The function only works with the CLI's appctx and does most of the
convenient work of dumping a stream into a buffer (well, the trash
buffer for now). Let's split it in two so that most of the work is
done in a generic function and that the CLI-specific function relies
on that one.
The diff looks huge due to the changed indent caused by the extraction
of the switch/case statement, but when looked at using diff -b it's
small.
The HA_ANON_CLI() helper relies on the CLI appctx and prevents the code
from being made more generic. Let's extract the CLI's anon key separately
and pass it via HA_ANON_STR() instead.
Added set-timeout for frontend side of session, so it can be used to set
custom per-client timeouts if needed. Added cur_client_timeout to fetch
client timeout samples.
The commit 7f59d68fe2 ("BUG/MEDIIM: stconn: Flush output data before
forwarding close to write side") introduced a regression. When a write
timeout is detected, the shutdown is no longer forwarded. Dependig on the
channels state, it may block the processing, waiting the client or the
server leaves.
The commit above tries to avoid to truncate messages on shutdown but on
write timeout, if the channel is not empty, there is nothing more we can do
to send these data. It means the endpoint is unable to send data. In this
case, we must forward the shutdown.
This patch should be backported as far as 2.2.
As found by Coverity in issue #2273, the fix in commit e64bccab2 ("BUG/MINOR:
stream: protect stream_dump() against incomplete streams") was still not
enough, as scf/scb are still dereferenced to dump their flags and states.
This should be backported to 2.8.
If a stream is interrupted during its initialization by a panic signal
and tries to dump itself, it may cause a crash during the dump due to
scf and/or scb not being fully initialized. This may also happen while
releasing an endpoint to attach a new one. The effect is that instead
of dying on an abort, the process dies on a segv. This race is ultra-
rare but totally possible. E.g:
#0 se_fl_test (test=1, se=0x0) at include/haproxy/stconn.h:98
#1 sc_ep_test (test=1, sc=0x7ff8d5cbd560) at include/haproxy/stconn.h:148
#2 sc_conn (sc=0x7ff8d5cbd560) at include/haproxy/stconn.h:223
#3 stream_dump (buf=buf@entry=0x7ff9507e7678, s=0x7ff4c40c8800, pfx=pfx@entry=0x55996c558cb3 ' ' <repeats 13 times>, eol=eol@entry=10 '\n') at src/stream.c:2840
#4 0x000055996c493b42 in ha_task_dump (buf=buf@entry=0x7ff9507e7678, task=<optimized out>, pfx=pfx@entry=0x55996c558cb3 ' ' <repeats 13 times>) at src/debug.c:328
#5 0x000055996c493edb in ha_thread_dump_one (thr=thr@entry=18, from_signal=from_signal@entry=0) at src/debug.c:227
#6 0x000055996c493ff1 in ha_thread_dump (buf=buf@entry=0x7ff9507e7678, thr=thr@entry=18) at src/debug.c:270
#7 0x000055996c494257 in ha_panic () at src/debug.c:430
#8 ha_panic () at src/debug.c:411
(...)
#23 0x000055996c341fe8 in ssl_sock_close (conn=<optimized out>, xprt_ctx=0x7ff8dcae3880) at src/ssl_sock.c:6699
#24 0x000055996c397648 in conn_xprt_close (conn=0x7ff8c297b0c0) at include/haproxy/connection.h:148
#25 conn_full_close (conn=0x7ff8c297b0c0) at include/haproxy/connection.h:192
#26 h1_release (h1c=0x7ff8c297b3c0) at src/mux_h1.c:1074
#27 0x000055996c39c9f0 in h1_detach (sd=<optimized out>) at src/mux_h1.c:3502
#28 0x000055996c474de4 in sc_detach_endp (scp=scp@entry=0x7ff9507e3148) at src/stconn.c:375
#29 0x000055996c4752a5 in sc_reset_endp (sc=<optimized out>, sc@entry=0x7ff8d5cbd560) at src/stconn.c:475
Note that this cannot happen on "show sess" since a stream never leaves
process_stream in such an uninitialized state, thus it's really only the
crash dump that may cause this.
It should be backported to 2.8.
When the stream expiration date is computed at the end of process_stream(),
if there is no longer analyzer on the request channel, its analyse
expiration date is reset. The same is now performed on the response
channel. This way, we are sure to not inherit of an orphan expired date.
This should prevent spinning loop on process_stream().
Historically the client-fin and server-fin timeouts were made to allow
a connection closure to be effective quickly if the last data were sent
down a socket and the client didn't close, something that can happen
when the peer's FIN is lost and retransmits are blocked by a firewall
for example. This made complete sense in 1.5 for TCP and HTTP in close
mode. But nowadays with muxes, it's not done at the right layer anymore
and even the description doesn't match what is being done, because what
happens is that the stream will abort the whole transfer after it's done
sending to the mux and this timeout expires.
We've seen in GH issue 2095 that this can happen with very short timeout
values, and while this didn't trigger often before, now that the muxes
(h2 & quic) properly report an end of stream before even the first
sc_conn_sync_recv(), it seems that it can happen more often, and have
two undesirable effects:
- logging a timeout when that's not the case
- aborting the request channel, hence the server-side conn, possibly
before it had a chance to be put back to the idle list, causing
this connection to be closed and not reusable.
Unfortunately for TCP (mux_pt) this remains necessary because the mux
doesn't have a timeout task. So here we're adding tests to only do
this through an HTX mux. But to be really clean we should in fact
completely drop all of this and implement these timeouts in the mux
itself.
This needs to be backported to 2.8 where the issue was discovered,
and maybe carefully to older versions, though that is not sure at
all. In any case, using a higher timeout or removing client-fin in
HTTP proxies is sufficient to make the issue disappear.
At the end of process_stream(), if there was any change on request/response
analyzers, we now trigger a resync. It is performed if any analyzer is added
but also removed. It should help to catch internal changes on a stream and
eventually avoid it to be frozen.
There is no reason to backport this patch. But it may be good to keep an eye
on it, just in case.
In process_stream(), after request and response analyzers evaluation,
unhandled errors are processed, if any. In this case, depending on the case,
remaining request or response analyzers may be removed, unlesse the last one
about end of filters. However, auto-close is not reenabled in same
time. Thus it is possible to not forward the shutdown for a side to the
other one while no analyzer is there to do so or at least to make evolved
the situation.
In theory, it is thus possible to freeze a stream if no wakeup happens. And
it seems possible because it explain a freeze we've oberseved.
This patch could be backported to every stable versions but only after a
period of observation and if it may match an unexplained bug. It should not
lead to any loop but at worst and eventually to truncated messages.
The "show sess" command displays the stream's age in synthetic form,
and also makes it appear in the long version (show sess all). But that
last one uses the wrong origin, it uses accept_date.tv_sec instead of
accept_ts (formerly known as tv_accept). This was introduced in 1.4.2
with the long format, with commit 66dc20a17 ("[MINOR] stats socket: add
show sess <id> to dump details about a session"), while the code that
split the two variables was introduced in 1.3.16 with commit b7f694f20
("[MEDIUM] implement a monotonic internal clock"). This problem was
revealed by recent change ad5a5f677 ("MEDIUM: tree-wide: replace timeval
with nanoseconds in tv_accept and tv_request") that made this value report
random garbage, and generally emphasized by the fact that in 2.8 the two
clocks have sufficiently large an offset for such mistakes to be noticeable
early.
Arguably a difference between date and accept_date could also make sense,
to indicate if the stream had been there for more than 49 days, but this
would introduce instabilities for most sockets (including negative times)
for extremely rare cases while the goal is essentially to see how much
longer than a configured timeout a stream has been there. And that's what
other locations (including the short form) provide.
This patch could be backported but most users will never notice. In case
of backport, tv_accept.tv_sec should be used instead of accept_date.tv_sec.
This puts an end to the occasional confusion between the "now" date
that is internal, monotonic and not synchronized with the system's
date, and "date" which is the system's date and not necessarily
monotonic. Variable "now" was removed and replaced with a 64-bit
integer "now_ns" which is a counter of nanoseconds. It wraps every
585 years, so if all goes well (i.e. if humanity does not need
haproxy anymore in 500 years), it will just never wrap. This implies
that now_ns is never nul and that the zero value can reliably be used
as "not set yet" for a timestamp if needed. This will also simplify
date checks where it becomes possible again to do "date1<date2".
All occurrences of "tv_to_ns(&now)" were simply replaced by "now_ns".
Due to the intricacies between now, global_now and now_offset, all 3
had to be turned to nanoseconds at once. It's not a problem since all
of them were solely used in 3 functions in clock.c, but they make the
patch look bigger than it really is.
The clock_update_local_date() and clock_update_global_date() functions
are now much simpler as there's no need anymore to perform conversions
nor to round the timeval up or down.
The wrapping continues to happen by presetting the internal offset in
the short future so that the 32-bit now_ms continues to wrap 20 seconds
after boot.
The start_time used to calculate uptime can still be turned to
nanoseconds now. One interrogation concerns global_now_ms which is used
only for the freq counters. It's unclear whether there's more value in
using two variables that need to be synchronized sequentially like today
or to just use global_now_ns divided by 1 million. Both approaches will
work equally well on modern systems, the difference might come from
smaller ones. Better not change anyhting for now.
One benefit of the new approach is that we now have an internal date
with a resolution of the nanosecond and the precision of the microsecond,
which can be useful to extend some measurements given that timestamps
also have this resolution.
Instead we're using ns_to_sec(tv_to_ns(&now)) which allows the tv_sec
part to disappear. At this point, "now" is only used as a timeval in
clock.c where it is updated.
Let's get rid of timeval in storage of internal timestamps so that they
are no longer mistaken for wall clock time. These were exclusively used
subtracted from each other or to/from "now" after being converted to ns,
so this patch removes the tv_to_ns() conversion to use them natively. Two
occurrences of tv_isge() were turned to a regular wrapping subtract.
Instead of operating on {sec, usec} now we convert both operands to
ns then subtract them and convert to ms. This is a first step towards
dropping timeval from these timestamps.
Interestingly, tv_ms_elapsed() and tv_ms_remain() are no longer used at
all and could be removed.
SC_FL_EOS flag is added to report the end-of-stream at the SC level. It will
be used to distinguish end of stream reported by the endoint, via the
SE_FL_EOS flag, and the abort triggered by the stream, via the
SC_FL_ABRT_DONE flag.
In this patch, the flag is defined and is systematically tested everywhere
SC_FL_ABRT_DONE is tested. It should be safe because it is never set.
We can now fully rely on SC_FL_ERROR flag from the stream. The first step is
to stop to set the SE_FL_ERROR flag. Only endpoints are responsible to set
this flag. It was a design limitation. It is now fixed.
From the stream, when SE_FL_ERROR flag is tested, we now also test the
SC_FL_ERROR flag. Idea is to stop to rely on the SE descriptor to detect
errors.
Here again, it is just a flag renaming. In SC flags, there is no longer
shutdown for reads but aborts. For now this flag is set when a read0 is
detected. It is of couse not accurate. This will be changed later.
After the flag renaming, it is now the turn for the channel function to be
renamed and moved in the SC scope. channel_shutw_now() is replaced by
sc_schedule_shutdown(). The request channel is replaced by the front SC and
the response is replace by the back SC.
Because shutowns for reads are now considered as aborts, the shudowns for
writes can now be considered as shutdowns. Here it is just a flag
renaming. SC_FL_SHUTW_NOW is renamed SC_FL_SHUT_WANTED.
After the flag renaming, it is now the turn for the channel function to be
renamed and moved in the SC scope. channel_shutr_now() is replaced by
sc_schedule_abort(). The request channel is replaced by the front SC and the
response is replace by the back SC.
Most of calls to channel_abort() are associated to a call to
channel_auto_close(). Others are in areas where the auto close is the
default. So, it is now systematically enabled when an abort is performed on
a channel, as part of channel_abort() function.
A regression was introduced when stream's timeouts were refactored. Write
timeouts are not testing is the right order. When timeous of the front SC
are handled, we must then test the read timeout on the request channel and
the write timeout on the response channel. But write timeout is tested on
the request channel instead. On the back SC, the same mix-up is performed.
We must be careful to handle timeouts before checking channel flags. To
avoid any confusions, all timeuts are handled first, on front and back SCs.
Then flags of the both channels are tested.
It is a 2.8-specific issue. No backport needed.
There is a bug at begining of process_stream(). The SE_FL_ERROR flag is
tested against backend stream-connector's flags instead of its SE
descriptor's flags. It is an old typo, introduced when the stream-interfaces
were replaced by the conn-streams.
This patch must be backported as far as 2.6.
The purpose of this patch is only a one-to-one replacement, as far as
possible.
CF_SHUTR(_NOW) and CF_SHUTW(_NOW) flags are now carried by the
stream-connecter. CF_ prefix is replaced by SC_FL_ one. Of course, it is not
so simple because at many places, we were testing if a channel was shut for
reads and writes in same time. To do the same, shut for reads must be tested
on one side on the SC and shut for writes on the other side on the opposite
SC. A special care was taken with process_stream(). flags of SCs must be
saved to be able to detect changes, just like for the channels.
There is a bug in a way the channels flags are checked to set clientfin or
serverfin timeout. Indeed, to set the clientfin timeout, the request channel
must be shut for reads (CF_SHUTR) or the response channel must be shut for
writes (CF_SHUTW). As the opposite, the serverfin timeout must be set when
the request channel is shut for writes (CF_SHUTW) or the response channel is
shut for reads (CF_SHUTR).
It is a 2.8-dev specific issue. No backport needed.
In stream_free() if we fail to allocate s->scb() we go to the path where
we try to free it, and it doesn't like being called with a null at all.
It's easily reproducible with -dMfail,no-cache and "tune.fail-alloc 10"
in the global section.
This must be backported to 2.6.
When we exit from process_stream(), if the task is expired, we try to handle
the stream timeouts and we resync the stream-connectors. This avoids a
useless immediate wakeup. It is not really an issue, but it is a small
improvement in edge cases.
This will be mandatory to be able to handle stream's timeouts before exiting
process_stream(). So, to not duplicate code, all this stuff is moved in a
dedicated function.
At the end of process_stream(), A BUG_ON was recently added to abort if we
leave the function with an expired task. However, it may happen if an event
prevents the timeout to be handled but nothing evolved. In this case, the
task expiration is not updated and we expect to catch the timeout on the
immediate task wakeup.
No backport needed.
The half-closed timeout is now directly retrieved from the proxy
settings. There is no longer usage for the .hcto field in the stconn
structure. So let's remove it.
Expiration dates in trace messages are now relative to now_ms. It is fairly
easier to read traces this way. And an expired date is now negative. So, it
is also easy to detect when a timeout was reached.
Becasue read and write timeout are now detected using .lra and .fsb fields
of the stream-endpoint descriptor, it is better to also use these fields to
report read and write expiration date in trace messages. Especially because
old rex and wex fields will be removed.
We stop to use the channel's expiration dates to detect read and write
timeouts on the channels. We now rely on the stream-endpoint descriptor to
do so. All the stuff is handled in process_stream().
The stream relies on 2 helper functions to know if the receives or sends may
expire: sc_rcv_may_expire() and sc_snd_may_expire().
The stream endpoint descriptor now owns two date, lra (last read activity) and
fsb (first send blocked).
The first one is updated every time a read activity is reported, including data
received from the endpoint, successful connect, end of input and shutdown for
reads. A read activity is also reported when receives are unblocked. It will be
used to detect read timeouts.
The other one is updated when no data can be sent to the endpoint and reset
when some data are sent. It is the date of the first send blocked by the
endpoint. It will be used to detect write timeouts.
Helper functions are added to report read/send activity and to retrieve lra/fsb
date.
Read and write timeouts (.rto and .wto) are now replaced by an unique
timeout, call .ioto. Since the recent refactoring on channel's timeouts,
both use the same value, the client timeout on client side and the server
timeout on the server side. Thus, this part may be simplified. Now it
represents the I/O timeout.
These timers are related to the I/O. Thus it is logical to move them into
the SE descriptor. The patch is a bit huge but it is just a
replacement. However it is error-prone.
From the stconn or the stream, helper functions are used to get, set or
reset these timers. This simplify the timers manipulations.
Read and write timeouts concerns the I/O. Thus, it is logical to move it into
the stconn. At the end, the stream is responsible to detect the timeouts. So
it is logcial to have these values in the stconn and not in the SE
descriptor. But it may change depending on the recfactoring.
So, now:
* scf->rto is used instead of req->rto
* scf->wto is used instead of res->wto
* scb->rto is used instead of res->rto
* scb->wto is used instead of req->wto
This patch removes CF_READ_ERROR and CF_WRITE_ERROR flags. We now rely on
SE_FL_ERR_PENDING and SE_FL_ERROR flags. SE_FL_ERR_PENDING is used for write
errors and SE_FL_ERROR for read or unrecoverable errors.
When a connection error is reported, SE_FL_ERROR and SE_FL_EOS are now set and a
read event and a write event are reported to be sure the stream will properly
process the error. At the stream-connector level, it is similar. When an error
is reported during a send, a write event is triggered. On the read side, nothing
more is performed because an error at this stage is enough to wake the stream
up.
A major change is brought with this patch. We stop to check flags of the
ooposite channel to report abort or timeout. It also means when an read or
write error is reported on a side, we no longer update the other side. Thus
a read error on the server side does no long lead to a write error on the
client side. This should ease errors report.
This flag was introduced in 1.3 to fix a design issue. It was untouch since
then but there is no reason to still have this trick. Note it could be good
to review what happens in HTTP with the server is waiting for the end of the
request. It could be good to be sure a client timeout is always reported.
The option was renamed to only permit to disable the fast-forward. First
there is no reason to enable it because it is the default behavior. Then it
introduced a bug because there is no way to be sure the command line has
precedence over the configuration this way. So, the option is now named
"tune.disable-fast-forward" and does not support any argument. And of
course, the commande line option "-dF" has now precedence over the
configuration.
No backport needed.
We must never exit for the stream processing function with an expired
task. Otherwise, we are pretty sure this will ends with a spinning loop. It
is really better to abort as far as possible and with the original buggy
state. This will ease the debug sessions.
The new global option "tune.fast-forward" can be set to "off" to disable the
data fast-forward. It is an debug option, thus it is internally marked as
experimental. The directive "expose-experimental-directives" must be set
first to use this one. By default, the data fast-forward is enable.
It could be usefull to force to wake the stream up when data are
received. To be sure, evreything works fine in this case. The data
fast-forward is an optim. It must work without it. But some code may rely on
the fact the stream will not be woken up. With this option, it is possible
to spot some hidden bugs.
This field is used by stream_new() to optionally set the applet the
stream will connect to for simple proxies like the CLI for example.
But it has never been configurable to anything and is always strictly
equal to the frontend's ->default_target. Let's just drop it and make
stream_new() only use the frontend's. It makes more sense anyway as
we don't want the proxy to work differently based on the "bind" line.
This idea was brought in 1.6 hoping that the h2 implementation would
use applets for decoding (which was dropped after the very first
attempt in 1.8).
When bind_conf were created, some elements such as the analysers mask
ought to have moved there but that wasn't the case. Now that it's
getting clearer that bind_conf provides all binding parameters and
the listener is essentially a listener on an address, it's starting
to get really confusing to keep such parameters in the listener, so
let's move the mask to the bind_conf. We also take this opportunity
for pre-setting the mask to the frontend's upon initalization. Now
several loops have one less argument to take care of.
In applets, we stop processing when a write error (CF_WRITE_ERROR) or a shutdown
for writes (CF_SHUTW) is detected. However, any write error leads to an
immediate shutdown for writes. Thus, it is enough to only test if CF_SHUTW is
set.
When a read error (CF_READ_ERROR) is reported, a shutdown for reads is
always performed (CF_SHUTR). Thus, there is no reason to check if
CF_READ_ERROR is set if CF_SHUTR is also checked.
CF_READ_ATTACHED flag is only used in input events for stream analyzers,
CF_MASK_ANALYSER. A read event can be reported instead and this flag can be
removed. We must only take care to report a read event when the client
connection is upgraded from TCP to HTTP.
It appears CF_ANA_TIMEOUT is flag only used in CF_MASK_ANALYSER. All
analyzer timeout relies on the analysis expiration date (chn->analyse_exp).
Worst, once set, this flag is never removed. Thus this flag can be removed
and replaced by a read event (CF_READ_EVENT).
Thanks to previous changes, CF_WRITE_ACTIVITY flags can be removed.
Everywhere it was used, its value is now directly used
(CF_WRITE_EVENT|CF_WRITE_ERROR).
Thanks to previous changes, CF_READ_ACTIVITY flags can be removed.
Everywhere it was used, its value is now directly used
(CF_READ_EVENT|CF_READ_ERROR).
Just like CF_READ_PARTIAL, CF_WRITE_PARTIAL is now merged with
CF_WRITE_EVENT. There a subtlety in sc_notify(). The "connect" event
(formely CF_WRITE_NULL) is now detected with
(CF_WRITE_EVENT + sc->state < SC_ST_EST).
CF_READ_PARTIAL flag is now merged with CF_READ_EVENT. It means
CF_READ_EVENT is set when a read0 is received (formely CF_READ_NULL) or when
data are received (formely CF_READ_ACTIVITY).
There is nothing special here, except conditions to wake the stream up in
sc_notify(). Indeed, the test was a bit changed to reflect recent
change. read0 event is now formalized by (CF_READ_EVENT + CF_SHUTR).
As for CF_READ_NULL, it appears CF_WRITE_NULL and other write events on a
channel are mainly used to wake up the stream and may be replace by on write
event.
In this patch, we introduce CF_WRITE_EVENT flag as a replacement to
CF_WRITE_EVENT_NULL. There is no breaking change for now, it is just a
rename. Gradually, other write events will be merged with this one.
CF_READ_NULL flag is not really useful and used. It is a transient event
used to wakeup the stream. As we will see, all read events on a channel may
be resumed to only one and are all used to wake up the stream.
In this patch, we introduce CF_READ_EVENT flag as a replacement to
CF_READ_NULL. There is no breaking change for now, it is just a
rename. Gradually, other read events will be merged with this one.
The number of stick-counter entries usable by track-sc rules is currently
set at build time. There is no good value for this since the vast majority
of users don't need any, most need only a few and rare users need more.
Adding more counters for everyone increases memory and CPU usages for no
reason.
This patch moves the per-session and per-stream arrays to a pool of a size
defined at boot time. This way it becomes possible to set the number of
entries at boot time via a new global setting "tune.stick-counters" that
sets the limit for the whole process. When not set, the MAX_SESS_STR_CTR
value still applies, or 3 if not set, as before.
It is also possible to lower the value to 0 to save a bit of memory if
not used at all.
Note that a few low-level sample-fetch functions had to be protected due
to the ability to use sample-fetches in the global section to set some
variables.
This patch adds the support of following actions in the http-after-response
ruleset:
* set-map, del-map and del-acl
* set-log-level
* sc-inc-gpc, sc-inc-gpc0 and set-inc-gpc1
* sc-inc-gpt and sc-set-gpt0
This patch should solve the issue #1980.
In http_create_txn(): vars_init_head() was performed on both s->vars_txn
and s->var_reqres lists.
But this is wrong, these two lists are already initialized upon stream
creation in stream_new().
Moreover, between stream_new() and http_create_txn(), some variable may
be defined (e.g.: by the frontend), resulting in lists not being empty.
Because of this "extra" list initialization, already defined variables
can be lost.
This causes txn dependant code not being able to access previously defined
variables as well as memory leak because http_destroy_txn() relies on these
lists to perform the purge.
This proved to be the case when a frontend sets variables and lua sample
fetch is used in backend section as described in GH #1935.
Many thanks to Darragh O'Toole for his detailed report.
Removing extra var_init_head (x2) in http_create_txn() to fix the issue.
Adding somme comments in the code in an attempt to prevent future misuses
of s->var_reqres, and s->var_txn lists.
It should be backported in every stable version.
(This is an old bug that seems to exist since 1.6-dev6)
[cf: On 2.0 and 1.8, for the legacy HTTP code, vars_init() are used during
the TXN cleanup, when the stream is reused. So, these calls must be
moved from http_init_txn() to http_reset_txn() and not removed.]
The commit bc7c207f74 ("BUG/MAJOR: stick-tables: do not try to index a
server name for applets") tried to catch applets case when we tried to index
the server name. However, there is still an issue. The applets are
unconditionally casted to servers and this bug exists since a while. it's
just luck if it doesn't crash.
Now, when store rules are processed, we skip the rule if the stream's target
is not a server or, of course, if it is a server but the "non-stick" option
is set. However, we still take care to release the sticky session.
This patch must be backported to all stable versions.
Since commit 03cdf55e6 ("MINOR: stream: Stickiness server lookup by name.")
in 2.0-dev6, server names may be used instead of their IDs, in order to
perform stickiness. However the commit above may end up trying to insert
an empty server name in the dictionary when the server is an applet
instead, resulting in an immediate segfault. This is typically what
happens when a "stick-store" rule is present in a backend featuring a
"stats" directive. As there doesn't seem to be an easy way around it,
it seems to imply that "stick-store" is not much used anymore.
The solution here is to only try to insert non-null keys into the
dictionary. The patch moves the check of the key type before the
first lock so that the test on the key can be performed under the lock
instead of locking twice (the patch is more readable with diff -b).
Note that before 2.4, there's no <key> variable there as it was
introduced by commit 92149f9a8 ("MEDIUM: stick-tables: Add srvkey
option to stick-table"), but the __objt_server(s->target)->id still
needs to be tested.
This needs to be backported as far as 2.0.
Add an anonymization for an element missed in the first merge
for 'show sess all'.
No backport needed, except if anonymization mechanism is backported.
The frontend SC is attached before the backend one is allocated. Thus an
allocation error on backend SC must be handled before an error on the
frontend SC.
This patch must be backported to 2.6.
Modify stream.c in order to hash the following confidential data if the
anonymized mode is enabled:
- configuration elements such as frontend/backend/server names
- IP addresses
It was a mistake to put these two fields in the struct task. This
was added in 1.9 via commit 9efd7456e ("MEDIUM: tasks: collect per-task
CPU time and latency"). These fields are used solely by streams in
order to report the measurements via the lat_ns* and cpu_ns* sample
fetch functions when task profiling is enabled. For the rest of the
tasks, this is pure CPU waste when profiling is enabled, and memory
waste 100% of the time, as the point where these latencies and usages
are measured is in the profiling array.
Let's move the fields to the stream instead, and have process_stream()
retrieve the relevant info from the thread's context.
The struct task is now back to 120 bytes, i.e. almost two cache lines,
with 32 bit still available.
When task profiling is enabled, the reported CPU time for short requests
and responses (e.g. redirect) is always zero in the logs, because
process_stream() is only called once and the CPU time is measured after
it returns. This is particuarly annoying when dealing with denies and in
general anything that deals with parasitic traffic because it can be
difficult to figure where the CPU is spent.
The solution taken in this patch consists in having process_stream()
update the cpu time itself before logging and quitting. It's very simple.
It will not take into account the time taken to produce the log nor
freeing the stream, but that's marginal compared to always logging zero.
The task's wake_date is also reset so that the scheduler doesn't have to
perform these operations again. This is dependent on the following patch:
MINOR: sched: store the current profile entry in the thread context
It should be backported to 2.6 as it does help for troubleshooting.
This helper will be called for muxes that provide it and will be used
to let the mux provide extra information about the stream attached to
a stream descriptor. A line prefix is passed in argument so that the
mux is free to break long lines without breaking indent. No prefix
means no line breaks should be produced (e.g. for short dumps).
When an appctx is found looping over itself, we report a number of info
but not the pointers to the definition nor the handler, which can be quite
handy in some cases. Let's add them and try to decode the symbol.
From now on, the FD's update_mask only refers to local thread IDs. However,
there remains a limitation, in updt_fd_polling(), we temporarily have to
check and set shared FDs against .thread_mask, which still contains global
ones. As such, nbtgroups > 1 may break (but this is not yet supported without
special build options).
The "ctx" and "st2" parts in the appctx were marked for removal in 2.7
and were emulated using memcpy/memset etc for possible external code.
Let's remove this now.
The tasks currently rely on a mask but do not have an assigned thread ID,
contrary to tasklets. However, in practice they're either running on a
single thread or on any thread, so that it will be worth simplifying all
this in order to ease the transition to the thread groups.
This patch introduces a "tid" field in the task struct, that's either
the number of the thread the task is attached to, or a negative value
if the task is not bound to a thread, (i.e. its mask is all_threads_mask).
The new ID is only set and updated but not used yet.
There's a subtle bug in stream_free() when releasing captures. The
pools may be NULL when no capture is defined, and the calls to
pool_free() are inconditional. The only reason why this doesn't
cause trouble is because the pointer to be freed is always NULL in
this case and we don't go further down the chain. That's particularly
ugly and it complicates debugging, so let's only call these ones when
the pointers are set.
There's no impact on running code, it only fools those trying to debug
pools manually. There's no need to backport it though it unless it helps
for debugging sessions.
On destructive connection upgrade, instead of using the new mux name to
abort the old stream, we can relay on the stream connector flags. If it is
detached after the upgrade, it means the stream will not be resused by the
new mux and it must be aborted.
This patch may be backported to 2.6.
When the protocol is changed for a client connection at the stream level
(from TCP to H1/H2), there are two cases. The stream may be reused or
not. The first case, when the stream is reused is working. The second one is
buggy since the conn-stream refactoring and leads to a crash.
In this case, the new mux don't reuse the stream. It must be silently
aborted. However, its front stream connector is still referencing the
connection. So it must be detached. But it must be performed in two stages,
to be sure to not loose the context for the upgrade and to be able to
rollback on error. So now, before the upgrade, we prepare to detach the
stconn and it is finally detached if the upgrade succeeds. There is a trick
here. Because we pretend the stconn is detached but its state is preserved.
This patch must be backported to 2.6.
stream.c and mux_fcgi.c may cause a warning for a possible NULL deref
at -Os, while that is not possible thanks to the previous test. Let's
just switch to __htx_get_head_blk() instead.
Now that the data consumption from the endpoint is the default setting,
we can generalize the pre-clearing of the wont_consume flag, which is
no more specific to applets. In practice it's not needed anymore to do
it, but since streams might be initiatied from asynchronous applets,
these might have blocked their consumption side before creating the
stream thus it's safer to preserve the clearing of the flag.
Function arguments and local variables called "cs" were renamed to "sc"
to avoid future confusion. The HTTP analyser and the backend functions
were all updated after being reviewed. Function stream_update_both_cs()
was renamed to stream_update_both_sc()
There's no more reason for keepin the code and definitions in conn_stream,
let's move all that to stconn. The alphabetical ordering of include files
was adjusted.
This file contains all the stream-connector functions that are specific
to application layers of type stream. So let's name it accordingly so
that it's easier to figure what's located there.
The alphabetical ordering of include files was preserved.
An equivalent applet_need_more_data() was added as well since that function
is mostly used from applet code. It makes it much clearer that the applet
is waiting for data from the stream layer.
These ones are essentially for the stream endpoint, let's give them a
name that matches the intent. Equivalent versions were provided in the
applet namespace to ease code legibility.
The following flags are not at all related to the endpoint but to the
connector itself:
- SE_FL_RXBLK_ROOM
- SE_FL_RXBLK_BUFF
- SE_FL_RXBLK_CHAN
As such they have no business staying in the endpoint descriptor and
they must move to the stream connector. They've also been renamed
accordingly to better match what they correspond to (the same name
as the function that sets them).
The rare occurrences of cs_rx_blocked() were replaced by an explicit
test on the list of flags. The reason is that cs_rx_blocked() used to
preserve some tests that are not needed at certain places since already
known. For the same reason SE_FL_RXBLK_ANY wasn't converted. As such it
will later be possible to carefully review these few locations and
eliminate the unneeded flags from the tests. No particular function
was made to test them since they're explicit enough.
It now looks like ci_putchk() and friends could very well place the flag
themselves on the connector when they detect a buffer full condition, as
this would significantly simplify the high-level API. But all usages must
first be reviewed before this simplification can be done. For now it
remains done by applet_put*() instead.
At plenty of places we combine multiple flags checks to determine if we
can receive (endp_ready, rx_blocked, cf_shutr etc). Let's group them
under a single function that is meant to replace existing tests.
Some tests were only checking the rxblk flags at the connection level,
so for now they were not converted, this requires a bit of auditing
first, and probably a test to determine whether or not to check for
cf_shutr (e.g. there is none if no stream is present).
The analysis of cs_rx_endp_more() showed that the purpose is for a stream
endpoint to inform the connector that it's ready to deliver more data to
that one, and conversely cs_rx_endp_done() that it's done delivering data
so it should not be bothered again for this.
This was modified two ways:
- the operation is no longer performed on the connector but on the
endpoint so that there is no more doubt when reading applet code
about what this rx refers to; it's the endpoint that has more or
no more data.
- an applet implementation is also provided and mostly used from
applet code since it saves the caller from having to access the
endpoint descriptor.
It's visible that the flag ought to be inverted because some places
have to set it by default for no reason.
These functions are used by the application layer to disable or enable
reading at the stream connector's level when the input buffer failed to
be allocated (or was finally allocated). The new names makes things
clearer.
This makes SE_FL_APPLET_NEED_CONN autonomous, in that we check for it
everywhere we have a relevant cs_rx_blocked(), so that the flag doesn't
need anymore to be covered by cs_rx_blocked(). Indeed, this flag doesn't
really translate a receive blocking condition but rather a refusal to
wake up an applet that is waiting for a connection to finish to setup.
This also ensures we will not risk to set it back on a new endpoint
after cs_reset_endp() via SE_FL_APP_MASK, because the flag being
specific to the endpoint only and not to the connector, we don't
want to preserve it when replacing the endpoint.
It's possible that cs_chk_rcv() could later be further simplified if
we can demonstrate that the two tests in it can be merged.
One flag (RXBLK_SHUT) is always set with CF_SHUTR, so in order to remove
it, we first need to make sure we always check for CF_SHUTR where
cs_rx_blocked() is being used.
sc_is_send_allowed() is now used everywhere instead of the combination
of cs_tx_endp_ready() && !cs_tx_blocked(). There's no place where we
need them individually thus it's simpler. The test was placed in cs_util
as we'll complete it later.
The following functions which act on a connection-based stream connector
were renamed to sc_conn_* (~60 places):
cs_conn_drain_and_shut
cs_conn_process
cs_conn_read0
cs_conn_ready
cs_conn_recv
cs_conn_send
cs_conn_shut
cs_conn_shutr
cs_conn_shutw
These functions return the app-layer associated with an stconn, which
is a check, a stream or a stream's task. They're used a lot to access
channels, flags and for waking up tasks. Let's just name them
appropriately for the stream connector.
We're starting to propagate the stream connector's new name through the
API. Most call places of these functions that retrieve the channel or its
buffer are in applets. The local variable names are not changed in order
to keep the changes small and reviewable. There were ~92 uses of cs_ic(),
~96 of cs_oc() (due to co_get*() being less factorizable than ci_put*),
and ~5 accesses to the buffer itself.
This applies the change so that the applet code stops using ci_putchk()
and friends everywhere possible, for the much saferapplet_put*() instead.
The change is mechanical but large. Two or three functions used to have no
appctx and a cs derived from the appctx instead, which was a reminiscence
of old times' stream_interface. These were simply changed to directly take
the appctx. No sensitive change was performed, and the old (more complex)
API is still usable when needed (e.g. the channel is already known).
The change touched roughly a hundred of locations, with no less than 124
lines removed.
It's worth noting that the stats applet, the oldest of the series, could
get a serious lifting, as it's still very channel-centric instead of
propagating the appctx along the chain. Given that this code doesn't
change often, there's no emergency to clean it up but it would look
better.
This also follows the natural naming. There are roughly 238 changes, all
totally trivial. conn_stream-t.h has become completely void of any
"conn_stream" related stuff now (except its name).
This renames the "struct conn_stream" to "struct stconn" and updates
the descriptions in all comments (and the rare help descriptions) to
"stream connector" or "connector". This touches a lot of files but
the change is minimal. The local variables were not even renamed, so
there's still a lot of "cs" everywhere.
Just like for the appctx, this is a pointer to a stream endpoint descriptor,
so let's make this explicit and not confuse it with the full endpoint. There
are very few changes thanks to the preliminary refactoring of the flags
manipulation.
That's the "stream endpoint" pointer. Let's change it now while it's
not much spread. The function __cs_endp_target() wasn't yet renamed
because that will change more globally soon.
This changes all main uses of cs->endp->flags to the sc_ep_*() equivalent
by applying coccinelle script cs_endp_flags.cocci.
Note: 143 locations were touched, manually reviewed and found to be OK,
except a single one that was adjusted in cs_reset_endp() where the flags
are read and filtered to be used as-is and not as a boolean, hence was
replaced with sc_ep_get() & $FLAGS.
The script was applied with all includes:
spatch --in-place --recursive-includes -I include --sp-file $script $files
Even if `unique_id` and `s->unique_id` are identical it is a bit odd to
`isttest()` `unique_id` and then use `s->unique_id` in the call to `http_add_header()`.
This "issue" was introduced in a17e66289c,
because before that commit the function returned the length of the ID, as it
was not an ist.
It is just a helper function that call the .init applet callback function,
if it exists. This will simplify a bit the init stage when a new applet is
started. For now, this callback function is only used when a new service is
started.
The session created for frontend applets is now totally owns by the
corresponding appctx. It means the appctx is now responsible to release
it. This removes the hack in stream_free() about frontend applets to be sure
to release the session.
This one is the pointer to the conn_stream which is always in the
endpoint that is always present in the appctx, thus it's not needed.
This patch removes it and replaces it with appctx_cs() instead. A
few occurences that were using __cs_strm(appctx->owner) were moved
directly to appctx_strm() which does the equivalent.
This one has been misused for a while as well, it's time to deprecate it
since we don't use it anymore. It will be removed in 2.7 and for now is
only marked as deprecated. Since we need to guarantee that it's zeroed
before starting any applet or CLI command, it was moved into an anonymous
union where its sibling is not marked as deprecated so that we can
continue to initialize it without triggering a warning.
If you found this commit after a bisect session you initiated to figure
why you got some build warnings and don't know what to do, have a look
at the code that deals with the "show fd", "show sess" or "show servers"
commands, as it's supposed to be self-explanatory about the tiny changes
to apply to your code to port it. If you find APPLET_MAX_SVCCTX to be
too small for your use case, either kindly ask for a tiny extension
(and try to get your code merged), or just use a pool.
The state was a constant, let's remove what remains of the switch/case.
The code from the "case" statement was only reindented as can be checked
with "git show -b".
This state is only an alias for "thr >= global.nbthread" which is the
sole condition that indicates the end and reaches it. Let's just drop
this state. There's only the STATE_LIST that's left.
This state was only used to preset the list element. Now that we can
guarantee that the context can be properly preset during the parsing
we don't need this state anymore. The first pointer has to be set to
point to the first stream during the initial call which is detected
by the pointer not yet being set (null). Thanks to this we can also
remove one state check on the abort path.
This makes use of the generic command context allocation so that the
appctx doesn't have to declare a specific one anymore. The context is
created during parsing.
There were plenty of leftovers from old code that were never removed
and that are not needed at all since these files do not use any
definition depending on fcntl.h, let's drop them.
A conn-stream is never detached from an endpoint or an application alone,
except on a reset. Thus, to avoid any error, these functions are now
private. And cs_destroy() function is added to destroy a conn-stream. This
function is called when a stream is released, on the front and back
conn-streams, and when a health-check is finished.
When a client abort is detected with the server conn-stream in CS_ST_INI
state, there is no reason to detach the endpoing because we know there is no
endpoint attached to this conn-stream. This patch depends on the commit
"BUG/MEDIUM: conn-stream: Set back CS to RDY state when the appctx is
created".
Since the recent changes about the conn-streams, the stream dump in "show
sess all" command is a bit mangled. front and back conn-stream are now
properly displayed (csf and csb). In addition, when there is no backend
endpoint, "APPCTX" was always reported. Now, "NONE" is reported in this
case.
It is 2.6-specific. No backport needed.
Github issue #472 reports a problem with short client connections making
stick-table entries disappear. The problem is in fact totally different
and stems at the connection establishment step.
What happens is that the stick-table there has a single entry. The
"stick-on" directive is forced to purge an existing entry before being
able to create a new one. The new entry will be committed during the
call to process_store_rules() on the response path.
But if the client sends the FIN immediately after the connection is set
up (e.g. using nc -z) then the SHUTR is received and will cancel the
connection setup just after it starts. This cancellation will induce a
call to cs_shutw() which will in turn leave the server-side state in
ST_DIS. This transition from ST_CON to ST_DIS doesn't belong to the
list of handled transition during the connection setup so it will be
handled right after on the regular path, causing the connection to be
closed. Because of this, we never pass through back_establish() and
the backend's analysers are never set on the response channel, which
is why process_store_rules() is not called and the stick-tables entry
never committed.
The comment above the code that causes this transition clearly says
that the function is to be used after the connection is established
with the server, but there's no such protection, and we always have
the AUTO_CLOSE flag there (but there's hardly any available condition
to eliminate it).
This patch adds a test for the connection not being in ST_CON or for
option abortonclose being set. It's sufficient to do the job and it
should not cause issues.
One concern was that the transition could happen during cs_recv()
after the connection switches from CON to RDY then the read0 would
be taken into account and would cause DIS to appear, which is not
handled either. But that cannot happen because cs_recv() doesn't do
anything until it's in ST_EST state, hence the read0() cannot be
called from CON/RDY. Thus the transition from CON to DIS is only
possible in back_handle_st_con() and back_handle_st_rdy() both of
which are called when dealing with the transition already, or when
abortonclose is set and the client aborts before connect() succeeds.
It's possible that some further improvements could be made to detect
this specific transition but it doesn't seem like anything would have
to be added.
This issue was first reported on 2.1. The abortonclose area is very
sensitive so it would be wise to backport slowly, and probably no
further than 2.4.
process_stream() and all associated functions now manipulate conn-streams.
stream-interfaces are no longer used. In addition, function to dump info
about a stream no longer print info about stream-interfaces.