There's no point splitting the file in two since only cfgparse uses the
types defined there. A few call places were updated and cleaned up. All
of them were in C files which register keywords.
There is nothing left in common/ now so this directory must not be used
anymore.
extern struct dict server_name_dict was moved from the type file to the
main file. A handful of inlined functions were moved at the bottom of
the file. Call places were updated to use server-t.h when relevant, or
to simply drop the entry when not needed.
This one is particularly difficult to split because it provides all the
functions used to manipulate a proxy state and to retrieve names or IDs
for error reporting, and as such, it was included in 73 files (down to
68 after cleanup). It would deserve a small cleanup though the cut points
are not obvious at the moment given the number of structs involved in
the struct proxy itself.
The current state of the logging is a real mess. The main problem is
that almost all files include log.h just in order to have access to
the alert/warning functions like ha_alert() etc, and don't care about
logs. But log.h also deals with real logging as well as log-format and
depends on stream.h and various other things. As such it forces a few
heavy files like stream.h to be loaded early and to hide missing
dependencies depending where it's loaded. Among the missing ones is
syslog.h which was often automatically included resulting in no less
than 3 users missing it.
Among 76 users, only 5 could be removed, and probably 70 don't need the
full set of dependencies.
A good approach would consist in splitting that file in 3 parts:
- one for error output ("errors" ?).
- one for log_format processing
- and one for actual logging.
It was moved without any change, however many callers didn't need it at
all. This was a consequence of the split of proto_http.c into several
parts that resulted in many locations to still reference it.
Almost no change except moving the cli_kw struct definition after the
defines. Almost all users had both types&proto included, which is not
surprizing since this code is old and it used to be the norm a decade
ago. These places were cleaned.
Just some minor reordering, and the usual cleanup of call places for
those which didn't need it. We don't include the whole tools.h into
stats-t anymore but just tools-t.h.
The type file was slightly tidied. The cli-specific APPCTX_CLI_ST1_* flag
definitions were moved to cli.h. The type file was adjusted to include
buf-t.h and not the huge buf.h. A few call places were fixed because they
did not need this include.
All includes that were not absolutely necessary were removed because
checks.h happens to very often be part of dependency loops. A warning
was added about this in check-t.h. The fields, enums and structs were
a bit tidied because it's particularly tedious to find anything there.
It would make sense to split this in two or more files (at least
extract tcp-checks).
The file was renamed to the singular because it was one of the rare
exceptions to have an "s" appended to its name compared to the struct
name.
The TASK_IS_TASKLET() macro was moved to the proto file instead of the
type one. The proto part was a bit reordered to remove a number of ugly
forward declaration of static inline functions. About a tens of C and H
files had their dependency dropped since they were not using anything
from task.h.
global.h was one of the messiest files, it has accumulated tons of
implicit dependencies and declares many globals that make almost all
other file include it. It managed to silence a dependency loop between
server.h and proxy.h by being well placed to pre-define the required
structs, forcing struct proxy and struct server to be forward-declared
in a significant number of files.
It was split in to, one which is the global struct definition and the
few macros and flags, and the rest containing the functions prototypes.
The UNIX_MAX_PATH definition was moved to compat.h.
This one is particularly tricky to move because everyone uses it
and it depends on a lot of other types. For example it cannot include
arg-t.h and must absolutely only rely on forward declarations to avoid
dependency loops between vars -> sample_data -> arg. In order to address
this one, it would be nice to split the sample_data part out of sample.h.
List.h was missing for LIST_ADDQ(). A few unneeded includes of action.h
were removed from certain files.
This one still relies on applet.h and stick-table.h.
A few includes were missing in each file. A definition of
struct polled_mask was moved to fd-t.h. The MAX_POLLERS macro was
moved to defaults.h
Stdio used to be silently inherited from whatever path but it's needed
for list_pollers() which takes a FILE* and which can thus not be
forward-declared.
This one is included almost everywhere and used to rely on a few other
.h that are not needed (unistd, stdlib, standard.h). It could possibly
make sense to split it into multiple parts to distinguish operations
performed on timers and the internal time accounting, but at this point
it does not appear much important.
All files that were including one of the following include files have
been updated to only include haproxy/api.h or haproxy/api-t.h once instead:
- common/config.h
- common/compat.h
- common/compiler.h
- common/defaults.h
- common/initcall.h
- common/tools.h
The choice is simple: if the file only requires type definitions, it includes
api-t.h, otherwise it includes the full api.h.
In addition, in these files, explicit includes for inttypes.h and limits.h
were dropped since these are now covered by api.h and api-t.h.
No other change was performed, given that this patch is large and
affects 201 files. At least one (tools.h) was already freestanding and
didn't get the new one added.
We can't expect the DNS answer to always match the case we used for the
request, so we can't just use memcmp() to compare the DNS answer with what
we are expected.
Instead, introduce dns_hostname_cmp(), which compares each string in a
case-insensitive way.
This should fix github issue #566.
This should be backported to 2.1, 2.0, 1.9 and 1.8.
13a9232ebc introduced parsing of
Additionnal DNS response section to pick up IP address when available.
That said, this introduced a side effect for other query types (A and
AAAA) leading to consider those responses invalid when parsing the
Additional section.
This patch avoids this situation by ensuring the Additional section is
parsed only for SRV queries.
As per issue #435 a hostname with a trailing dot confuses our DNS code,
as for a zero length DNS label we emit a null-byte. This change makes us
ignore the zero length label instead.
Must be backported to 1.8.
When an end pointer is passed, instead of complaining that a comma is
missing after a keyword, sample_parse_expr() will silently return the
pointer to the current location into this return pointer so that the
caller can continue its parsing. This will be used by more complex
expressions which embed sample expressions, and may even permit to
embed sample expressions into arguments of other expressions.
<.arg.dns.dns_opts> field in the act_rule structure is now dynamically allocated
when a do-resolve rule is parsed. This drastically reduces the structure size.
hostname were limited to 62 char, which is not RFC1035 compliant;
- the parsing loop should stop when above max label char
- fix len label test where d[i] was wrongly used
- simplify the whole function to avoid using two extra char* variable
this should fix github issue #387
Signed-off-by: William Dauchy <w.dauchy@criteo.com>
Reviewed-by: Tim Duesterhus <tim@bastelstu.be>
Acked-by: Baptiste <bedis9@gmail.com>
Most DNS servers provide A/AAAA records in the Additional section of a
response, which correspond to the SRV records from the Answer section:
;; QUESTION SECTION:
;_http._tcp.be1.domain.tld. IN SRV
;; ANSWER SECTION:
_http._tcp.be1.domain.tld. 3600 IN SRV 5 500 80 A1.domain.tld.
_http._tcp.be1.domain.tld. 3600 IN SRV 5 500 80 A8.domain.tld.
_http._tcp.be1.domain.tld. 3600 IN SRV 5 500 80 A5.domain.tld.
_http._tcp.be1.domain.tld. 3600 IN SRV 5 500 80 A6.domain.tld.
_http._tcp.be1.domain.tld. 3600 IN SRV 5 500 80 A4.domain.tld.
_http._tcp.be1.domain.tld. 3600 IN SRV 5 500 80 A3.domain.tld.
_http._tcp.be1.domain.tld. 3600 IN SRV 5 500 80 A2.domain.tld.
_http._tcp.be1.domain.tld. 3600 IN SRV 5 500 80 A7.domain.tld.
;; ADDITIONAL SECTION:
A1.domain.tld. 3600 IN A 192.168.0.1
A8.domain.tld. 3600 IN A 192.168.0.8
A5.domain.tld. 3600 IN A 192.168.0.5
A6.domain.tld. 3600 IN A 192.168.0.6
A4.domain.tld. 3600 IN A 192.168.0.4
A3.domain.tld. 3600 IN A 192.168.0.3
A2.domain.tld. 3600 IN A 192.168.0.2
A7.domain.tld. 3600 IN A 192.168.0.7
SRV record support was introduced in HAProxy 1.8 and the first design
did not take into account the records from the Additional section.
Instead, a new resolution is associated to each server with its relevant
FQDN.
This behavior generates a lot of DNS requests (1 SRV + 1 per server
associated).
This patch aims at fixing this by:
- when a DNS response is validated, we associate A/AAAA records to
relevant SRV ones
- set a flag on associated servers to prevent them from running a DNS
resolution for said FADN
- update server IP address with information found in the Additional
section
If no relevant record can be found in the Additional section, then
HAProxy will failback to running a dedicated resolution for this server,
as it used to do.
This behavior is the one described in RFC 2782.
Some custom actions are just ignored and skipped when an error is encoutered. In
that case, we jump to the next rule. To do so, most of them use the return code
ACT_RET_ERR. Currently, for http rules and tcp content rules, it is not a
problem because this code is handled the same way than ACT_RET_CONT. But, it
means there is no way to handle the error as other actions. The custom actions
must handle the error and return ACT_RET_DONE. For instance, when http-request
rules are processed, an error when we try to replace a header value leads to a
bad request and an error 400 is returned to the client. But when we fail to
replace the URI, the error is silently ignored. This difference between the
custom actions and the others is an obstacle to write new custom actions.
So, in this first patch, ACT_RET_CONT is now returned from custom actions
instead of ACT_RET_ERR when an error is encoutered if it should be ignored. The
behavior remains the same but it is now possible to handle true errors using the
return code ACT_RET_ERR. Some actions will probably be reviewed to determine if
an error is fatal or not. Other patches will be pushed to trigger an error when
a custom action returns the ACT_RET_ERR code.
This patch is not tagged as a bug because it is just a design issue. But others
will depends on it. So be careful during backports, if so.
Left shifting of large signed values and negative values is undefined.
In a test script clang's ubsan rightfully complains:
> runtime error: left shift of 1934242336581872173 by 13 places cannot be represented in type 'int64_t' (aka 'long')
This bug was introduced in the initial version of the DNS resolver
in 325137d603. The fix must be backported
to HAProxy 1.6+.
In dns_send_query(), there's no point in first waking up the FD, to get
called back by the poller to send the request and sleep. Instead let's
simply send the request as soon as it's known and only subscribe to the
poller when the socket buffers are full and it's required to poll (i.e.
almost never).
This significantly reduces the number of calls to the poller. A large
config sees the number of epoll_ctl() calls reduced from 577 to 7 over
10 seconds, the number of recvfrom() from 1533 to 582 and the number of
sendto() from 369 to 162.
It also has the extra benefit of building each requests only once per
resolution and sending it to multiple resolvers instead of rebuilding
it for each and every resolver.
This will reduce the risk of seeing situations similar to bug #416 in
the future.
It was reported in bug #399 that the DNS sometimes enters endless loops
after hours working fine. The issue is caused by a lack of error
processing in the DNS's recv() path combined with an exclusive recv OR
send in the UDP layer, resulting in some errors causing CPU loops that
will never stop until the process is restarted.
The basic cause is that the FD_POLL_ERR and FD_POLL_HUP flags are sticky
on the FD, and contrary to a stream socket, receiving an error on a
datagram socket doesn't indicate that this socket cannot be used anymore.
Thus the Rx code must at least handle this situation and flush the error
otherwise it will constantly be reported. In theory this should not be a
big issue but in practise it is due to another bug in the UDP datagram
handler which prevents the send() callback from being called when Rx
readiness was reported, so the situation cannot go away. It happens way
more easily with threads enabled, so that there is no dead time between
the moment the FD is disabled and another recv() is called, such as in
the example below where the request was sent to a closed port on the
loopback provoking an ICMP unreachable to be sent back:
[pid 20888] 18:26:57.826408 sendto(29, ";\340\1\0\0\1\0\0\0\0\0\1\0031wt\2eu\0\0\34\0\1\0\0)\2\0\0\0\0\0\0\0", 35, 0, NULL, >
[pid 20893] 18:26:57.826566 recvfrom(29, 0x7f97c54ef2f0, 513, 0, NULL, NULL) = -1 ECONNREFUSED (Connection refused)
[pid 20889] 18:26:57.826601 recvfrom(29, 0x7f97c76182f0, 513, 0, NULL, NULL) = -1 EAGAIN (Resource temporarily unavailable)
[pid 20892] 18:26:57.826630 recvfrom(29, 0x7f97c5cf02f0, 513, 0, NULL, NULL) = -1 EAGAIN (Resource temporarily unavailable)
[pid 20891] 18:26:57.826684 recvfrom(29, 0x7f97c66162f0, 513, 0, NULL, NULL) = -1 EAGAIN (Resource temporarily unavailable)
[pid 20895] 18:26:57.826716 recvfrom(29, 0x7f97bffda2f0, 513, 0, NULL, NULL) = -1 EAGAIN (Resource temporarily unavailable)
[pid 20894] 18:26:57.826747 recvfrom(29, 0x7f97c4cee2f0, 513, 0, NULL, NULL) = -1 EAGAIN (Resource temporarily unavailable)
[pid 20888] 18:26:58.419838 recvfrom(29, 0x7ffcc8712c20, 513, 0, NULL, NULL) = -1 EAGAIN (Resource temporarily unavailable)
[pid 20893] 18:26:58.419900 recvfrom(29, 0x7f97c54ef2f0, 513, 0, NULL, NULL) = -1 EAGAIN (Resource temporarily unavailable)
(... hundreds before next sendto() ...)
This situation was handled by clearing HUP and ERR when recv()
returns <0.
A second case was handled, there was a control for a missing dgram
handler, but it does nothing, causing the FD to ring again if this
situation ever happens. After looking at the rest of the code, it
doesn't seem possible to face such a situation because these handlers
are registered during startup, but at least we need to handle it
properly.
A third case was handled, that's mainly a small optimization. With
threads and massive responses, due to the large lock around the loop,
it's likely that some threads will have seen fd_recv_ready() and will
wait at the lock(). But if they wait here, chances are that other
threads will have eliminated pending data and issued fd_cant_recv().
In this case, better re-check fd_recv_ready() before performing the
recv() call to avoid the huge amounts of syscalls that happen on
massively threaded setups.
This patch must be backported as far as 1.6 (the atomic AND just
needs to be turned to a regular AND).
`eb` being tested above, `res` cannot be null, so the condition is
not needed and introduces potential dead code.
also fix a typo in associated comment
This should fix issue #349
Reported-by: Илья Шипицин <chipitsine@gmail.com>
Signed-off-by: William Dauchy <w.dauchy@criteo.com>
It was noted in #48 that there are times when a configuration
may use the server-template directive with SRV records and
simultaneously want to control weights using an agent-check or
through the runtime api. This patch adds a new option
"ignore-weight" to the "resolve-opts" directive.
When specified, any weight indicated within an SRV record will
be ignored. This is for both initial resolution and ongoing
resolution.
Documentation states that the interval between 2 DNS resolution is
driven by "timeout resolve <time>" directive.
From a code point of view, this was applied unless the latest status of
the resolution was VALID. In such case, "hold valid" was enforce.
This is a bug, because "hold" timers are not here to drive how often we
want to trigger a DNS resolution, but more how long we want to keep an
information if the status of the resolution itself as changed.
This avoid flapping and prevent shutting down an entire backend when a
DNS server is not answering.
This issue was reported by hamshiva in github issue #345.
Backport status: 1.8
As reported by David Birdsong on the ML, the HTTP action do-resolve does
not use the DNS cache.
Actually, the action is "registred" to the resolution for said name to
be resolved and wait until an other requester triggers the it. Once the
resolution is finished, then the action is updated with the result.
To trigger this, you must have a server with runtime DNS resolution
enabled and run a do-resolve action with the same fqdn AND they use the
same resolvers section.
This patch fixes this behavior by ensuring the resolution associated to
the action has a valid answer which is not considered as expired. If
those conditions are valid, then we can use it (it's the "cache").
Backport status: 2.0
Processing of SRV record weight was inaccurate and when a SRV record's
weight was set to 0, HAProxy enforced it to '1'.
This patch aims at fixing this without breaking compability with
previous behavior.
Backport status: 1.8 to 2.0
@davidmogar reported a github issue (#227) about problems with
do-resolve action when the request contains a body.
The variable was never populated in such case, despite tcpdump shows a
valid DNS response coming back.
The do-resolve action is a task in HAProxy and so it's waken by the
scheduler each time the scheduler think such task may have some work to
do.
When a simple HTTP request is sent, then the task is called, it sends
the DNS request, then the scheduler will wake up the task again later
once the DNS response is there.
Now, when the client send a PUT or a POST request (or any other type)
with a BODY, then the do-resolve action if first waken up once the
headers are processed. It sends the DNS request. Then, when the bytes
for the body are processed by HAProxy AND the DNS response has not yet
been received, then the action simply terminates and cleans up all the
data associated to this resolution...
This patch detect such behavior and if the action is now waken up while
a DNS resolution is in RUNNING state, then the action will tell the
scheduler to wake it up again later.
Backport status: 2.0 and above
There were 221 places where a status message or an error message were built
to be returned on the CLI. All of them were replaced to use cli_err(),
cli_msg(), cli_dynerr() or cli_dynmsg() depending on what was expected.
This removed a lot of duplicated code because most of the times, 4 lines
are replaced by a single, safer one.
The old module proto_http does not exist anymore. All code dedicated to the HTTP
analysis is now grouped in the file proto_htx.c. So, to finish the polishing
after removing the legacy HTTP code, proto_htx.{c,h} files have been moved in
http_ana.{c,h} files.
In addition, all HTX analyzers and related functions prefixed with "htx_" have
been renamed to start with "http_" instead.
The do-resolve action tests for a client connection to the stream and
tries to get the client's address, otherwise it refrains from performing
the resolution. This really makes no sense at all and looks like an
earlier attempt at resolving the client's address to test that the
code was working. Further, it prevents the action from being used
from other places such as an autonomous applet for example, even if
at the moment this use case does not exist.
This patch simply removes the irrelevant test.
This can be backported to 2.0.
The 'do-resolve' action is an http-request or tcp-request content action
which allows to run DNS resolution at run time in HAProxy.
The name to be resolved can be picked up in the request sent by the
client and the result of the resolution is stored in a variable.
The time the resolution is being performed, the request is on pause.
If the resolution can't provide a suitable result, then the variable
will be empty. It's up to the admin to take decisions based on this
statement (return 503 to prevent loops).
Read carefully the documentation concerning this feature, to ensure your
setup is secure and safe to be used in production.
This patch creates a global counter to track various errors reported by
the action 'do-resolve'.
In dns.c, dns_link_resolution(), each type of dns requester is managed
separately, that said, the callback function is affected globaly (and
points to server type callbacks only).
This design prevents the addition of new dns requester type and this
patch aims at fixing this limitation: now, the callback setting is done
directly into the portion of code dedicated to each requester type.