This puts an end to the occasional confusion between the "now" date
that is internal, monotonic and not synchronized with the system's
date, and "date" which is the system's date and not necessarily
monotonic. Variable "now" was removed and replaced with a 64-bit
integer "now_ns" which is a counter of nanoseconds. It wraps every
585 years, so if all goes well (i.e. if humanity does not need
haproxy anymore in 500 years), it will just never wrap. This implies
that now_ns is never nul and that the zero value can reliably be used
as "not set yet" for a timestamp if needed. This will also simplify
date checks where it becomes possible again to do "date1<date2".
All occurrences of "tv_to_ns(&now)" were simply replaced by "now_ns".
Due to the intricacies between now, global_now and now_offset, all 3
had to be turned to nanoseconds at once. It's not a problem since all
of them were solely used in 3 functions in clock.c, but they make the
patch look bigger than it really is.
The clock_update_local_date() and clock_update_global_date() functions
are now much simpler as there's no need anymore to perform conversions
nor to round the timeval up or down.
The wrapping continues to happen by presetting the internal offset in
the short future so that the 32-bit now_ms continues to wrap 20 seconds
after boot.
The start_time used to calculate uptime can still be turned to
nanoseconds now. One interrogation concerns global_now_ms which is used
only for the freq counters. It's unclear whether there's more value in
using two variables that need to be synchronized sequentially like today
or to just use global_now_ns divided by 1 million. Both approaches will
work equally well on modern systems, the difference might come from
smaller ones. Better not change anyhting for now.
One benefit of the new approach is that we now have an internal date
with a resolution of the nanosecond and the precision of the microsecond,
which can be useful to extend some measurements given that timestamps
also have this resolution.
Instead we're using ns_to_sec(tv_to_ns(&now)) which allows the tv_sec
part to disappear. At this point, "now" is only used as a timeval in
clock.c where it is updated.
Adding the possibility to publish an event using a struct wrapper
around existing SERVER events to provide additional contextual info.
Using the specific struct wrapper is not required: it is supported
to cast event data as a regular server event data struct so
that we don't break the existing API.
However, casting event data with a more explicit data type allows
to fetch event-only relevant hints.
Considering that srv_update_status() is now synchronous again since
3ff577e1 ("MAJOR: server: make server state changes synchronous again"),
and that we can easily identify if the update is from an operational
or administrative context thanks to "MINOR: server: pass adm and op cause
to srv_update_status()".
And given that administrative and operational updates cannot be cumulated
(since srv_update_status() is called synchronously and independently for
admin updates and state/operational updates, and the function directly
consumes the changes).
We split srv_update_status() in 2 distinct parts:
Either <type> is 0, meaning the update is an operational update which
is handled by directly looking at cur_state and next_state to apply the
proper transition.
Also, the check to prevent operational state from being applied
if MAINT admin flag is set is no longer needed given that the calling
functions already ensure this (ie: srv_set_{running,stopping,stopped)
Or <type> is 1, meaning the update is an administrative update, where
cur_admin and next_admin are evaluated to apply the proper transition and
deduct the resulting server state (next_state is updated implicitly).
Once this is done, both operations share a common code path in
srv_update_status() to update proxy and servers stats if required.
Thanks to this change, the function's behavior is much more predictable,
it is not an all-in-one function anymore. Either we apply an operational
change, else it is an administrative change. That's it, we cannot mix
the 2 since both code paths are now properly separated.
Operational and administrative state change causes are not propagated
through srv_update_status(), instead they are directly consumed within
the function to provide additional info during the call when required.
Thus, there is no valid reason for keeping adm and op causes within
server struct. We are wasting space and keeping uneeded complexity.
We now exlicitly pass change type (operational or administrative) and
associated cause to srv_update_status() so that no extra storage is
needed since those values are only relevant from srv_update_status().
Fixing function comments for the server state changing function since they
still refer to asynchonous propagation of server state which is no longer
in play.
Moreover, there were some mixups between running/stopping.
This one is greatly inspired by "MINOR: server: change adm_st_chg_cause storage type".
While looking at current srv_op_st_chg_cause usage, it was clear that
the struct needed some cleanup since some leftovers from asynchronous server
state change updates were left behind and resulted in some useless code
duplication, and making the whole thing harder to maintain.
Two observations were made:
- by tracking down srv_set_{running, stopped, stopping} usage,
we can see that the <reason> argument is always a fixed statically
allocated string.
- check-related state change context (duration, status, code...) is
not used anymore since srv_append_status() directly extracts the
values from the server->check. This is pure legacy from when
the state changes were applied asynchronously.
To prevent code duplication, useless string copies and make the reason/cause
more exportable, we store it as an enum now, and we provide
srv_op_st_chg_cause() function to fetch the related description string.
HEALTH and AGENT causes (check related) are now explicitly identified to
make consumers like srv_append_op_chg_cause() able to fetch checks info
from the server itself if they need to.
srv_append_status() has become a swiss-knife function over time.
It is used from server code and also from checks code, with various
inputs and distincts code paths, making it very hard to guess the
actual behavior of the function (resulting string output).
To simplify the logic behind it, we're dividing it in multiple contextual
functions that take simple inputs and do explicit things, making them
more predictable and easier to maintain.
Even though it doesn't look like it at first glance, this is more like
a cleanup than an actual code improvement:
Given that srv->adm_st_chg_cause has been used to exclusively store
static strings ever since it was implemented, we make the choice to
store it as an enum instead of a fixed-size string within server
struct.
This will allow to save some space in server struct, and will make
it more easily exportable (ie: event handlers) because of the
reduced memory footprint during handling and the ability to later get
the corresponding human-readable message when it's explicitly needed.
Now that we have a generic srv_lb_propagate(s) function, let's
use it each time we explicitly wan't to set the status down as
well.
Indeed, it is tricky to try to handle "down" case explicitly,
instead we use srv_lb_propagate() which will call the proper
function that will handle the new server state.
This will allow some code cleanup and will prevent any logic
error.
This commit depends on:
- "MINOR: server: propagate server state change to lb through single function"
Use a dedicated helper function to propagate server state change to
lb algorithms, since it is performed at multiple places within
srv_update_status() function.
Based on "BUG/MINOR: server: don't miss server stats update on server
state transitions", we're also taking advantage of the new centralized
logic to update down_trans server counter directly from there instead
of multiple places.
s->last_change and s->down_time updates were manually updated for each
effective server state change within srv_update_status().
This is rather error-prone, and as a result there were still some state
transitions that were not handled properly since at least 1.8.
ie:
- when transitionning from DRAIN to READY: downtime was updated
(which is wrong since a server in DRAIN state should not be
considered as DOWN)
- when transitionning from MAINT to READY: downtime was not updated
(this can be easily seen in the html stats page)
To fix these all at once, and prevent similar bugs from being introduced,
we centralize the server last_change and down_time stats logic at the end
of srv_update_status():
If the server state changed during the call, then it means that
last_change must be updated, with a special case when changing from
STOPPED state which means the server was previously DOWN and thus
downtime should be updated.
This patch depends on:
- "MINOR: server: explicitly commit state change in srv_update_status()"
This could be backported to every stable versions.
backend "down" stats logic has been duplicated multiple times in
srv_update_status(), resulting in the logic now being error-prone.
For example, the following bugfix was needed to compensate for a
copy-paste introduced bug: d332f139
("BUG/MINOR: server: update last_change on maint->ready transitions too")
While the above patch works great, we actually forgot to update the
proxy downtime like it is done for other down->up transitions...
This is simply illustrating that the current design is error-prone,
it is very easy to miss something in this area.
To properly update the proxy downtime stats on the maint->ready transition,
to cleanup srv_update_status() and to prevent similar bugs from being
introduced in the future, proxy/backend stats update are now automatically
performed at the end of the server state change if needed.
Thus we can remove existing updates that were performed at various places
within the function, this simplifies things a bit.
This patch depends on:
- "MINOR: server: explicitly commit state change in srv_update_status()"
This could be backported to all stable versions.
Backport notes:
2.2:
Replace
struct task *srv_cleanup_toremove_conns(struct task *task, void *context, unsigned int state)
by
struct task *srv_cleanup_toremove_connections(struct task *task, void *context, unsigned short state)
As shown in 8f29829 ("BUG/MEDIUM: checks: a down server going to
maint remains definitely stucked on down state."), state changes
that don't result in explicit lb state change, require us to perform
an explicit server state commit to make sure the next state is
applied before returning from the function.
This is the case for server state changes that don't trigger lb logic
and only perform some logging.
This is quite error prone, we could easily forget a state change
combination that could result in next_state, next_admin or next_eweight
not being applied. (cur_state, cur_admin and cur_eweight would be left
with unexpected values)
To fix this, we explicitly call srv_lb_commit_status() at the end
of srv_update_status() to enforce the new values, even if they were
already applied. (when a state changes requires lb state update
an implicit commit is already performed)
Applying the state change multiple times is safe (since the next value
always points to the current value).
Backport notes:
2.2:
Replace
struct task *srv_cleanup_toremove_conns(struct task *task, void *context, unsigned int state)
by
struct task *srv_cleanup_toremove_connections(struct task *task, void *context, unsigned short state)
Report message for tracking servers completely leaving drain is wrong:
The check for "leaving drain .. via" never evaluates because the
condition !(s->next_admin & SRV_ADMF_FDRAIN) is always true in the
current block which is guarded by !(s->next_admin & SRV_ADMF_DRAIN).
For tracking servers that leave inherited drain mode, this results in the
following message being emitted:
"Server x/b is UP (leaving forced drain)"
Instead of:
"Server x/b is UP (leaving drain) via x/a"
To this fix: we check if FDRAIN is currently set, else it means that the
drain status is inherited from the tracked server (IDRAIN)
This regression was introduced with 64cc49cf ("MAJOR: servers: propagate server
status changes asynchronously."), thus it may be backported to every stable
versions.
This commit does nothing that ought to be mentioned, except that
it adds missing comments and slighty moves some function calls
out of "sensitive" code in preparation of some server code refactors.
Expose proxy_uuid variable in event_hdl_cb_data_server struct to
overcome proxy_name fixed length limitation.
proxy_uuid may be used by the handler to perform proxy lookups.
This should be preferred over lookups relying proxy_name.
(proxy_name is suitable for printing / logging purposes but not for
ID lookups since it has a maximum fixed length)
srv_update_status() function comment says that the function "is designed
to be called asynchronously".
While this used to be true back then with 64cc49cf
("MAJOR: servers: propagate server status changes asynchronously.")
This is not true anymore since 3ff577e ("MAJOR: server: make server state changes
synchronous again")
Fixing the comment in order to better reflect current behavior.
These ones are genenerally harmless on modern compilers because the
compiler checks them. While gcc optimizes them away without even
referencing strcpy(), clang prefers to call strcpy(). Nevertheless they
prevent from enabling stricter checks so better remove them altogether.
They were all replaced by strlcpy2() and the size of the destination
which is always known there.
srv_drop() function is reponsible for freeing the server when the
refcount reaches 0.
There is one exception: when global.mode has the MODE_STOPPING flag set,
srv_drop() will ignore the refcount and free the server on first
invocation.
This logic has been implemented with 13f2e2ce ("BUG/MINOR: server: do
not use refcount in free_server in stopping mode") and back then doing
so was not a problem since dynamic server API was just implemented and
srv_take() and srv_drop() were not widely used.
Now that dynamic server API is starting to get more popular we cannot
afford to keep the current logic: some modules or lua scripts may hold
references to existing server and also do their cleanup in deinit phases
In this kind of situation, it would be easy to trigger double-frees
since every call to srv_drop() on a specific server will try to free it.
To fix this, we take a different approach and try to fix the issue at
the source: we now properly drop server references involved with
checks/agent_checks in deinit_srv_check() and deinit_srv_agent_check().
While this could theorically be backported up to 2.6, it is not very
relevant for now since srv_drop() usage in older versions is very
limited and we're only starting to face the issue in mid 2.8
developments. (ie: lua core updates)
In srv_drop(), we only call the ssl->destroy_srv() method on
specific conditions.
But this has two downsides:
First, destroy_srv() is reponsible for freeing data that may have been
allocated in prepare_srv(), but not exclusively: it also frees
ssl-related parameters allocated when parsing a server entry, such as
ca-file for instance.
So this is quite error-prone, we could easily miss a condition where
some data needs to be deallocated using destroy_srv() even if
prepare_srv() was not used (since prepare_srv() is also conditional),
thus resulting in memory leaks.
Moreover, depending on srv->proxy to guard the check is probably not
a good idea here, since srv_drop() could be called in late de-init paths
in which related proxy could be freed already. srv_drop() should only
take care of freeing local server data without external logic.
Thankfully, destroy_srv() function performs the necessary checks to
ensure that a systematic call to the function won't result in invalid
reads or double frees.
No backport needed.
We recently discovered a bug which affects dynamic server deletion:
When a server is deleted, it is removed from the "visible" server list.
But as we've seen in previous commit
("MINOR: server: add SRV_F_DELETED flag"), it can still be accessed by
someone who keeps a reference on it (waiting for the final srv_drop()).
Throughout this transient state, server ptr is still valid (may be
dereferenced) and the flag SRV_F_DELETED is set.
However, as the server is not part of server list anymore, we have
an issue: srv->next pointer won't be updated anymore as the only place
where we perform such update is in cli_parse_delete_server() by
iterating over the "visible" server list.
Because of this, we cannot guarantee that a server with the
SRV_F_DELETED flag has a valid 'next' ptr: 'next' could be pointing
to a fully removed (already freed) server.
This problem can be easily demonstrated with server dumping in
the stats:
server list dumping is performed in stats_dump_proxy_to_buffer()
The function can be interrupted and resumed later by design.
ie: output buffer is full: partial dump and finish the dump after
the flush
This is implemented by calling srv_take() on the server being dumped,
and only releasing it when we're done with it using srv_drop().
(drop can be delayed after function resume if buffer is full)
While the function design seems OK, it works with the assumption that
srv->next will still be valid after the function resumes, which is
not true. (especially if multiple servers are being removed in between
the 2 dumping attempts)
In practice, this did not cause any crash yet (at least this was not
reported so far), because server dumping is so fast that it is very
unlikely that multiple server deletions make their way between 2
dumping attempts in most setups. But still, this is a problem that we
need to address because some upcoming work might depend on this
assumption as well and for the moment it is not safe at all.
========================================================================
Here is a quick reproducer:
With this patch, we're creating a large deletion window of 3s as soon
as we reach a server named "t2" while iterating over the list.
This will give us plenty of time to perform multiple deletions before
the function is resumed.
| diff --git a/src/stats.c b/src/stats.c
| index 84a4f9b6e..15e49b4cd 100644
| --- a/src/stats.c
| +++ b/src/stats.c
| @@ -3189,11 +3189,24 @@ int stats_dump_proxy_to_buffer(struct stconn *sc, struct htx *htx,
| * Temporarily increment its refcount to prevent its
| * anticipated cleaning. Call free_server to release it.
| */
| + struct server *orig = ctx->obj2;
| for (; ctx->obj2 != NULL;
| ctx->obj2 = srv_drop(sv)) {
|
| sv = ctx->obj2;
| + printf("sv = %s\n", sv->id);
| srv_take(sv);
| + if (!strcmp("t2", sv->id) && orig == px->srv) {
| + printf("deletion window: 3s\n");
| + thread_idle_now();
| + thread_harmless_now();
| + sleep(3);
| + thread_harmless_end();
| +
| + thread_idle_end();
| +
| + goto full; /* simulate full buffer */
| + }
|
| if (htx) {
| if (htx_almost_full(htx))
| @@ -4353,6 +4366,7 @@ static void http_stats_io_handler(struct appctx *appctx)
| struct channel *res = sc_ic(sc);
| struct htx *req_htx, *res_htx;
|
| + printf("http dump\n");
| /* only proxy stats are available via http */
| ctx->domain = STATS_DOMAIN_PROXY;
|
Ok, we're ready, now we start haproxy with the following conf:
global
stats socket /tmp/ha.sock mode 660 level admin expose-fd listeners thread 1-1
nbthread 2
frontend stats
mode http
bind *:8081 thread 2-2
stats enable
stats uri /
backend farm
server t1 127.0.0.1:1899 disabled
server t2 127.0.0.1:18999 disabled
server t3 127.0.0.1:18998 disabled
server t4 127.0.0.1:18997 disabled
And finally, we execute the following script:
curl localhost:8081/stats&
sleep .2
echo "del server farm/t2" | nc -U /tmp/ha.sock
echo "del server farm/t3" | nc -U /tmp/ha.sock
This should be enough to reveal the issue, I easily manage to
consistently crash haproxy with the following reproducer:
http dump
sv = t1
http dump
sv = t1
sv = t2
deletion window = 3s
[NOTICE] (2940566) : Server deleted.
[NOTICE] (2940566) : Server deleted.
http dump
sv = t2
sv = �����U
[1] 2940566 segmentation fault (core dumped) ./haproxy -f ttt.conf
========================================================================
To fix this, we add prev_deleted mt_list in server struct.
For a given "visible" server, this list will contain the pending
"deleted" servers references that point to it using their 'next' ptr.
This way, whenever this "visible" server is going to be deleted via
cli_parse_delete_server() it will check for servers in its
'prev_deleted' list and update their 'next' pointer so that they no
longer point to it, and then it will push them in its
'next->prev_deleted' list to transfer the update responsibility to the
next 'visible' server (if next != NULL).
Then, following the same logic, the server about to be removed in
cli_parse_delete_server() will push itself as well into its
'next->prev_deleted' list (if next != NULL) so that it may still use its
'next' ptr for the time it is in transient removal state.
In srv_drop(), right before the server is finally freed, we make sure
to remove it from the 'next->prev_deleted' list so that 'next' won't
try to perform the pointers update for this server anymore.
This has to be done atomically to prevent 'next' srv from accessing a
purged server.
As a result:
for a valid server, either deleted or not, 'next' ptr will always
point to a non deleted (ie: visible) server.
With the proposed fix, and several removal combinations (including
unordered cli_parse_delete_server() and srv_drop() calls), I cannot
reproduce the crash anymore.
Example tricky removal sequence that is now properly handled:
sv list: t1,t2,t3,t4,t5,t6
ops:
take(t2)
del(t4)
del(t3)
del(t5)
drop(t3)
drop(t4)
drop(t5)
drop(t2)
Set the SRV_F_DELETED flag when server is removed from the cli.
When removing a server from the cli (in cli_parse_delete_server()),
we update the "visible" server list so that the removed server is no
longer part of the list.
However, despite the server being removed from "visible" server list,
one could still access the server data from a valid ptr (ie: srv_take())
Deleted flag helps detecting when a server is in transient removal
state: that is, removed from the list, thus not visible but not yet
purged from memory.
The commit 5e1b0e7bf ("BUG/MEDIUM: connection: Clear flags when a conn is
removed from an idle list") introduced a regression. CO_FL_SAFE_LIST and
CO_FL_IDLE_LIST flags are used when the connection is released to properly
decrement used/idle connection counters. if a connection is idle, these
flags must be preserved till the connection is really released. It may be
removed from the list but not immediately released. If these flags are lost
when it is finally released, the current number of used connections is
erroneously decremented. If means this counter may become negative and the
counters tracking the number of idle connecitons is not decremented,
suggesting a leak.
So, the above commit is reverted and instead we improve a bit the way to
detect an idle connection. The function conn_get_idle_flag() must now be
used to know if a connection is in an idle list. It returns the connection
flag corresponding to the idle list if the connection is idle
(CO_FL_SAFE_LIST or CO_FL_IDLE_LIST) or 0 otherwise. But if the connection
is scheduled to be removed, 0 is also returned, regardless the connection
flags.
This new function is used when the connection is temporarily removed from
the list to be used, mainly in muxes.
This patch should fix#2078 and #2057. It must be backported as far as 2.2.
When a connection is removed from the safe list or the idle list,
CO_FL_SAFE_LIST and CO_FL_IDLE_LIST flags must be cleared. It is performed
when the connection is reused. But not when it is moved into the
toremove_conns list. It may be an issue because the multiplexer owning the
connection may be woken up before the connection is really removed. If the
connection flags are not sanitized, it may think the connection is idle and
reinsert it in the corresponding list. From this point, we can imagine
several bugs. An UAF or a connection reused with an invalid state for
instance.
To avoid any issue, the connection flags are sanitized when an idle
connection is moved into the toremove_conns list. The same is performed at
right places in the multiplexers. Especially because the connection release
may be delayed (for h2 and fcgi connections).
This patch shoudld fix the issue #2057. It must carefully be backported as
far as 2.2. Especially on the 2.2 where the code is really different. But
some conflicts should be expected on the 2.4 too.
When a new server was added through the cli using "server add" command,
the maxconn/minconn consistency check historically implemented in
check_config_validity() for static servers was missing.
As a result, when adding a server with the maxconn parameter without the
minconn set, the server was unable to handle any connection because
srv_dynamic_maxconn() would always return 0.
Consider the following reproducer:
| global
| stats socket /tmp/ha.sock mode 660 level admin expose-fd listeners
|
| defaults
| timeout client 5s
| timeout server 5s
| timeout connect 5s
|
| frontend test
| mode http
| bind *:8081
| use_backend farm
|
| listen dummyok
| bind localhost:18999
| mode http
| http-request return status 200 hdr test "ok"
|
| backend farm
| mode http
Start haproxy and perform the following :
echo "add server farm/t1 127.0.0.1:18999 maxconn 100" | nc -U /tmp/ha.sock
echo "enable server farm/t1" | nc -U /tmp/ha.sock
curl localhost:8081 # -> 503 after 5s connect timeout
Thanks to ("MINOR: cfgparse/server: move (min/max)conn postparsing logic into
dedicated function"), we are now able to perform the consistency check after
the new dynamic server has been parsed.
This is enough to fix the issue documented here that was reported by
Thomas Pedoussaut on the ML.
This commit depends on:
- ("MINOR: cfgparse/server: move (min/max)conn postparsing logic into
dedicated function")
It must be backported to 2.6 and 2.7
With previous commit, 9e080bf ("BUG/MINOR: checks: make sure fastinter is used
even on forced transitions"), on-error mark-down|sudden-death|fail-check are
now working as expected.
However, on-error fastinter remains broken because srv_getinter(), used in
the above commit to check the expiration date, won't return fastinter interval
if server health is maxed out (which is the case with on-error fastinter mode).
To fix this, we introduce a check flag named CHK_ST_FASTINTER.
This flag is set when on-error is triggered. This way we can force
srv_getinter() to return fastinter interval whenever the flag is set.
The flag is automatically cleared as soon as the new check task expiry is
recalculated in process_chk_conn().
This restores original behavior prior to d114f4a ("MEDIUM: checks: spread the
checks load over random threads").
It must be backported to 2.7 along with the aforementioned commits.
We're using srv_update_status() as the only event source or UP/DOWN server
events in an attempt to simplify the support for these 2 events.
It seems srv_update_status() is the common path for server state changes anyway
Tested with server state updated from various sources:
- the cli
- server-state file (maybe we could disable this or at least don't publish
in global event queue in the future if it ends in slower startup for setups
relying on huge server state files)
- dns records (ie: srv template)
(again, could be fined tuned to only publish in server specific subscriber
list and no longer in global subscription list if mass dns update tend to
slow down srv_update_status())
- normal checks and observe checks (HCHK_STATUS_HANA)
(same as above, if checks related state update storms are expected)
- lua scripts
- html stats page (admin mode)
Basic support for ADD and DEL server events are added through this commit:
SERVER_ADD is published on dynamic server addition through cli.
SERVER_DEL is published on dynamic server deletion through cli.
This work depends on:
"MINOR: event_hdl: add event handler base api"
"MINOR: server: add srv->rid (revision id) value"
With current design, we could not distinguish between
previously existing deleted server and a new server reusing
the deleted server name/id.
This can cause some confusion when auditing stats/events/logs,
because the new server will look similar to the old
one.
To address this, we're adding a new value in server structure: rid
rid (revision id) value is an unsigned 32bits value that is set upon
server creation. Value is derived from a global counter that starts
at 0 and is incremented each time one or multiple server deletions are
followed by a server addition (meaning that old name/id reuse could occur).
Thanks to this revision id, it is now easy to tell whether the server
we're looking at is the same as before or if it has been deleted and
re-added in the meantime.
(combining server name/id + server revision id yields a process-wide unique
identifier)
Complete ipcmp() function with a new argument <check_port>. If this
argument is true, the function will compare port values besides IP
addresses and return true only if both are identical.
This commit will simplify QUIC connection migration detection. As such,
it should be backported to 2.7.
In order to evenly pick idle connections from other threads, there is
a "next_takeover" index in the server, that is incremented each time
a connection is picked from another thread, and indicates which one to
start from next time.
With thread groups this doesn't work well because the index is the same
regardless of the group, and if a group has more threads than another,
there's even a risk to reintroduce an imbalance.
This patch introduces a new per-tgroup storage in servers which, for now,
only contains an instance of this next_takeover index. This way each
thread will now only manipulate the index specific to its own group, and
the takeover will become fair again. More entries may come soon.
In 2.2, some idle conns usage metrics were added by commit cf612a045
("MINOR: servers: Add a counter for the number of currently used
connections."), which mentioned that the operation doesn't need to be
atomic since we're not seeking exact values. This is true but at least
we should use atomic stores to make sure not to cause invalid values
to appear on archs that wouldn't guarantee atomicity when writing an
int, such as writing two 16-bit words. This is pretty unlikely on our
targets but better keep the code safe against this.
This may be backported as far as 2.2.
cli_parse_add_server() is the CLI handler for 'add server' command. This
functions uses usermsgs_ctx to retrieve logs messages from internal
ha_alert() calls and display it at the end of the handler.
At the beginning of the handler, stderr prefix is defined to "CLI" via
usermsgs_clr() function. However, this is not resetted at the end. This
causes inconsistency for stderr output :
1. each ha_alert() invocation will reuse "CLI" prefix if 'add server'
command was executed before, even in non-CLI context
2. usermsgs_ctx is thread local, so this is only true if this runs on
the same thread as 'add server' handler.
To fix this, ensure that "CLI" prefix is now resetted after
cli_parse_add_server(). This is done thanks to the addition to
cli_umsg()/cli_umsgerr() functions.
This can be backported up to 2.5 if we prefer to ensure output
consistency at the risk of changing stderr behaviors in stable versions.
In this case, the previous commit should be backported before :
MINOR: cli: define usermsgs print context
Add "shards" new keyword for "peers" section to configure the number
of peer shards attached to such secions. This impact all the stick-tables
attached to the section.
Add "shard" new "server" parameter to configure the peers which participate to
all the stick-tables contents distribution. Each peer receive the stick-tables updates
only for keys with this shard value as distribution hash. The "shard" value
is stored in ->shard new server struct member.
cfg_parse_peers() which is the function which is called to parse all
the lines of a "peers" section is modified to parse the "shards" parameter
stored in ->nb_shards new peers struct member.
Add srv_parse_shard() new callback into server.c to pare the "shard"
parameter.
Implement stksess_getkey_hash() to compute the distribution hash for a
stick-table key as the 64-bits xxhash of the key concatenated to the stick-table
name. This function is called by stksess_setkey_shard(), itself
called by the already implemented function which create a new stick-table
key (stksess_new()).
Add ->idlen new stktable struct member to store the stick-table name length
to not have to compute it each time a stick-table key hash is computed.
Idle connections do not work on 32-bit machines due to an alignment issue
causing the connection nodes to be indexed with their lower 32-bits set to
zero and the higher 32 ones containing the 32 lower bitss of the hash. The
cause is the use of ebmb_node with an aligned data, as on this platform
ebmb_node is only 32-bit aligned, leaving a hole before the following hash
which is a uint64_t:
$ pahole -C conn_hash_node ./haproxy
struct conn_hash_node {
struct ebmb_node node; /* 0 20 */
/* XXX 4 bytes hole, try to pack */
int64_t hash; /* 24 8 */
struct connection * conn; /* 32 4 */
/* size: 40, cachelines: 1, members: 3 */
/* sum members: 32, holes: 1, sum holes: 4 */
/* padding: 4 */
/* last cacheline: 40 bytes */
};
Instead, eb64 nodes should be used when it comes to simply storing a
64-bit key, and that is what this patch does.
For backports, a variant consisting in simply marking the "hash" member
with a "packed" attribute on the struct also does the job (tested), and
might be preferable if the fix is difficult to adapt. Only 2.6 and 2.5
are affected by this.
When calling 'add server' with a hostname from the cli (runtime),
str2sa_range() does not resolve hostname because it is purposely
called without PA_O_RESOLVE flag.
This leads to 'srv->addr_node.key' being NULL. According to Willy it
is fine behavior, as long as we handle it properly, and is already
handled like this in srv_set_addr_desc().
This patch fixes GH #1865 by adding an extra check before inserting
'srv->addr_node' into 'be->used_server_addr'. Insertion and removal
will be skipped if 'addr_node.key' is NULL.
It must be backported to 2.6 and 2.5 only.
When parsing a peers section, it's particularly difficult to make the
difference between the local peer which doesn't have any address, and
other peers which need one, and the error messages do not help because
with just:
peers foo
bind :8001
server foo 127.0.0.1:8001
server bar 127.0.0.2:8001
One can get such a confusing message when the local peer is "bar":
[peers.cfg:15] : 'server foo/bar' : unknown keyword '127.0.0.1:8001'.
It's not clear there why the other peer doesn't trigger an error.
With this commit we add a hint in the error message when no address
was expected. The error remains quite generic (since deep into the
server code) but at least the useer gets a hint about why the keyword
wasn't understood:
[peers.cfg:15] : 'server foo/bar' : unknown keyword '127.0.0.1:8001'.
Hint: no address was expected for this server.
There's no more reason for keepin the code and definitions in conn_stream,
let's move all that to stconn. The alphabetical ordering of include files
was adjusted.
This file contains all the stream-connector functions that are specific
to application layers of type stream. So let's name it accordingly so
that it's easier to figure what's located there.
The alphabetical ordering of include files was preserved.
This applies the change so that the applet code stops using ci_putchk()
and friends everywhere possible, for the much saferapplet_put*() instead.
The change is mechanical but large. Two or three functions used to have no
appctx and a cs derived from the appctx instead, which was a reminiscence
of old times' stream_interface. These were simply changed to directly take
the appctx. No sensitive change was performed, and the old (more complex)
API is still usable when needed (e.g. the channel is already known).
The change touched roughly a hundred of locations, with no less than 124
lines removed.
It's worth noting that the stats applet, the oldest of the series, could
get a serious lifting, as it's still very channel-centric instead of
propagating the appctx along the chain. Given that this code doesn't
change often, there's no emergency to clean it up but it would look
better.
This renames the "struct conn_stream" to "struct stconn" and updates
the descriptions in all comments (and the rare help descriptions) to
"stream connector" or "connector". This touches a lot of files but
the change is minimal. The local variables were not even renamed, so
there's still a lot of "cs" everywhere.
This one is the pointer to the conn_stream which is always in the
endpoint that is always present in the appctx, thus it's not needed.
This patch removes it and replaces it with appctx_cs() instead. A
few occurences that were using __cs_strm(appctx->owner) were moved
directly to appctx_strm() which does the equivalent.
Remaining flags and associated functions are move in the conn-stream
scope. These flags are added on the endpoint and not the conn-stream
itself. This way it will be possible to get them from the mux or the
applet. The functions to get or set these flags are renamed accordingly with
the "cs_" prefix and updated to manipualte a conn-stream instead of a
stream-interface.
At many places, we now use the new CS functions to get a stream or a channel
from a conn-stream instead of using the stream-interface API. It is the
first step to reduce the scope of the stream-interfaces. The main change
here is about the applet I/O callback functions. Before the refactoring, the
stream-interface was the appctx owner. Thus, it was heavily used. Now, as
far as possible,the conn-stream is used. Of course, it remains many calls to
the stream-interface API.