balancing it sometimes makes sense to redispatch rather
than retrying against the same server. For example, when machines or routers
fail you may not want to waste time retrying against a dead server and
would instead prefer to immediately redispatch against other servers.
This patch allows backend sections to specify that they want to
redispatch on a particular interval. If the interval N is positive the
redispatch occurs on every Nth retry, and if the interval N is negative then
the redispatch occurs on the Nth retry prior to the last retry (-1 is the
default and maintains backwards compatibility). In low latency environments
tuning this setting can save a few hundred milliseconds when backends fail.
Until now, HAproxy needed to be restarted to change the TLS ticket
keys. With this patch, the TLS keys can be updated on a per-file
basis using the admin socket. Two new socket commands have been
introduced: "show tls-keys" and "set ssl tls-keys".
Signed-off-by: Nenad Merdanovic <nmerdan@anine.io>
Within the listener struct we need to use a reference to the TLS
ticket keys which binds the actual keys with the filename. This will
make it possible to update the keys through the socket
Signed-off-by: Nenad Merdanovic <nmerdan@anine.io>
tcpcheck error messages include the step id where the error occurs.
In some cases, this is not enough. Now, HAProxy also use the comment
field of the latest tcpcheck rule which has been run.
This commit allows HAProxy to parse a new directive in the tcpcheck
ruleset: 'comment'.
It is used to setup comments on the current tcpcheck rules.
A new field is added into the tcpcheck_rule structure.
This field will host a string used as a comment to describe the rule.
Then this comment can be used in logs to report a more user friendly
message on the step which failed during the tcpcheck ruleset.
Options are relative to the sample. Each sample fetched is associated with
fetch options or fetch flags.
This patch adds the 'opt' vaue in the sample struct. This permits to reduce
the sample-fetch function prototype. In other way, the converters will have
more detail about the origin of the sample.
This patch removes the structs "session", "stream" and "proxy" from
the sample-fetches and converters function prototypes.
This permits to remove some weight in the prototype call.
Some sample analyzer (sample-fetch or converters) needs to known the proxy,
session and stream attached to the sampel. The sample-fetches and the converters
function pointers cannot be called without these 3 pointers filled.
This patch permits to reduce the sample-fetch and the converters called
prototypes, and provides a new mean to add information for this type of
functions.
It is sometimes desirable to wait for the body of an HTTP request before
taking a decision. This is what is being done by "balance url_param" for
example. The first use case is to buffer requests from slow clients before
connecting to the server. Another use case consists in taking the routing
decision based on the request body's contents. This option placed in a
frontend or backend forces the HTTP processing to wait until either the whole
body is received, or the request buffer is full, or the first chunk is
complete in case of chunked encoding. It can have undesired side effects with
some applications abusing HTTP by expecting unbufferred transmissions between
the frontend and the backend, so this should definitely not be used by
default.
Note that it would not work for the response because we don't reset the
message state before starting to forward. For the response we need to
1) reset the message state to MSG_100_SENT or BODY , and 2) to reset
body_len in case of chunked encoding to avoid counting it twice.
Since 1.5, the request body analyser has become independant from any
other element and does not even disturb the message forwarder anymore.
And since it's disabled by default, we can place it before most
analysers so that it's can preempt any other one if an intermediary
one enables it.
Recently some browsers started to implement a "pre-connect" feature
consisting in speculatively connecting to some recently visited web sites
just in case the user would like to visit them. This results in many
connections being established to web sites, which end up in 408 Request
Timeout if the timeout strikes first, or 400 Bad Request when the browser
decides to close them first. These ones pollute the log and feed the error
counters. There was already "option dontlognull" but it's insufficient in
this case. Instead, this option does the following things :
- prevent any 400/408 message from being sent to the client if nothing
was received over a connection before it was closed ;
- prevent any log from being emitted in this situation ;
- prevent any error counter from being incremented
That way the empty connection is silently ignored. Note that it is better
not to use this unless it is clear that it is needed, because it will hide
real problems. The most common reason for not receiving a request and seeing
a 408 is due to an MTU inconsistency between the client and an intermediary
element such as a VPN, which blocks too large packets. These issues are
generally seen with POST requests as well as GET with large cookies. The logs
are often the only way to detect them.
This patch should be backported to 1.5 since it avoids false alerts and
makes it easier to monitor haproxy's status.
The principle of this cache is to have a global cache for all pattern
matching operations which rely on lists (reg, sub, dir, dom, ...). The
input data, the expression and a random seed are used as a hashing key.
The cached entries contains a pointer to the expression and a revision
number for that expression so that we don't accidently used obsolete
data after a pattern update or a very unlikely hash collision.
Regarding the risk of collisions, 10k entries at 10k req/s mean 1% risk
of a collision after 60 years, that's already much less than the memory's
reliability in most machines and more durable than most admin's life
expectancy. A collision will result in a valid result to be returned
for a different entry from the same list. If this is not acceptable,
the cache can be disabled using tune.pattern.cache-size.
A test on a file containing 10k small regex showed that the regex
matching was limited to 6k/s instead of 70k with regular strings.
When enabling the LRU cache, the performance was back to 70k/s.
This will be used to detect any change on the pattern list between
two operations, ultimately making it possible to implement a cache
which immediately invalidates obsolete keys after an update. The
revision is simply taken from the timestamp counter to ensure that
even upon a pointer reuse we cannot accidently come back to the
same (expr,revision) tuple.
The xxhash library provides a very fast and excellent hash algorithm
suitable for many purposes. It excels at hashing large blocks but is
also extremely fast on small ones. It's distributed under a 2-clause
BSD license (GPL-compatible) so it can be included here. Updates are
distributed here :
https://github.com/Cyan4973/xxHash
This will be usable to implement some maps/acl caches for heavy datasets
loaded from files (mostly regex-based but in general anything that cannot
be indexed in a tree).
This one returns a timestamp, either the one from the CPU or from
gettimeofday() in 64-bit format. The purpose is to be able to compare
timestamps on various entities to make it easier to detect updates.
It can also be used for benchmarking in certain situations during
development.
This commit adds 4 new log format variables that parse the
HTTP Request-Line for more specific logging than "%r" provides.
For example, we can parse the following HTTP Request-Line with
these new variables:
"GET /foo?bar=baz HTTP/1.1"
- %HM: HTTP Method ("GET")
- %HV: HTTP Version ("HTTP/1.1")
- %HU: HTTP Request-URI ("/foo?bar=baz")
- %HP: HTTP Request-URI without query string ("/foo")
Since appctx are scheduled out of streams, it's pointless to wake up
the task managing the stream to push updates, they won't be seen. In
fact unit tests work because silent sessions are restarted after 5s of
idle and the exchange is correctly scheduled during startup!
So we need to notify the appctx instead. For this we add a pointer to
the appctx in the peer session.
No backport is needed of course.
Currently we have a problem. There are some cases where a sleeping applet
is not woken up (eg: show sess during an injection). The reason is that
the applet is marked WAIT_DATA and is not woken up when WAIT_ROOM leaves,
because we wait for both flags to be cleared in order to call it.
And if we wait for either flag, then we have the opposite situation, which
is that we're not waiting for room in the output buffer so we're spinning
calling the applet to do nothing.
What is missing is an indication of what the applet needs. Since it only
manipulates the WAIT_ROOM/WAIT_DATA which are overwritten later, that cannot
work. In the case of connections, the problem doesn't happen because the
connection maintains these extra states. Ideally we'd need to have similar
states for each appctx and to store those information there. But it would
be overcomplicated given that an applet doesn't exist alone without a
stream-int, so we can safely put these information into the stream int and
make the code simpler.
With this patch we introduce two new flags in the stream interface :
- SI_FL_WANT_PUT : the applet wants to put something into the buffer
- SI_FL_WANT_GET : the applet wants to get something from the buffer
We also have the new functions si_applet_{stop|want|cant}_{get|put}
to make the code look similar to the connection code.
For now these flags are not used yet.
This is the equivalent of si_conn_wake() but for applets. It will be
called after changes to the stream interface are brought by the applet
I/O handler. Ultimately it will release buffers and may be even wake
the stream's task up if some important changes are detected.
It would be nice to be able to merge it with the connection's wake
function since it mostly manipulates the stream interface, but there
are minor differences (such as how to enable/disable polling on a fd
vs applet) and some specificities to applets (eg: don't wake the
applet up until the output is empty) which would require abstract
functions which would slow down everything.
The new function is called for each round of polling in order to call any
active appctx. For now we pick the stream interface from the appctx's
owner. At the moment there's no appctx queued yet, but we have everything
needed to queue them and remove them.
Now that applet's functions only take an appctx in argument, not a
stream interface. This slightly simplifies the code and will be needed
to take the appctx out of the stream interface.
It happened after changing the stream interface deinitialization
sequence that we got random crashes with si_shutw() being called
on NULL si->end. The reason was that si->ops was not reset after
a call to si_release_endpoint() which is sometimes called directly.
Thus we now move the resetting of si->ops just after any si->end
assignment. It happens that si_detach() is now just the same as
si_release_endpoint() and stream_int_unregister_handler(). Some
cleanup will have to be performed there.
It's not sure whether this problem can impact 1.5 since in 1.5
applets are part of the default embedded stream handler. The only
way it could cause some trouble is if it's used with a connection,
which doesn't seem possible at first glance.
Commit bc4c1ac ("MEDIUM: http/tcp: permit to resume http and tcp custom
actions") introduced the ability to interrupt and restart processing in
the middle of a TCP/HTTP ruleset. But it doesn't do it in a consistent
way : it checks current_rule_list, immediately dereferences current_rule,
which is only set in certain cases and never cleared. So that broke the
tcp-request content rules when the processing was interrupted due to
missing data, because current_rule was not yet set (segfault) or could
have been inherited from another ruleset if it was used in a backend
(random behaviour).
The proper way to do it is to always set current_rule before dereferencing
it. But we don't want to set it for all rules because we don't want any
action to provide a checkpointing mechanism. So current_rule is set to NULL
before entering the loop, and only used if not NULL and if current_rule_list
matches the current list. This way they both serve as a guard for the other
one. This fix also makes the current rule point to the rule instead of its
list element, as it's much easier to manipulate.
No backport is needed, this is 1.6-specific.
This patch adds support for error codes 429 and 405 to Haproxy and a
"deny_status XXX" option to "http-request deny" where you can specify which
code is returned with 403 being the default. We really want to do this the
"haproxy way" and hope to have this patch included in the mainline. We'll
be happy address any feedback on how this is implemented.
We don't pass sess->origin anymore but the pointer to the previous step. Now
it should be much easier to chain elements together once applets are moved out
of streams. Indeed, the session is only used for configuration and not for the
dynamic chaining anymore.
The include file did not protect correctly against multiple inclusions,
as it didn't define the file name after checking for it. That's currently
harmless as the file is only included from .c but that could change.
This patch cretes a new Map class that permits to do some lookup in
HAProxy maps. This Map class is integration in the HAProxy update
system, so we can modify the map throught the socket.
The function was called stream_accept_session(), let's rename it
stream_new() and make it return the newly allocated pointer. It's
more convenient for some callers who need it.
This concerns everythins related to accepting a new session and
expiring the embryonic session. There's still a hard-coded call
to stream_accept_session() which could be set somewhere in the
frontend, but for now it's not a problem.
Now that the previous changes were made, we can add a struct task
pointer to stream_complete() and get rid of it in struct session.
The new relation between connection, session and task are like this :
orig -- sess <-- context
| |
v |
conn -- owner ---> task
Some session-specific parts should now move away from stream.
The function now only initializes a session, calls the tcp req connection
rules, and calls stream_complete() to finish initialization. If a handshake
is needed, it is done without allocating the stream at all.
Temporarily, in order to limit the amount of changes, the task allocated
is put into sess->task, and it is used by the connection for the handshake
or is offered to the stream. At this point we set the relation between
sess/task/conn this way :
orig -- sess <-- context
| ^ +- task -+ |
v | v |
conn -- owner task
The task must not remain in the session and ultimately it is planned to
remove this task pointer from the session because it can be found by
having conn->owner = task, and looping back from sess to conn, and to
find the session from the connection via the task.
It passes a NULL wherever a stream was needed (acl_exec_cond() and
action_ptr mainly). It can still track the connection rate correctly
and block based on ACLs.
In order to support sessions tracking counters, we first ensure that there
is no overlap between streams' stkctr and sessions', and we allow an
automatic lookup into the session's counters when the stream doesn't
have a counter or when the stream doesn't exist during an access via
a sample fetch. The functions used to update the stream counters only
update them and not the session counters however.
The stick counters in the session will be used for everything not related
to contents, hence the connections / concurrent sessions / etc. They will
be usable by "tcp-request connection" rules even without a stream. For now
they're just allocated and initialized.
Doing so ensures we don't need to use the stream anymore to prepare the
log information to report a failed handshake on an embryonic session.
Thus, prepare_mini_sess_log_prefix() now takes a session in argument.
Now that we have sess->origin to carry that information along, we don't
need to put that into strm->target anymore, so we remove one dependence
on the stream in embryonic connections.
Many such function need a session, and till now they used to dereference
the stream. Once we remove the stream from the embryonic session, this
will not be possible anymore.
So as of now, sample fetch functions will be called with this :
- sess = NULL, strm = NULL : never
- sess = valid, strm = NULL : tcp-req connection
- sess = valid, strm = valid, strm->txn = NULL : tcp-req content
- sess = valid, strm = valid, strm->txn = valid : http-req / http-res
The registerable http_req_rules / http_res_rules used to require a
struct http_txn at the end. It's redundant with struct stream and
propagates very deep into some parts (ie: it was the reason for lua
requiring l7). Let's remove it now.
All of them can now retrieve the HTTP transaction *if it exists* from
the stream and be sure to get NULL there when called with an embryonic
session.
The patch is a bit large because many locations were touched (all fetch
functions had to have their prototype adjusted). The opportunity was
taken to also uniformize the call names (the stream is now always "strm"
instead of "l4") and to fix indent where it was broken. This way when
we later introduce the session here there will be less confusion.
Now this one is dynamically allocated. It means that 280 bytes of memory
are saved per TCP stream, but more importantly that it will become
possible to remove the l7 pointer from fetches and converters since
it will be deduced from the stream and will support being null.
A lot of care was taken because it's easy to forget a test somewhere,
and the previous code used to always trust s->txn for being valid, but
all places seem to have been visited.
All HTTP fetch functions check the txn first so we shouldn't have any
issue there even when called from TCP. When branching from a TCP frontend
to an HTTP backend, the txn is properly allocated at the same time as the
hdr_idx.
The header captures are now general purpose captures since tcp rules
can use them to capture various contents. That removes a dependency
on http_txn that appeared in some sample fetch functions and in the
order by which captures and http_txn were allocated.
Interestingly the reset of the header captures were done at too many
places as http_init_txn() used to do it while it was done previously
in every call place.
Just like for the listener, the frontend is session-wide so let's move
it to the session. There are a lot of places which were changed but the
changes are minimal in fact.
There is now a pointer to the session in the stream, which is NULL
for now. The session pool is created as well. Some parts will move
from the stream to the session now.
With HTTP/2, we'll have to support multiplexed streams. A stream is in
fact the largest part of what we currently call a session, it has buffers,
logs, etc.
In order to catch any error, this commit removes any reference to the
struct session and tries to rename most "session" occurrences in function
names to "stream" and "sess" to "strm" when that's related to a session.
The files stream.{c,h} were added and session.{c,h} removed.
The session will be reintroduced later and a few parts of the stream
will progressively be moved overthere. It will more or less contain
only what we need in an embryonic session.
Sample fetch functions and converters will have to change a bit so
that they'll use an L5 (session) instead of what's currently called
"L4" which is in fact L6 for now.
Once all changes are completed, we should see approximately this :
L7 - http_txn
L6 - stream
L5 - session
L4 - connection | applet
There will be at most one http_txn per stream, and a same session will
possibly be referenced by multiple streams. A connection will point to
a session and to a stream. The session will hold all the information
we need to keep even when we don't yet have a stream.
Some more cleanup is needed because some code was already far from
being clean. The server queue management still refers to sessions at
many places while comments talk about connections. This will have to
be cleaned up once we have a server-side connection pool manager.
Stream flags "SN_*" still need to be renamed, it doesn't seem like
any of them will need to move to the session.
This library is designed to emit a zlib-compatible stream with no
memory usage and to favor resource savings over compression ratio.
While zlib requires 256 kB of RAM per compression context (and can only
support 4000 connections per GB of RAM), the stateless compression
offered by libslz does not need to retain buffers between subsequent
calls. In theory this slightly reduces the compression ratio but in
practice it does not have that much of an effect since the zlib
window is limited to 32kB.
Libslz is available at :
http://git.1wt.eu/web?p=libslz.git
It was designed for web compression and provides a lot of savings
over zlib in haproxy. Here are the preliminary results on a single
core of a core2-quad 3.0 GHz in 32-bit for only 300 concurrent
sessions visiting the home page of www.haproxy.org (76 kB) with
the default 16kB buffers :
BW In BW Out BW Saved Ratio memory VSZ/RSS
zlib 237 Mbps 92 Mbps 145 Mbps 2.58 84M / 69M
slz 733 Mbps 380 Mbps 353 Mbps 1.93 5.9M / 4.2M
So while the compression ratio is lower, the bandwidth savings are
much more important due to the significantly lower compression cost
which allows to consume even more data from the servers. In the
example above, zlib became the bottleneck at 24% of the output
bandwidth. Also the difference in memory usage is obvious.
More tests run on a single core of a core i5-3320M, with 500 concurrent
users and the default 16kB buffers :
At 100% CPU (no limit) :
BW In BW Out BW Saved Ratio memory VSZ/RSS hits/s
zlib 480 Mbps 188 Mbps 292 Mbps 2.55 130M / 101M 744
slz 1700 Mbps 810 Mbps 890 Mbps 2.10 23.7M / 9.7M 2382
At 85% CPU (limited) :
BW In BW Out BW Saved Ratio memory VSZ/RSS hits/s
zlib 1240 Mbps 976 Mbps 264 Mbps 1.27 130M / 100M 1738
slz 1600 Mbps 976 Mbps 624 Mbps 1.64 23.7M / 9.7M 2210
The most important benefit really happens when the CPU usage is
limited by "maxcompcpuusage" or the BW limited by "maxcomprate" :
in order to preserve resources, haproxy throttles the compression
ratio until usage is within limits. Since slz is much cheaper, the
average compression ratio is much higher and the input bandwidth
is quite higher for one Gbps output.
Other tests made with some reference files :
BW In BW Out BW Saved Ratio hits/s
daniels.html zlib 1320 Mbps 163 Mbps 1157 Mbps 8.10 1925
slz 3600 Mbps 580 Mbps 3020 Mbps 6.20 5300
tv.com/listing zlib 980 Mbps 124 Mbps 856 Mbps 7.90 310
slz 3300 Mbps 553 Mbps 2747 Mbps 5.97 1100
jquery.min.js zlib 430 Mbps 180 Mbps 250 Mbps 2.39 547
slz 1470 Mbps 764 Mbps 706 Mbps 1.92 1815
bootstrap.min.css zlib 790 Mbps 165 Mbps 625 Mbps 4.79 777
slz 2450 Mbps 650 Mbps 1800 Mbps 3.77 2400
So on top of saving a lot of memory, slz is constantly 2.5-3.5 times
faster than zlib and results in providing more savings for a fixed CPU
usage. For links smaller than 100 Mbps, zlib still provides a better
compression ratio, at the expense of a much higher CPU usage.
Larger input files provide slightly higher bandwidth for both libs, at
the expense of a bit more memory usage for zlib (it converges to 256kB
per connection).
This function used to take a zlib-specific flag as argument to indicate
whether a buffer flush or end of contents was met, let's split it in two
so that we don't depend on zlib anymore.
Thanks to MSIE/IIS, the "deflate" name is ambigous. According to the RFC
it's a zlib-wrapped deflate stream, but IIS used to send only a raw deflate
stream, which is the only format MSIE understands for "deflate". The other
widely used browsers do support both formats. For this reason some people
prefer to emit a raw deflate stream on "deflate" to serve more users even
it that means violating the standards. Haproxy only follows the standard,
so they cannot do this.
This patch makes it possible to have one algorithm name in the configuration
and another one in the protocol. This will make it possible to have a new
configuration token to add a different algorithm so that users can decide if
they want a raw deflate or the standard one.
There's no reason for exporting identity_* nor deflate_*, they're only
used in the same file. Mark them static, it will make it easier to add
other algorithms.
Till now we used to rely on a fixed maximum chunk size. Thanks to last
commit we're now free to adjust the chunk's length before sending the
data, so we don't have to use 6 digits all the time anymore, and if
one wants buffers larger than 16 MB it is now possible.
This class is accessible via the TXN object. It is created only if
the attached proxy have HTTP mode. It contain all the HTTP
manipulation functions:
- req_get_headers
- req_del_header
- req_rep_header
- req_rep_value
- req_add_header
- req_set_header
- req_set_method
- req_set_path
- req_set_query
- req_set_uri
- res_get_headers
- res_del_header
- res_rep_header
- res_rep_value
- res_add_header
- res_set_header
This function is a callback for HTTP actions. This function
creates the replacement string from a build_logline() format
and transform the header.
This patch split this function in two part. With this modification,
the header transformation and the replacement string are separed.
We can now transform the header with another replacement string
source than a build_logline() format.
The first part is the replacement engine. It take a replacement action
number and a replacement string and process the action.
The second part is the function which is called by the 'http-request
action' to replace a request line part. This function makes the
string used as replacement.
This split permits to use the replacement engine in other parts of the
code than the request action. The Lua use it for his own http action.
This will be useful later to state that some listeners have to use
certain decoders (typically an HTTP/2 decoder) regardless of the
regular processing applied to other listeners. For now it simply
defaults to the frontend's default target, and it is used by the
session.
Listerner->timeout is a vestigal thing going back to 2007 or so. It
used to only be used by stats and peers frontends to hold a pointer
to the proxy's client timeout. Now that we use regular frontends, we
don't use it anymore.
Some services such as peers and CLI pre-set the target applet immediately
during accept(), and for this reason they're forced to have a dedicated
accept() function which does not even properly follow everything the regular
one does (eg: sndbuf/rcvbuf/linger/nodelay are not set, etc).
Let's store the default target when known into the frontend's config so that
it's session_accept() which automatically sets it.
The default value is stored in a special struct that describe the
map. This default value is parsed with special parser. This is
useless because HAProxy provides a space to store the default
value (the args) and HAProxy provides also standard parser for
the input types (args again).
This patch remove this special storage and replace it by an argument.
In other way the args of maps are declared as the expected type in
place of strings.
It's now called conn_sock_drain() to make it clear that it only reads
at the sock layer and not at the data layer. The function was too big
to remain inlined and it's used at a few places where size counts.
Currently si_idle_conn_null_cb() has to perform some low-level checks
over the file descriptor and the connection configuration that should
only belong to conn_drain(). Let's move these controls there. The
function now automatically checks for errors and hangups on the file
descriptor for example, and disables recv polling if there's no drain
function at the control layer.
This function is an equivalent to send() which operates over a connection
instead of a file descriptor. It checks that the control layer is ready
and that it's allowed to send. If automatically enables polling if it
cannot send. It simplifies the return checks by returning zero in all
cases where it cannot send so that the caller only has to care about
negative values indicating errors.
This will save callers from having to care about conn->xprt and xprt->shutw.
Note that shutw() takes a second argument indicating whether it's a clean or
a hard shutw. This is used by SSL which tries to close cleanly in most cases.
Here we provide two versions, conn_data_shutw() which performs the clean
close, and conn_data_shutw_hard() which does the unclean one.
This function was not used yet and was only supposed to mark the connection
as shutdown for write. Unfortunately at other places in stream_interface.c,
we're seeing a bit of layering violations with attempts to perform the shutdown
on the fd directly. Let's make this function call shutdown() itself so that
the callers only have to care about the connection.
This struct used to carry only a sample fetch function. Thanks to
lua_pushuserdata(), we don't need to have the Lua engine allocate
that struct for us and we can simply push our pointer onto the stack.
This makes the code more readable by removing several occurrences of
"f->f->". Just like the previous patch, it comes with the nice effect
of saving about 1.3% of performance when fetching samples from Lua.
Since last cleanups, this one was only used to carry a struct channel.
Removing it makes the code a bit cleaner (no more chn->chn) and easier
to follow (no more abstraction for a common type). Interestingly it
happens to also make the Lua code slightly faster (about 1.5%) when
using channels, probably thanks to less pointer dereferences and maybe
the use of lua_pushlightuserdata().
Now that we can get the session from the channel, let's simplify the
prototype of session_alloc_recv_buffer() to only require the channel.
Both the caller and the function are now simplified.
The purpose of these two macros will be to pass via the session to
find the relevant stream interfaces so that we don't need to store
the ->cons nor ->prod pointers anymore. Currently they're only defined
so that all references could be removed.
Note that many places need a second pass of clean up so that we don't
have any chn_prod(&s->req) anymore and only &s->si[0] instead, and
conversely for the 3 other cases.
At a few places we need to find one stream interface from the other one.
Instead of passing via the channel, we simply use the session as an
intermediary, which simply results in applying an offset to the pointer.
We go back to the session to get the owner. Here again it's very easy
and is just a matter of relative offsets. Since the owner always exists
and always points to the session's task, we can remove some unneeded
tests.
In order to plan removal of si->ib / si->ob, we now check the side of the
stream interface and find the session, then the requested channel. In
practice it's just an offset applied to the pointer based on the flag.
This new flag "SI_FL_ISBACK" is set only on the back SI and is cleared
on the front SI. That way it's possible only by looking at the SI to
know what side it is.
We'll soon remove direct references to the channels from the stream
interface since everything belongs to the same session, so let's
first not dereference si->ib / si->ob anymore and use macros instead.
The channels were pointers to outside structs and this is not needed
anymore since the buffers have moved, but this complicates operations.
Move them back into the session so that both channels and stream interfaces
are always allocated for a session. Some places (some early sample fetch
functions) used to validate that a channel was NULL prior to dereferencing
it. Now instead we check if chn->buf is NULL and we force it to remain NULL
until the channel is initialized.
In some cases we don't want to known if a fetch or converter
fails. We just want a valid string. After this patch, we
have two sets of fetches and two sets of converters. There are:
txn.f, txn.sf, txn.c, txn.sc. The version prefixed by 's' always
returns strings for any type, and returns an empty string in the
error case or when the data are not available. This is particularly
useful when manipulating headers or cookies.
This patch implements a wrapper to give access to the converters
in the Lua code. The converters are used with the transaction.
The automatically created function are prefixed by "conv_".
HAProxy proposes many sample fetches. It is possible that the
automatic registration of the sample fetches causes a collision
with an existing Lua function. This patch sets a namespace for
the sample fetches.
The function buffer_contig_space() returns the contiguous space avalaible
to add data (at the end of the input side) while the function
hlua_channel_send_yield() needs to insert data starting at p. Here we
introduce a new function bi_space_for_replace() which returns the amount
of space that can be inserted at the head of the input side with one of
the buffer_replace* functions.
This patch proposes a function that returns the space avalaible after buf->p.
If we are writing in the request buffer, we are not waked up
when the data are forwarded because it is useles. The request
analyzers are waked up only when data is incoming. So, if the
request buffer is full, we set the WAKE_ON_WRITE flag.
Before this patch, each yield in a Lua action set a flags to be
waked up when some activity were detected on the response channel.
This behavior causes loop in the analyzer process.
This patch set the wake up on response buffer activity only if we
really want to be waked up on this activity.
This flag indicate that the current yield is returned by the Lua
execution task control. If this flag is set, the current task may
quit but will be set in the run queue to be re-executed immediatly.
This patch modify the "hlua_yieldk()" function, it adds an argument
that contain a field containing yield options.
This is used to ensure that the task doesn't become a zombie
when the Lua returns a yield. The yield wrapper ensure that an
timer used for waking up the task will be set.
The timer is reseted to TICK_ETERNITY if the Lua execution is
done.
This first patch permits to cofigure the Lua execution exipiration.
This expiration is configured but it is not yet avalaible, it will
be add in a future patch.
In the future, the lua execution must return scheduling informations.
We want more than one flag, so I convert an integer used with an
enum into an interer used as bitfield.
The channel class permits manipulation of channels. A channel is
an FIFO buffer between the client and the server. This class provides
function to read, write, forward, destroy and alter data between
the input and the ouput of the buffer.
This patch adds the TCP I/O functionnality. The class implemented
provides the same functions than the "lua socket" project. This
make network compatibility with another LUA project. The documentation
is located here:
http://w3.impa.br/~diego/software/luasocket/tcp.html
This version of sleep is based on a coroutine. A sleeping
task is started and a signal is registered. This sleep version
must disapear to be replaced by a version using the internal
timers.
This patch adds the browsing of all the HAProxy fetches and
create associated LUA functions. The HAProxy internal fetches
can be used in LUA trough the class "TXN".
Note that the symbols "-", "+" and "." in the name of current
sample fetch are rewrited as "_" in LUA because ".", "-" and "+"
are operators.
This class of functions permit to access to all the functions
associated with the transaction like http header, HAProxy internal
fetches, etc ...
This patch puts the skeleton of this class. The class will be
enhanced later.
This system permits to execute some lua function after than HAProxy
complete his initialisation. These functions are executed between
the end of the configuration parsing and check and the begin of the
scheduler.
This system permits to send signals between lua tasks. A main lua stack can
register the signal in a coprocess. When the coprocess finish his job, it
send a signal, and the associated task is wakes. If the main lua execution
stack stop (with or without errors), the list or pending signals is purged.
This is the first step of the lua integration. We add the useful
files in the HAProxy project. These files contains the main
includes, the Makefile options and empty initialisation function.
Is is the LUA skeleton.
We now have functions to retrieve one block and one line from
either the input or the output part of a buffer. They return
up to two (pointer,length) values in case the buffer wraps.
Later, the processing of some actions needs to be interrupted and resumed
later. This patch permit to resume the actions. The actions that needs
to run with the resume mode are not yet avalaible. It will be soon with
Lua patches. So the code added by this patch is untestable for the moment.
The list of "tcp_exec_req_rules" cannot resme because is called by the
unresumable function "accept_session".
This patch introduces an action keyword registration system for TCP
rulesets similar to what is available for HTTP rulesets. This sytem
will be useful with lua.
These modifications are done for resolving cross-dependent
includes in the upcoming LUA code.
<proto/channel.h> misses <types/channel.h>.
<types/acl.h> doesn't use <types/session.h> because the session
is already declared in the file as undefined pointer.
appsession.c misses <unistd.h> to use "write()".
Declare undefined pointer "struct session" for <types/proxy.h>
and <types/queue.h>. These includes dont need the detail of this
struct.
The functions "val_payload_lv" and "val_hdr" are useful with
lua. The lua automatic binding for sample fetchs needs to
compare check functions.
The "arg_type_names" permit to display error messages.
Some usages of the converters need to know the attached session. The Lua
needs the session for retrieving his running context. This patch adds
the "session" as an argument of the converters prototype.
This behavior is already existing for the "WAIT_HTTP" analyzer,
this patch just extends the system to any analyzer that would
be waked up on response activity.
When the destination IP is dynamically set, we can't use the "target"
to define the proto. This patch ensures that we always use the protocol
associated with the address family. The proto field was removed from
the server and check structs.
Actually, HAProxy uses the function "process_runnable_tasks" and
"wake_expired_tasks" to get the next task which can expires.
If a task is added with "task_schedule" or other method during
the execution of an other task, the expiration of this new task
is not taken into account, and the execution of this task can be
too late.
Actualy, HAProxy seems to be no sensitive to this bug.
This fix moves the call to process_runnable_tasks() before the timeout
calculation and ensures that all wakeups are processed together. Only
wake_expired_tasks() needs to return a timeout now.
Until now, the TLS ticket keys couldn't have been configured and
shared between multiple instances or multiple servers running HAproxy.
The result was that if a request got a TLS ticket from one instance/server
and it hits another one afterwards, it will have to go through the full
SSL handshake and negotation.
This patch enables adding a ticket file to the bind line, which will be
used for all SSL contexts created from that bind line. We can use the
same file on all instances or servers to mitigate this issue and have
consistent TLS tickets assigned. Clients will no longer have to negotiate
every time they change the handling process.
Signed-off-by: Nenad Merdanovic <nmerdan@anine.io>
As found by Thierry Fournier, if a task manages to kill another one and
if this other task is the next one in the run queue, we can do whatever
including crashing, because the scheduler restarts from the saved next
task. For now, there is no such concept of a task killing another one,
but with Lua it will come.
A solution consists in always performing the lookup of the first task in
the scheduler's loop, but it's expensive and costs around 2% of the
performance.
Another solution consists in keeping a global next run queue node and
ensuring that when this task gets removed, it updates this pointer to
the next one. This allows to simplify the code a bit and in the end to
slightly increase the performance (0.3-0.5%). The mechanism might still
be usable if we later migrate to a multi-threaded scheduler.
The patch "MEDIUM: args: increase arg type to 5 bits and limit arg count
to 5" (dbc79d0a) increased the number of types supported, but forgot to
remove the ARG6/ARG7 macros.
This option disables SSL session reuse when SSL is used to communicate with
the server. It will force the server to perform a full handshake for every
new connection. It's probably only useful for benchmarking, troubleshooting,
and for paranoid users.
This patch adds a new option which allows configuration of the maximum
log level of messages for which email alerts will be sent.
The default is alert which is more restrictive than
the current code which sends email alerts for all priorities.
That behaviour may be configured using the new configuration
option to set the maximum level to notice or greater.
email-alert level notice
Signed-off-by: Simon Horman <horms@verge.net.au>
On Linux since 2.6.37, it's possible to set the socket timeout for
pending outgoing data, with an accuracy of 1 millisecond. This is
pretty handy to deal with dead connections to clients and or servers.
For now we only implement it on the frontend side (bind line) so
that when a client disappears from the net, we're able to quickly
get rid of its connection and possibly release a server connection.
This can be useful with long-lived connections where an application
level timeout is not suited because long pauses are expected (remote
terminals, connection pools, etc).
Thanks to Thijs Houtenbos and John Eckersberg for the suggestion.
This currently does nothing beyond parsing the configuration
and storing in the proxy as there is no implementation of email alerts.
Signed-off-by: Simon Horman <horms@verge.net.au>
As mailer and mailers structures and allow parsing of
a mailers section into those structures.
These structures will subsequently be freed as it is
not yet possible to use reference them in the configuration.
Signed-off-by: Simon Horman <horms@verge.net.au>
The motivation for this is to make checks more independent of each
other to allow further reuse of their infrastructure.
For nowserver->check and server->agent still always use the same values
for the addr and proto fields so this patch should not introduce any
behavioural changes.
Signed-off-by: Simon Horman <horms@verge.net.au>
Refactor init_check so that an error string is returned
rather than alerts being printed by it. Also
init_check to checks.c and provide a prototype to allow
it to be used from multiple C files.
Signed-off-by: Simon Horman <horms@verge.net.au>
This commit implements the following new actions :
- "set-method" rewrites the request method with the result of the
evaluation of format string <fmt>. There should be very few valid reasons
for having to do so as this is more likely to break something than to fix
it.
- "set-path" rewrites the request path with the result of the evaluation of
format string <fmt>. The query string, if any, is left intact. If a
scheme and authority is found before the path, they are left intact as
well. If the request doesn't have a path ("*"), this one is replaced with
the format. This can be used to prepend a directory component in front of
a path for example. See also "set-query" and "set-uri".
Example :
# prepend the host name before the path
http-request set-path /%[hdr(host)]%[path]
- "set-query" rewrites the request's query string which appears after the
first question mark ("?") with the result of the evaluation of format
string <fmt>. The part prior to the question mark is left intact. If the
request doesn't contain a question mark and the new value is not empty,
then one is added at the end of the URI, followed by the new value. If
a question mark was present, it will never be removed even if the value
is empty. This can be used to add or remove parameters from the query
string. See also "set-query" and "set-uri".
Example :
# replace "%3D" with "=" in the query string
http-request set-query %[query,regsub(%3D,=,g)]
- "set-uri" rewrites the request URI with the result of the evaluation of
format string <fmt>. The scheme, authority, path and query string are all
replaced at once. This can be used to rewrite hosts in front of proxies,
or to perform complex modifications to the URI such as moving parts
between the path and the query string. See also "set-path" and
"set-query".
All of them are handled by the same parser and the same exec function,
which is why they're merged all together. For once, instead of adding
even more entries to the huge switch/case, we used the new facility to
register action keywords. A number of the existing ones should probably
move there as well.
This function (and its sister regex_exec_match2()) abstract the regex
execution but make it impossible to pass flags to the regex engine.
Currently we don't use them but we'll need to support REG_NOTBOL soon
(to indicate that we're not at the beginning of a line). So let's add
support for this flag and update the API accordingly.
This one will be used when a regex is expected. It is automatically
resolved after the parsing and compiled into a regex. Some optional
flags are supported in the type-specific flags that should be set by
the optional arg checker. One is used during the regex compilation :
ARGF_REG_ICASE to ignore case.
These flags are meant to be used by arg checkers to pass out-of-band
information related to some args. A typical use is to indicate how a
regex is expected to be compiled/matched based on other arguments.
These flags are initialized to zero by default and it is up to the args
checkers to set them if needed.
We'll soon need to add new argument types, and we don't use the current
limit of 7 arguments, so let's increase the arg type size to 5 bits and
reduce the arg count to 5 (3 max are used today).
This is in order to add new types. This patch does not change anything
else. Two remaining (harmless) occurrences of a count of 8 instead of 7
were fixed by this patch : empty_arg_list[] and the for() loop counting
args.
This function will be used to perform CRC32 computations. This one wa
loosely inspired from crc32b found here, and focuses on size and speed
at the same time :
http://www.hackersdelight.org/hdcodetxt/crc.c.txt
Much faster table-based versions exist but are pointless for our usage
here, this hash already sustains gigabit speed which is far faster than
what we'd ever need. Better preserve the CPU's cache instead.
If a memory size limit is enforced using "-n" on the command line and
one or both of maxconn / maxsslconn are not set, instead of using the
build-time values, haproxy now computes the number of sessions that can
be allocated depending on a number of parameters among which :
- global.maxconn (if set)
- global.maxsslconn (if set)
- maxzlibmem
- tune.ssl.cachesize
- presence of SSL in at least one frontend (bind lines)
- presence of SSL in at least one backend (server lines)
- tune.bufsize
- tune.cookie_len
The purpose is to ensure that not haproxy will not run out of memory
when maxing out all parameters. If neither maxconn nor maxsslconn are
used, it will consider that 100% of the sessions involve SSL on sides
where it's supported. That means that it will typically optimize maxconn
for SSL offloading or SSL bridging on all connections. This generally
means that the simple act of enabling SSL in a frontend or in a backend
will significantly reduce the global maxconn but in exchange of that, it
will guarantee that it will not fail.
All metrics may be enforced using #defines to accomodate variations in
SSL libraries or various allocation sizes.
An SSL connection takes some memory when it exists and during handshakes.
We measured up to 16kB for an established endpoint, and up to 76 extra kB
during a handshake. The SSL layer stores these values into the global
struct during initialization. If other SSL libs are used, it's easy to
change these values. Anyway they'll only be used as gross estimates in
order to guess the max number of SSL conns that can be established when
memory is constrained and the limit is not set.
We'll need to know the number of SSL connections, their use and their
cost soon. In order to avoid getting tons of ifdefs everywhere, always
export SSL information in the global section. We add two flags to know
whether or not SSL is used in a frontend and in a backend.
It applies to the channel and it doesn't erase outgoing data, only
pending unread data, which is strictly equivalent to what recv()
does with MSG_TRUNC, so that new name is more accurate and intuitive.
This name more accurately reminds that it applies to a channel and not
to a buffer, and that what is returned may be used as a max number of
bytes to pass to recv().
This applies to the channel, not the buffer, so let's fix this name.
Warning, the function's name happens to be the same as the old one
which was mistakenly used during 1.5.
This function's name was poorly chosen and is confusing to the point of
being suspiciously used at some places. The operations it does always
consider the ability to forward pending input data before receiving new
data. This is not obvious at all, especially at some places where it was
used when consuming outgoing data to know if the buffer has any chance
to ever get the missing data. The code needs to be re-audited with that
in mind. Care must be taken with existing code since the polarity of the
function was switched with the renaming.
channel_reserved is confusingly named. It is used to know whether or
not the rewrite area is left intact for situations where we want to
ensure we can use it before proceeding. Let's rename it to fix this
confusion.
Option http-send-name-header is still hurting. If a POST request has to be
redispatched when this option is used, and the next server's name is larger
than the initial one, and the POST body fills the buffer, it becomes
impossible to rewrite the server's name in the buffer when redispatching.
In 1.4, this is worse, the process may crash because of a negative size
computation for the memmove().
The only solution to fix this is to refrain from eating the reserve before
we're certain that we won't modify the buffer anymore. And the condition for
that is that the connection is established.
This patch introduces "channel_may_send()" which helps to detect whether it's
safe to eat the reserve or not. This condition is used by channel_in_transit()
introduced by recent patches.
This patch series must be backported into 1.5, and a simpler version must be
backported into 1.4 where fixing the bug is much easier since there were no
channels by then. Note that in 1.4 the severity is major.
This function returns the amount of bytes in transit in a channel's buffer,
which is the amount of outgoing data plus the amount of incoming data bound
to the forward limit.
We know that all incoming data are going to be purged if to_forward
is greater than them, not only if greater than the buffer size. This
buf has no direct impact on this version, but it participates to some
bugs affecting http-send-name-header since 1.4. This fix will have to
be backported down to 1.4 albeit in a different form.
The buffer_max_len() function is subject to an integer overflow in this
calculus :
int ret = global.tune.maxrewrite - chn->to_forward - chn->buf->o;
- chn->to_forward may be up to 2^31 - 1
- chn->buf->o may be up to chn->buf->size
- global.tune.maxrewrite is by definition smaller than chn->buf->size
Thus here we can subtract (2^31 + buf->o) (highly negative) from something
slightly positive, and result in ret being larger than expected.
Fortunately in 1.5 and 1.6, this is only used by bi_avail() which itself
is used by applets which do not set high values for to_forward so this
problem does not happen there. However in 1.4 the equivalent computation
was used to limit the size of a read and can result in a read overflow
when combined with the nasty http-send-name-header feature.
This fix must be backported to 1.5 and 1.4.
Some users reported that the default max hostname length of 32 is too
short in some environments. This patch does two things :
- it relies on the system's max hostname length as found in MAXHOSTNAMELEN
if it is set. This is the most logical thing to do as the system libs
generally present the appropriate value supported by the system. This
value is 64 on Linux and 256 on Solaris, to give a few examples.
- otherwise it defaults to 64
It is still possible to override this value by defining MAX_HOSTNAME_LEN at
build time. After some observation time, this patch may be backported to
1.5 if it does not cause any build issue, as it is harmless and may help
some users.
This is equivalent to what was done in commit 48936af ("[MINOR] log:
ability to override the syslog tag") but this time instead of doing
this globally, it does it per proxy. The purpose is to be able to use
a separate log tag for various proxies (eg: make it easier to route
log messages depending on the customer).
Since commit 3dd6a25 ("MINOR: stream-int: retrieve session pointer from
stream-int"), we can get the session from the task, so let's get rid of
this less obvious function.
commit 9ede66b0 introduced an environment variable (HAPROXY_SERVER_CURCONN) that
was supposed to be dynamically updated, but it was set only once, during its
initialization.
Most of the code provided in this previous patch has been rewritten in order to
easily update the environment variables without reallocating memory during each
check.
Now, HAPROXY_SERVER_CURCONN will contain the current number of connections on
the server at the time of the check.
bi_swpbuf() swaps the buffer passed in argument with the one attached to
the channel, but only if this last one is empty. The idea is to avoid a
copy when buffers can simply be swapped.
This setting is used to limit memory usage without causing the alloc
failures caused by "-m". Unexpectedly, tests have shown a performance
boost of up to about 18% on HTTP traffic when limiting the number of
buffers to about 10% of the amount of concurrent connections.
tune.buffers.limit <number>
Sets a hard limit on the number of buffers which may be allocated per process.
The default value is zero which means unlimited. The minimum non-zero value
will always be greater than "tune.buffers.reserve" and should ideally always
be about twice as large. Forcing this value can be particularly useful to
limit the amount of memory a process may take, while retaining a sane
behaviour. When this limit is reached, sessions which need a buffer wait for
another one to be released by another session. Since buffers are dynamically
allocated and released, the waiting time is very short and not perceptible
provided that limits remain reasonable. In fact sometimes reducing the limit
may even increase performance by increasing the CPU cache's efficiency. Tests
have shown good results on average HTTP traffic with a limit to 1/10 of the
expected global maxconn setting, which also significantly reduces memory
usage. The memory savings come from the fact that a number of connections
will not allocate 2*tune.bufsize. It is best not to touch this value unless
advised to do so by an haproxy core developer.
We've already experimented with three wake up algorithms when releasing
buffers : the first naive one used to wake up far too many sessions,
causing many of them not to get any buffer. The second approach which
was still in use prior to this patch consisted in waking up either 1
or 2 sessions depending on the number of FDs we had released. And this
was still inaccurate. The third one tried to cover the accuracy issues
of the second and took into consideration the number of FDs the sessions
would be willing to use, but most of the time we ended up waking up too
many of them for nothing, or deadlocking by lack of buffers.
This patch completely removes the need to allocate two buffers at once.
Instead it splits allocations into critical and non-critical ones and
implements a reserve in the pool for this. The deadlock situation happens
when all buffers are be allocated for requests pending in a maxconn-limited
server queue, because then there's no more way to allocate buffers for
responses, and these responses are critical to release the servers's
connection in order to release the pending requests. In fact maxconn on
a server creates a dependence between sessions and particularly between
oldest session's responses and latest session's requests. Thus, it is
mandatory to get a free buffer for a response in order to release a
server connection which will permit to release a request buffer.
Since we definitely have non-symmetrical buffers, we need to implement
this logic in the buffer allocation mechanism. What this commit does is
implement a reserve of buffers which can only be allocated for responses
and that will never be allocated for requests. This is made possible by
the requester indicating how much margin it wants to leave after the
allocation succeeds. Thus it is a cooperative allocation mechanism : the
requester (process_session() in general) prefers not to get a buffer in
order to respect other's need for response buffers. The session management
code always knows if a buffer will be used for requests or responses, so
that is not difficult :
- either there's an applet on the initiator side and we really need
the request buffer (since currently the applet is called in the
context of the session)
- or we have a connection and we really need the response buffer (in
order to support building and sending an error message back)
This reserve ensures that we don't take all allocatable buffers for
requests waiting in a queue. The downside is that all the extra buffers
are really allocated to ensure they can be allocated. But with small
values it is not an issue.
With this change, we don't observe any more deadlocks even when running
with maxconn 1 on a server under severely constrained memory conditions.
The code becomes a bit tricky, it relies on the scheduler's run queue to
estimate how many sessions are already expected to run so that it doesn't
wake up everyone with too few resources. A better solution would probably
consist in having two queues, one for urgent requests and one for normal
requests. A failed allocation for a session dealing with an error, a
connection event, or the need for a response (or request when there's an
applet on the left) would go to the urgent request queue, while other
requests would go to the other queue. Urgent requests would be served
from 1 entry in the pool, while the regular ones would be served only
according to the reserve. Despite not yet having this, it works
remarkably well.
This mechanism is quite efficient, we don't perform too many wake up calls
anymore. For 1 million sessions elapsed during massive memory contention,
we observe about 4.5M calls to process_session() compared to 4.0M without
memory constraints. Previously we used to observe up to 16M calls, which
rougly means 12M failures.
During a test run under high memory constraints (limit enforced to 27 MB
instead of the 58 MB normally needed), performance used to drop by 53% prior
to this patch. Now with this patch instead it *increases* by about 1.5%.
The best effect of this change is that by limiting the memory usage to about
2/3 to 3/4 of what is needed by default, it's possible to increase performance
by up to about 18% mainly due to the fact that pools are reused more often
and remain hot in the CPU cache (observed on regular HTTP traffic with 20k
objects, buffers.limit = maxconn/10, buffers.reserve = limit/2).
Below is an example of scenario which used to cause a deadlock previously :
- connection is received
- two buffers are allocated in process_session() then released
- one is allocated when receiving an HTTP request
- the second buffer is allocated then released in process_session()
for request parsing then connection establishment.
- poll() says we can send, so the request buffer is sent and released
- process session gets notified that the connection is now established
and allocates two buffers then releases them
- all other sessions do the same till one cannot get the request buffer
without hitting the margin
- and now the server responds. stream_interface allocates the response
buffer and manages to get it since it's higher priority being for a
response.
- but process_session() cannot allocate the request buffer anymore
=> We could end up with all buffers used by responses so that none may
be allocated for a request in process_session().
When the applet processing leaves the session context, the test will have
to be changed so that we always allocate a response buffer regardless of
the left side (eg: H2->H1 gateway). A final improvement would consists in
being able to only retry the failed I/O operation without waking up a
task, but to date all experiments to achieve this have proven not to be
reliable enough.
When a session_alloc_buffers() fails to allocate one or two buffers,
it subscribes the session to buffer_wq, and waits for another session
to release buffers. It's then removed from the queue and woken up with
TASK_WAKE_RES, and can attempt its allocation again.
We decide to try to wake as many waiters as we release buffers so
that if we release 2 and two waiters need only once, they both have
their chance. We must never come to the situation where we don't wake
enough tasks up.
It's common to release buffers after the completion of an I/O callback,
which can happen even if the I/O could not be performed due to half a
failure on memory allocation. In this situation, we don't want to move
out of the wait queue the session that was just added, otherwise it
will never get any buffer. Thus, we only force ourselves out of the
queue when freeing the session.
Note: at the moment, since session_alloc_buffers() is not used, no task
is subscribed to the wait queue.
This patch introduces session_alloc_recv_buffer(), session_alloc_buffers()
and session_release_buffers() whose purpose will be to allocate missing
buffers and release unneeded ones around the process_session() and during
I/O operations.
I/O callbacks only need a single buffer for recv operations and none
for send. However we still want to ensure that we don't pick the last
buffer. That's what session_alloc_recv_buffer() is for.
This allocator is atomic in that it always ensures we can get 2 buffers
or fails. Here, if any of the buffers is not ready and cannot be
allocated, the operation is cancelled. The purpose is to guarantee that
we don't enter into the deadlock where all buffers are allocated by the
same size of all sessions.
A queue will have to be implemented for failed allocations. For now
they're just reported as failures.
This function is used to allocate a buffer and ensure that we leave
some margin after it in the pool. The function is not obvious. While
we allocate only one buffer, we want to ensure that at least two remain
available after our allocation. The purpose is to ensure we'll never
enter a deadlock where all sessions allocate exactly one buffer, and
none of them will be able to allocate the second buffer needed to build
a response in order to release the first one.
We also take care of remaining fast in the the fast path by first
checking whether or not there is enough margin, in which case we only
rely on b_alloc_fast() which is guaranteed to succeed. Otherwise we
take the slow path using pool_refill_alloc().
This function allocates a buffer and replaces *buf with this buffer. If
no memory is available, &buf_wanted is used instead. No control is made
to check if *buf already pointed to another buffer. The allocated buffer
is returned, or NULL in case no memory is available. The difference with
b_alloc() is that this function only picks from the pool and never calls
malloc(), so it can fail even if some memory is available. It is the
caller's job to refill the buffer pool if needed.
Till now we'd consider a buffer full even if it had size==0 due to pointing
to buf.size. Now we change this : if buf_wanted is present, it means that we
have already tried to allocate a buffer but failed. Thus the buffer must be
considered full so that we stop trying to poll for reads on it. Otherwise if
it's empty, it's buf_empty and we report !full since we may allocate it on
the fly.
Doing so ensures that even when no memory is available, we leave the
channel in a sane condition. There's a special case in proto_http.c
regarding the compression, we simply pre-allocate the tmpbuf to point
to the dummy buffer. Not reusing &buf_empty for this allows the rest
of the code to differenciate an empty buffer that's not used from an
empty buffer that results from a failed allocation which has the same
semantics as a buffer full.
Channels are now created with a valid pointer to a buffer before the
buffer is allocated. This buffer is a global one called "buf_empty" and
of size zero. Thus it prevents any activity from being performed on
the buffer and still ensures that chn->buf may always be dereferenced.
b_free() also resets the buffer to &buf_empty, and was split into
b_drop() which does not reset the buffer.
We don't call pool_free2(pool2_buffers) anymore, we only call b_free()
to do the job. This ensures that we can start to centralize the releasing
of buffers.
b_alloc() now allocates a buffer and initializes it to the size specified
in the pool minus the size of the struct buffer itself. This ensures that
callers do not need to care about buffer details anymore. Also this never
applies memory poisonning, which is slow and useless on buffers.
We'll soon need to be able to switch buffers without touching the
channel, so let's move buffer initialization out of channel_init().
We had the same in compressoin.c.
Till now this function would only allocate one entry at a time. But with
dynamic buffers we'll like to allocate the number of missing entries to
properly refill the pool.
Let's modify it to take a minimum amount of available entries. This means
that when we know we need at least a number of available entries, we can
ask to allocate all of them at once. It also ensures that we don't move
the pointers back and forth between the caller and the pool, and that we
don't call pool_gc2() for each failed malloc. Instead, it's called only
once and the malloc is only allowed to fail once.
pool_alloc2() used to pick the entry from the pool, fall back to
pool_refill_alloc(), and to perform the poisonning itself, which
pool_refill_alloc() was also doing. While this led to optimal
code size, it imposes memory poisonning on the buffers as well,
which is extremely slow on large buffers.
This patch cuts the allocator in 3 layers :
- a layer to pick the first entry from the pool without falling back to
pool_refill_alloc() : pool_get_first()
- a layer to allocate a dirty area by falling back to pool_refill_alloc()
but never performing the poisonning : pool_alloc_dirty()
- pool_alloc2() which calls the latter and optionally poisons the area
No functional changes were made.
Remove the code dealing with the old dual-linked lists imported from
librt that has remained unused for the last 8 years. Now everything
uses the linux-like circular lists instead.
Since commit 656c5fa7e8 ("BUILD: ssl: disable OCSP when using
boringssl) the OCSP code is bypassed when OPENSSL_IS_BORINGSSL
is defined. The correct thing to do here is to use OPENSSL_NO_OCSP
instead, which is defined for this exact purpose in
openssl/opensslfeatures.h.
This makes haproxy forward compatible if boringssl ever introduces
full OCSP support with the additional benefit that it links fine
against a OCSP-disabled openssl.
Signed-off-by: Lukas Tribus <luky-37@hotmail.com>
Till now, when memory poisonning was enabled, it used to be done only
after a calloc(). But sometimes it's not enough to detect unexpected
sharing, so let's ensure that we now poison every allocation once it's
in place. Note that enabling poisonning significantly hurts performance
(it can typically half the overall performance).
A memory optimization can use the same pattern expression for many
equal pattern list (same parse method, index method and index_smp
method).
The pattern expression is returned by "pattern_new_expr", but this
function dont indicate if the returned pattern is already in use.
So, the caller function reload the list of patterns in addition with
the existing patterns. This behavior is not a problem with tree indexed
pattern, but it grows the lists indexed patterns.
This fix add a "reuse" flag in return of the function "pattern_new_expr".
If the flag is set, I suppose that the patterns are already loaded.
This fix must be backported into 1.5.
In order for HTTP/2 not to eat too much memory, we'll have to support
on-the-fly buffer allocation, since most streams will have an empty
request buffer at some point. Supporting allocation on the fly means
being able to sleep inside I/O callbacks if a buffer is not available.
Till now, the I/O callbacks were called from two locations :
- when processing the cached events
- when processing the polled events from the poller
This change cleans up the design a bit further than what was started in
1.5. It now ensures that we never call any iocb from the poller itself
and that instead, events learned by the poller are put into the cache.
The benefit is important in terms of stability : we don't have to care
anymore about the risk that new events are added into the poller while
processing its events, and we're certain that updates are processed at
a single location.
To achieve this, we now modify all the fd_* functions so that instead of
creating updates, they add/remove the fd to/from the cache depending on
its state, and only create an update when the polling status reaches a
state where it will have to change. Since the pollers make use of these
functions to notify readiness (using fd_may_recv/fd_may_send), the cache
is always up to date with the poller.
Creating updates only when the polling status needs to change saves a
significant amount of work for the pollers : a benchmark showed that on
a typical TCP proxy test, the amount of updates per connection dropped
from 11 to 1 on average. This also means that the update list is smaller
and has more chances of not thrashing too many CPU cache lines. The first
observed benefit is a net 2% performance gain on the connection rate.
A second benefit is that when a connection is accepted, it's only when
we're processing the cache, and the recv event is automatically added
into the cache *after* the current one, resulting in this event to be
processed immediately during the same loop. Previously we used to have
a second run over the updates to detect if new events were added to
catch them before waking up tasks.
The next gain will be offered by the next steps on this subject consisting
in implementing an I/O queue containing all cached events ordered by priority
just like the run queue, and to be able to leave some events pending there
as long as needed. That will allow us *not* to perform some FD processing
if it's not the proper time for this (typically keep waiting for a buffer
to be allocated if none is available for an recv()). And by only processing
a small bunch of them, we'll allow priorities to take place even at the I/O
level.
As a result of this change, functions fd_alloc_or_release_cache_entry()
and fd_process_polled_events() have disappeared, and the code dedicated
to checking for new fd events after the callback during the poll() loop
was removed as well. Despite the patch looking large, it's mostly a
change of what function is falled upon fd_*() and almost nothing was
added.
This patch makes it possible to create binds and servers in separate
namespaces. This can be used to proxy between multiple completely independent
virtual networks (with possibly overlapping IP addresses) and a
non-namespace-aware proxy implementation that supports the proxy protocol (v2).
The setup is something like this:
net1 on VLAN 1 (namespace 1) -\
net2 on VLAN 2 (namespace 2) -- haproxy ==== proxy (namespace 0)
net3 on VLAN 3 (namespace 3) -/
The proxy is configured to make server connections through haproxy and sending
the expected source/target addresses to haproxy using the proxy protocol.
The network namespace setup on the haproxy node is something like this:
= 8< =
$ cat setup.sh
ip netns add 1
ip link add link eth1 type vlan id 1
ip link set eth1.1 netns 1
ip netns exec 1 ip addr add 192.168.91.2/24 dev eth1.1
ip netns exec 1 ip link set eth1.$id up
...
= 8< =
= 8< =
$ cat haproxy.cfg
frontend clients
bind 127.0.0.1:50022 namespace 1 transparent
default_backend scb
backend server
mode tcp
server server1 192.168.122.4:2222 namespace 2 send-proxy-v2
= 8< =
A bind line creates the listener in the specified namespace, and connections
originating from that listener also have their network namespace set to
that of the listener.
A server line either forces the connection to be made in a specified
namespace or may use the namespace from the client-side connection if that
was set.
For more documentation please read the documentation included in the patch
itself.
Signed-off-by: KOVACS Tamas <ktamas@balabit.com>
Signed-off-by: Sarkozi Laszlo <laszlo.sarkozi@balabit.com>
Signed-off-by: KOVACS Krisztian <hidden@balabit.com>
pcre_study() has been around long before JIT has been added. It also seems to
affect the performance in some cases (positive).
Below I've attached some test restults. The test is based on
http://sljit.sourceforge.net/regex_perf.html (see bottom). It has been modified
to just test pcre_study vs. no pcre_study. Note: This test does not try to
match specific header it's instead run over a larger text with more and less
complex patterns to make the differences more clear.
% ./runtest
'mark.txt' loaded. (Length: 19665221 bytes)
-----------------
Regex: 'Twain'
[pcre-nostudy] time: 14 ms (2388 matches)
[pcre-study] time: 21 ms (2388 matches)
-----------------
Regex: '^Twain'
[pcre-nostudy] time: 109 ms (100 matches)
[pcre-study] time: 109 ms (100 matches)
-----------------
Regex: 'Twain$'
[pcre-nostudy] time: 14 ms (127 matches)
[pcre-study] time: 16 ms (127 matches)
-----------------
Regex: 'Huck[a-zA-Z]+|Finn[a-zA-Z]+'
[pcre-nostudy] time: 695 ms (83 matches)
[pcre-study] time: 26 ms (83 matches)
-----------------
Regex: 'a[^x]{20}b'
[pcre-nostudy] time: 90 ms (12495 matches)
[pcre-study] time: 91 ms (12495 matches)
-----------------
Regex: 'Tom|Sawyer|Huckleberry|Finn'
[pcre-nostudy] time: 1236 ms (3015 matches)
[pcre-study] time: 34 ms (3015 matches)
-----------------
Regex: '.{0,3}(Tom|Sawyer|Huckleberry|Finn)'
[pcre-nostudy] time: 5696 ms (3015 matches)
[pcre-study] time: 5655 ms (3015 matches)
-----------------
Regex: '[a-zA-Z]+ing'
[pcre-nostudy] time: 1290 ms (95863 matches)
[pcre-study] time: 1167 ms (95863 matches)
-----------------
Regex: '^[a-zA-Z]{0,4}ing[^a-zA-Z]'
[pcre-nostudy] time: 136 ms (4507 matches)
[pcre-study] time: 134 ms (4507 matches)
-----------------
Regex: '[a-zA-Z]+ing$'
[pcre-nostudy] time: 1334 ms (5360 matches)
[pcre-study] time: 1214 ms (5360 matches)
-----------------
Regex: '^[a-zA-Z ]{5,}$'
[pcre-nostudy] time: 198 ms (26236 matches)
[pcre-study] time: 197 ms (26236 matches)
-----------------
Regex: '^.{16,20}$'
[pcre-nostudy] time: 173 ms (4902 matches)
[pcre-study] time: 175 ms (4902 matches)
-----------------
Regex: '([a-f](.[d-m].){0,2}[h-n]){2}'
[pcre-nostudy] time: 1242 ms (68621 matches)
[pcre-study] time: 690 ms (68621 matches)
-----------------
Regex: '([A-Za-z]awyer|[A-Za-z]inn)[^a-zA-Z]'
[pcre-nostudy] time: 1215 ms (675 matches)
[pcre-study] time: 952 ms (675 matches)
-----------------
Regex: '"[^"]{0,30}[?!\.]"'
[pcre-nostudy] time: 27 ms (5972 matches)
[pcre-study] time: 28 ms (5972 matches)
-----------------
Regex: 'Tom.{10,25}river|river.{10,25}Tom'
[pcre-nostudy] time: 705 ms (2 matches)
[pcre-study] time: 68 ms (2 matches)
In some cases it's more or less the same but when it's faster than by a huge margin.
It always depends on the pattern, the string(s) to match against etc.
Signed-off-by: Christian Ruppert <c.ruppert@babiel.com>