si_reset_endpoint() function may be used to reset the SI's endpoint without
releasing the conn-stream if the endpoint is a connection. If the endpoint
is an appctx, it is released. This change is mandatory to merge the SI and
the CS and keep the backend conn-stream attached to the stream during
connection retries.
cs_detach() function is added to detach a conn-stream from the underlying
connection. This part will evovle to handle applets too. Concretely,
cs_destroy() is split to detach the conn-stream from its endpoint, via
cs_detach(), and then, the conn-stream is released, via cs_free().
The conn-stream will progressively replace the stream-interface. Thus, a
stream will have to allocate the backend conn-stream during its
creation. This means it will be possible to have a conn-stream with no
connection. To prepare this change, we test the conn-stream's connection
when we retrieve it.
Stream-interfaces will be moved in the conn-stream and the appctx will be
moved at the same level than the muxes. Idea is to merge the
stream-interface and the conn-stream and have a better symmetry between the
muxes and the applets. To limit bugs during this refactoring, when the SI
endpoint is released, the appctx case is handled first.
New function pool_parse_debugging() is now dedicated to parsing options
of -dM. For now it only handles the optional memory poisonning byte, but
the function may already return an informative message to be printed for
help, a warning or an error. This way we'll reuse it for the settings
that will be needed for configurable debugging options.
The STG_REGISTER init level is used to register known keywords and
protocol stacks. It must be called earlier because some of the init
code already relies on it to be known. For example, "haproxy -vv"
for now is constrained to start very late only because of this.
This patch moves it between STG_LOCK and STG_ALLOC, which is fine as
it's used for static registration.
Now -dM will set POOL_DBG_POISON for consistency with the rest of the
pool debugging options. As such now we only check for the new flag,
which allows the default value to be preset.
This option used to allow to store a marker at the end of the area, which
was used as a canary and detection against wrong freeing while the object
is used, and as a pointer to the last pool_free() caller when back in cache.
Now that we can compute the offsets at runtime, let's check it at run time
and continue the code simplification.
This option used to allow to store a pointer to the caller of the last
pool_alloc() or pool_free() at the end of the area. Now that we can
compute the offsets at runtime, let's check it at run time and continue
the code simplification. In __pool_alloc() we now always calculate the
return address (which is quite cheap), and the POOL_DEBUG_TRACE_CALLER()
calls are conditionned on the status of debugging option.
This macro is build-time dependent and is almost unused, yet where it
cannot easily be avoided. Now that we store the distinction between
pool->size and pool->alloc_sz, we don't need to maintain it and we
can instead compute it on the fly when creating a pool. This is what
this patch does. The variables are for now pretty static, but this is
sufficient to kill the macro and will allow to set them more dynamically.
The allocated size is the visible size plus the extra storage. Since
for now we can store up to two extra elements (mark and tracer), it's
convenient because now we know that the mark is always stored at
->size, and the tracer is always before ->alloc_sz.
Like previous patches, this replaces the build-time code paths that were
conditionned by CONFIG_HAP_POOLS with runtime paths conditionned by
!POOL_DBG_NO_CACHE. One trivial test had to be added in the hot path in
__pool_alloc() to refrain from calling pool_get_from_cache(), and another
one in __pool_free() to avoid calling pool_put_to_cache().
All cache-specific functions were instrumented with a BUG_ON() to make
sure we never call them with cache disabled. Additionally the cache[]
array was not initialized (remains NULL) so that we can later drop it
if not needed. It's particularly huge and should be turned to dynamic
with a pointer to a per-thread area where all the objects are located.
This will solve the memory usage issue and will improve locality, or
even help better deal with NUMA machines once each thread uses its own
arena.
There were very few functions left that were specific to global pools,
and even the checks they used to participate to are not directly on the
most critical path so they can suffer an extra "if".
What's done now is that pool_releasable() always returns 0 when global
pools are disabled (like the one before) so that pool_evict_last_items()
never tries to place evicted objects there. As such there will never be
any object in the free list. However pool_refill_local_from_shared() is
bypassed when global pools are disabled so that we even avoid the atomic
loads from this function.
The default global setting is still adjusted based on the original
CONFIG_NO_GLOBAL_POOLS that is set depending on threads and the allocator.
The global executable only grew by 1.1kB by keeping this code enabled,
and the code is simplified and will later support runtime options.
The test to decide whether or not to enforce integrity checks on cached
objects is now enabled at runtime and conditionned by this new debugging
flag. While previously it was not a concern to inflate the code size by
keeping the two functions static, they were moved to pool.c to limit the
impact. In pool_get_from_cache(), the fast code path remains fast by
having both flags tested at once to open a slower branch when either
POOL_DBG_COLD_FIRST or POOL_DBG_INTEGRITY are set.
When enabling pools integrity checks, we usually prefer to allocate cold
objects first in order to maximize the time the objects spend in the
cache. In order to make this configurable at runtime, let's introduce
a new debugging flag to control this allocation order. It is currently
preset by the DEBUG_POOL_INTEGRITY build-time setting.
This test used to appear at a single location in create_pool() to
enable a check on the pool name or unconditionally merge similarly
sized pools.
This patch introduces POOL_DBG_DONT_MERGE and conditions the test on
this new runtime flag, that is preset according to the aforementioned
debugging option.
The fail-alloc test used to be enabled/disabled at build time using
the DEBUG_FAIL_ALLOC macro, but it happens that the cost of the test
is quite cheap and that it can be enabled as one of the pool_debugging
options.
This patch thus introduces the first POOL_DBG_FAIL_ALLOC option, whose
default value depends on DEBUG_FAIL_ALLOC. The mem_should_fail() function
is now always built, but it was made static since it's never used outside.
This read-mostly variable will be used at runtime to enable/disable
certain pool-debugging features and will be set by the command-line
parser. A future option -dP will take a number of debugging features
as arguments to configure this variable's contents.
Add the ability to set a "server timeout" on the httpclient with either
the httpclient_set_timeout() API or the timeout argument in a request.
Issue #1470.
This function was renderred obsolete by commit a0b5831ee ("MEDIUM: pools:
centralize cache eviction in a common function") which replaced its last
call inside the loop with a single call out of the loop to pool_releasable()
as introduced by commit 91a8e28f9 ("MINOR: pool: add a function to estimate
how many may be released at once"). Let's remove it before it becomes wrong
and used again.
In htx_copy_msg(), if the destination buffer is empty, we perform a raw copy
of the message instead of a copy block per block. But we must be sure the
destianation buffer was really allocated. In other word, to perform a raw
copy, the HTX message must be empty _AND_ it must have some free space
available.
This function is only used to copy an HTTP reply (for instance, an error or
a redirect) in the buffer of the response channel. For now, we are sure the
buffer was allocated because it is a pre-requisite to call stream
analyzers. However, it may be a source of bug in future.
This patch may be backported as far as 2.3.
Implement the stream rcv_buf operation on QUIC mux.
A new buffer is stored in qcs structure named app_buf. This new buffer
will contains HTX and will be filled for example on H3 DATA frame
parsing.
The rcv_buf operation transfer as much as possible data from the HTX
from app_buf to the conn-stream buffer. This is mainly identical to
mux-h2. This is required to support HTTP POST data.
Move the QUIC datagram handlers oustide of the receivers. Use a global
handler per-thread which is allocated on post-config. Implement a free
function on process deinit to avoid a memory leak.
Since the relaxation of the run-queue locks in 2.0 there has been a
very small but existing race between expired tasks and running tasks:
a task might be expiring and being woken up at the same time, on
different threads. This is protected against via the TASK_QUEUED and
TASK_RUNNING flags, but just after the task finishes executing, it
releases it TASK_RUNNING bit an only then it may go to task_queue().
This one will do nothing if the task's ->expire field is zero, but
if the field turns to zero between this test and the call to
__task_queue() then three things may happen:
- the task may remain in the WQ until the 24 next days if it's in
the future;
- the task may prevent any other task after it from expiring during
the 24 next days once it's queued
- if DEBUG_STRICT is set on 2.4 and above, an abort may happen
- since 2.2, if the task got killed in between, then we may
even requeue a freed task, causing random behaviour next time
it's found there, or possibly corrupting the tree if it gets
reinserted later.
The peers code is one call path that easily reproduces the case with
the ->expire field being reset, because it starts by setting it to
TICK_ETERNITY as the first thing when entering the task handler. But
other code parts also use multi-threaded tasks and rightfully expect
to be able to touch their expire field without causing trouble. No
trivial code path was found that would destroy such a shared task at
runtime, which already limits the risks.
This must be backported to 2.0.
Along recent evolutions of the pools, we've lost the ability to reliably
detect double-frees because while in the past the same pointer was being
used to chain the objects in the cache and to store the pool's address,
since 2.0 they're different so the pool's address is never overwritten on
free() and a double-free will rarely be detected.
This patch sets the caller's return address there. It can never be equal
to a pool's address and will help guess what was the previous call path.
It will not work on exotic architectures nor with very old compilers but
these are not the environments where we're trying to get detailed bug
reports, and this is not done by default anyway so we don't care about
this limitation. Note that depending on the inlining status of the
function, the result may differ but that's no big deal either.
A test by placing a double free of an appctx inside the release handler
itself successfully reported the trouble during appctx_free() and showed
that the return address was in stream_int_shutw_applet() (this one calls
the release handler).
During global eviction we're visiting nodes from the LRU tail and we
determine their pool cache head and their pool. In order to make sure
we never mess up, let's add some backwards pointer to the thread number
and pool from the pool_cache_head. It's 64-byte aligned anyway so we're
not wasting space and it helps for debugging and will prevent memory
corruption the earliest possible.
When destroying a pool (e.g. at exit or when resizing buffers), it's
important to try to free all their local objects otherwise we can leave
some in the cache. This is particularly visible when changing "bufsize",
because "show pools" will then show two "trash" pools, one of which
contains a single object in cache (which is fortunately not reachable).
In all cases this happens while single-threaded so that's easy to do,
we just have to do it on the current thread.
The easiest way to do this is to pass an extra argument to function
pool_evict_from_local_cache() to force a full flush instead of a
partial one.
This can probably be backported to about all branches where this
applies, but at least 2.4 needs it.
DH structure is a low-level one that should not be used anymore with
OpenSSLv3. All functions working on DH were marked as deprecated and
this patch replaces the ones we used with new APIs recommended in
OpenSSLv3, be it in the migration guide or the multiple new manpages
they created.
This patch replaces all mentions of the DH type by the HASSL_DH one,
which will be replaced by EVP_PKEY with OpenSSLv3 and will remain DH on
older versions. It also uses all the newly created helper functions that
enable for instance to load DH parameters from a file into an EVP_PKEY,
or to set DH parameters into an SSL_CTX for use in a DHE negotiation.
The following deprecated functions will effectively disappear when
building with OpenSSLv3 : DH_set0_pqg, PEM_read_bio_DHparams, DH_new,
DH_free, DH_up_ref, SSL_CTX_set_tmp_dh.
Starting from OpenSSLv3, we won't rely on the
SSL_CTX_set_tmp_dh_callback mechanism so we will need to know the DH
size we want to use during init. In order for the default DH param size
to be used when no RSA or DSA private key can be found for a given bind
line, we will need to know the default size we want to use (which was
not possible the way the code was built, since the global default dh
size was set too late.
This new function makes use of the new OpenSSLv3 APIs that should be
used to load DH parameters from a file (or a BIO in this case) and that
should replace the deprecated PEM_read_bio_DHparams function.
Note that this function returns an EVP_PKEY when using OpenSSLv3 since
they now advise against using low level structures such as DH ones.
This helper function is not used yet so this commit should be stricly
iso-functional, regardless of the OpenSSL version.
The DH mechanism relies on DH objects that are low-level structures that
should not be used anymore starting from OpenSSLv3. With the newer
OpenSSL version, we should only use higher level EVP_PKEY objects.
Since enforcing this new logic to older versions of OpenSSL could be
dangerous (or plain impossible), we will keeptwo versions of the code
when required.
The HASSL_DH define will allow to unify some of the functions that were
created for DH use without having to add too many duplicated blocks of
code depending on the OpenSSL version.
ERR_func_error_string does not return anything anymore with OpenSSLv3,
it can be replaced by ERR_peek_error_func which did not exist on
previous versions.
Rename quic_conn_to_buf to qc_snd_buf and remove it from xprt ops. This
is done to reflect the true usage of this function which is only a
wrapper around sendto but cannot be called by the upper layer.
qc_snd_buf is moved in quic-sock because to mark its link with
quic_sock_fd_iocb which is the recvfrom counterpart.
SSL_CTX_set_tlsext_ticket_key_cb was deprecated on OpenSSLv3 because it
uses an HMAC_pointer which is deprecated as well. According to the v3's
manpage it should be replaced by SSL_CTX_set_tlsext_ticket_key_evp_cb
which uses a EVP_MAC_CTX pointer.
This new callback was introduced in OpenSSLv3 so we need to keep the two
calls in the source base and to split the usage depending on the OpenSSL
version.
"mcli-debug-mode on" enables every command that were meant for a worker,
on the CLI of the master. Which mean you can issue, "show fd", show
stat" in order to debug the MASTER proxy.
You can also combine it with "expert-mode on" or "experimental-mode on"
to access to more commands.
Allow to set the master CLI in expert or experimental mode. No command
within the master are unlocked yet, but it gives the ability to send
expert or experimental commands to the workers.
echo "@1; experimental-mode on; del server be1/s2" | socat /var/run/haproxy.master -
echo "experimental-mode on; @1 del server be1/s2" | socat /var/run/haproxy.master -
We'll need to lock the listener a little bit more during accept() and
tests show that a spinlock is a massive performance killer, so let's
first switch to an rwlock for this lock.
This patch might have to be backported for the next patch to work, and
if so, the change is almost mechanical (look for LISTENER_LOCK), but do
not forget about the few HA_SPIN_INIT() in the file. There's no reference
to this lock outside of listener.c nor listener-t.h.
This task will be used to schedule a timer when there is no activity on
the mux. The timeout is set via the "timeout client" from the
configuration file.
The timeout task process schedule the timeout only on specific
conditions. Currently, it's done if there is no opened bidirectional
stream.
For now this task is not used. This will be implemented in the following
commit.
It's among the cases that would provoke memory corruption, let's add
some tests against negative FDs and those larger than the table. This
must never ever happen and would currently result in silent corruption
or a crash. Better have a noticeable one exhibiting the call chain if
that were to happen.
We add a new flag to mark a connection as already enqueued for acception.
This is useful for 0-RTT session where a connection is first enqueued for
acception as soon as 0-RTT RX secrets could be derived. Then as for any other
connection, we could accept one more time this connection after handshake
completion which lead to very bad side effects.
Thank you to Amaury for this nice patch.
When starting HAProxy in master-worker, the master pre-allocate a struct
mworker_proc and do a socketpair() before the configuration parsing. If
the configuration loading failed, the FD are never closed because they
aren't part of listener, they are not even in the fdtab.
This patch fixes the issue by cleaning the mworker_proc structure that
were not asssigned a process, and closing its FDs.
Must be backported as far as 2.0, the srv_drop() only frees the memory
and could be dropped since it's done before an exec().
There were a few casts of list* to mt_list* that were upsetting some
old compilers (not sure about the effect on others). We had created
list_to_mt_list() purposely for this, let's use it instead of applying
this cast.
At a few places in the code the switch/case ond flags are tested against
64-bit constants without explicitly being marked as long long. Some
32-bit compilers complain that the constant is too large for a long, and
other likely always use long long there. Better fix that as it's uncertain
what others which do not complain do. It may be backported to avoid doubts
on uncommon platforms if needed, as it touches very few areas.
These functions are declared as external functions in check.h and
as inline functions in check.c. Let's move them as static inline in
check.h. This appeared in 2.4 with the following commits:
4858fb2e1 ("MEDIUM: check: align agentaddr and agentport behaviour")
1c921cd74 ("BUG/MINOR: check: consitent way to set agentaddr")
While harmless (it only triggers build warnings with some gcc 4.x),
it should probably be backported where the paches above are present
to keep the code consistent.
The man page indicates that CPU_AND() and CPU_ASSIGN() take a variable,
not a const on the source, even though it doesn't make much sense. But
with older libcs, this triggers a build warning:
src/cpuset.c: In function 'ha_cpuset_and':
src/cpuset.c:53: warning: initialization discards qualifiers from pointer target type
src/cpuset.c: In function 'ha_cpuset_assign':
src/cpuset.c:101: warning: initialization discards qualifiers from pointer target type
Better stick stricter to the documented API as this is really harmless
here. There's no need to backport it (unless build issues are reported,
which is quite unlikely).
We have an implementation of atomic ops for older versions of gcc that
do not provide the __builtin_* API (< 4.4). Recent changes to the pools
broke that in pool_releasable() by having a load from a const pointer,
which doesn't work there due to a temporary local variable that is
declared then assigned. Let's make use of a compount statement to assign
it a value when declaring it.
There's no need to backport this.
The startup code used to scan the list of unused sockets retrieved from
an older process, and to close them one by one. This also required that
the knowledge of the internal storage of these temporary sockets was
known from outside sock.c and that the code was copy-pasted at every
call place.
This patch moves this into sock.c under the name
sock_drop_unused_old_sockets(), and removes the xfer_sock_list
definition from sock.h since the rest of the code doesn't need to know
this.
This cleanup is minimal and preliminary to a future fix that will need
to be backported to all versions featuring FD transfers over the CLI.
Do not use an extra DCID parameter on new_quic_cid to be able to
associated a new generated CID to a thread ID. Simply do the computation
inside the function. The API is cleaner this way.
This also has the effects to improve the apparent randomness of CIDs.
With the previous version the first byte of all CIDs are identical for a
connection which could lead to privacy issue. This version may not be
totally perfect on this aspect but it improves the situation.
The CID trees are no more attached to the listener receiver but to the
underlying datagram handlers (one by thread) which run always on the same thread.
So, any operation on these trees do not require any locking.
We copy the first octet of the original destination connection ID to any CID for
the connection calling new_quic_cid(). So this patch modifies only this function
to take a dcid as passed parameter.
Rename quic_lstnr_dgram_read() to quic_lstnr_dgram_dispatch() to reflect its new role.
After calling this latter, the sock i/o handler must consume the buffer only if
the datagram it received is detected as wrong by quic_lstnr_dgram_dispatch().
The datagram handler task mark the datagram as consumed atomically setting ->buf
to NULL value. The sock i/o handler is responsible of flushing its RX buffer
before using it. It also keeps a datagram among the consumed ones so that
to pass it to quic_lstnr_dgram_dispatch() and prevent it from allocating a new one.
As mentionned in the comment, the tx_qrings and rxbufs members of
receiver struct must be pointers to pointers!
Modify the functions responsible of their allocations consequently.
Note that this code could work because sizeof rxbuf and sizeof tx_qrings
are greater than the size of pointer!
The quic_dgram_ctx struct has been replaced by quic_dgram struct.
There is no need to keek a typedef for a pointer to function since we
converted the UDP datagram parser (quic_dgram_read()) into a task.
quic_dgram_read() parses all the QUIC packets from a UDP datagram. It is the best
candidate to be converted into a task, because is processing data unit is the UDP
datagram received by the QUIC sock i/o handler. If correct, this datagram is
added to the context of a task, quic_lstnr_dghdlr(), a conversion of quic_dgram_read()
into a task. This task pop a datagram from an mt_list and passes it among to
the packet handler (quic_lstnr_pkt_rcv()).
Modify the quic_dgram struct to play the role of the old quic_dgram_ctx struct when
passed to quic_lstnr_pkt_rcv().
Modify the datagram handlers allocation to set their tasks to quic_lstnr_dghdlr().
Add quic_dghdlr new struct do define datagram handler tasks, one by thread.
Allocate them and attach them to the listener receiver part calling
quic_alloc_dghdlrs_listener() newly implemented function.
Add quic_dgram new structure to store information about datagrams received
by the sock I/O handler (quic_sock_fd_iocb) and its associated pool.
Implement quic_get_dgram_dcid() to retrieve the datagram DCID which must
be the same for all the packets in the datagram.
Modify quic_lstnr_dgram_read() called by the sock I/O handler to allocate
a quic_dgram each time a correct datagram is found and add it to the sock I/O
handler rxbuf dgram list.
Define the offsets of the DCIDs from the beginning of a QUIC packets.
Note that they must always be present. As QUIC servers, QUIC haproxy listeners
always use a CID, source CID on the haproxy side, which is a destination ID on the
peer side.
This is to be sure xprt functions do not manipulate the buffer struct
passed as parameter to quic_lstnr_dgram_read() from low level datagram
I/O callback in quic_sock.c (quic_sock_fd_iocb()).
In github bug #1517, Mike Lothian reported instant crashes on startup
on RHEL8 + gcc-11 that appeared with 2.4 when allocating a proxy.
The analysis brought us down to the THREAD_ALIGN() entries that were
placed inside the "server" struct to avoid false sharing of cache lines.
It turns out that some modern gcc make use of aligned vector operations
to manipulate some fields (e.g. memset() etc) and that these structures
allocated using malloc() are not necessarily aligned, hence the crash.
The compiler is allowed to do that because the structure claims to be
aligned. The problem is in fact that the alignment propagates to other
structures that embed it. While most of these structures are used as
statically allocated variables, some are dynamic and cannot use that.
A deeper analysis showed that struct server does this, propagates to
struct proxy, which propagates to struct spoe_config, all of which
are allocated using malloc/calloc.
A better approach would consist in usins posix_memalign(), but this one
is not available everywhere and will either need to be reimplemented
less efficiently (by always wasting 64 bytes before the area), or a
few functions will have to be specifically written to deal with the
few structures that are dynamically allocated.
But the deeper problem that remains is that it is difficult to track
structure alignment, as there's no available warning to check this.
For the long term we'll probably have to create a macro such as
"struct_malloc()" etc which takes a type and enforces an alignment
based on the one of this type. This also means propagating that to
pools as well, and it's not a tiny task.
For now, let's get rid of the forced alignment in struct server, and
replace it with extra padding. By punching 63-byte holes, we can keep
areas on separate cache lines. Doing so moderately increases the size
of the "server" structure (~+6%) but that's the best short-term option
and it's easily backportable.
This will have to be backported as far as 2.4.
Thanks to Mike for the detailed report.
Do not proceed to direct accept when creating a new quic_conn. Wait for
the QUIC handshake to succeeds to insert the quic_conn in the accept
queue. A tasklet is then woken up to call listener_accept to accept the
quic_conn.
The most important effect is that the connection/mux layers are not
instantiated at the same time as the quic_conn. This forces to delay
some process to be sure that the mux is allocated :
* initialization of mux transport parameters
* installation of the app-ops
Also, the mux instance is not checked now to wake up the quic_conn
tasklet. This is safe because the xprt-quic code is now ready to handle
the absence of the connection/mux layers.
Note that this commit has a deep impact as it changes significantly the
lower QUIC architecture. Most notably, it breaks the 0-RTT feature.
Create a new structure li_per_thread. This is uses as an array in the
listener structure, with an entry allocated per thread. The new function
li_init_per_thr is responsible of the allocation.
For now, li_per_thread contains fields only useful for QUIC listeners.
As such, it is only allocated for QUIC listeners.
Create a new type quic_accept_queue to handle QUIC connections accept.
A queue will be allocated for each thread. It contains a list of
listeners which contains at least one quic_conn ready to be accepted and
the tasklet to run listener_accept for these listeners.
Mark QUIC listeners with the flag LI_F_QUIC_LISTENER. It is set by the
proto-quic layer on the add listener callback. This allows to override
more clearly the accept callback on quic_session_accept.
Define a new field in listener structure named flags.
For the moment, no flag is defined. This will be notably useful to
differentiate QUIC listeners with the implementation of a QUIC conn
accept queue.
Remove usage of connection in quic_conn_from_buf. As connection and
quic_conn are decorrelated, it is not logical to check connection flags
when using sendto.
This require to store the L4 peer address in quic_conn to be able to use
sendto.
This change is required to delay allocation of connection.
This flag is named RX_F_LOCAL_ACCEPT. It will be activated for special
receivers where connection balancing to threads is already handle
outside of listener_accept, such as with QUIC listeners.
Add a new function in mux-quic to install app-ops. For now this
functions is called during the ALPN negotiation of the QUIC handshake.
This change will be useful when the connection accept queue will be
implemented. It will be thus required to delay the app-ops
initialization because the mux won't be allocated anymore during the
QUIC handshake.
Define a new enum to represent the status of the mux/connection layer
above a quic_conn. This is important to know if it's possible to handle
application data, or if it should be buffered or dropped.
This new option, when set, will cause the callers of pool_alloc() and
pool_free() to be recorded into an extra area in the pool that is expected
to be helpful for later inspection (e.g. in core dumps). For example it
may help figure that an object was released to a pool with some sub-fields
not yet released or that a use-after-free happened after releasing it,
with an immediate indication about the exact line of code that released
it (possibly an error path).
This only works with the per-thread cache, and even objects refilled from
the shared pool directly into the thread-local cache will have a NULL
there. That's not an issue since these objects have not yet been freed.
It's worth noting that pool_alloc_nocache() continues not to set any
caller pointer (e.g. when the cache is empty) because that would require
a possibly undesirable API change.
The extra cost is minimal (one pointer per object) and this completes
well with DEBUG_POOL_INTEGRITY.
This adds a caller to pool_put_to_cache() and pool_get_from_cache()
which will optionally be used to pass a pointer to their callers. For
now it's not used, only the API is extended to support this pointer.
Here the idea is to calculate the POOL_EXTRA size that is appended at
the end of a pool object based on the sum of enabled optional fields
so that we can more easily compute offsets and sizes depending on build
options.
For this, POOL_EXTRA is replaced with POOL_EXTRA_MARK which itself is
set either to sizeof(void*) or zero depending on whether we enable
marking the origin pool or not upon allocation.
The pool_alloc() function was already a wrapper to __pool_alloc() which
was also inlined but took a set of flags. This latter was uninlined and
moved to pool.c, and pool_alloc()/pool_zalloc() turned to macros so that
they can more easily evolve to support debugging options.
The number of call places made this code grow over time and doing only
this change saved ~1% of the whole executable's size.
The pool_free() function has become a bit big over time due to the
extra consistency checks. It used to remain inline only to deal
cleanly with the NULL pointer free that's quite present on some
structures (e.g. in stream_free()).
Here we're splitting the function in two:
- __pool_free() does the inner block without the pointer test and
becomes a function ;
- pool_free() is now a macro that only checks the pointer and calls
__pool_free() if needed.
The use of a macro versus an inline function is only motivated by an
easier intrumentation of the code later.
With this change, the code size reduces by ~1%, which means that at
this point all pool_free() call places used to represent more than
1% of the total code size.
Allow to register quic_conn as ex-data in SSL callbacks. A new index is
used to identify it as ssl_qc_app_data_index.
Replace connection by quic_conn as SSL ex-data when initializing the QUIC
SSL session. When using SSL callbacks in QUIC context, the connection is
now NULL. Used quic_conn instead to retrieve the required parameters.
Also clean up
The same changes are conducted inside the QUIC SSL methods of xprt-quic
: connection instance usage is replaced by quic_conn.
Define a special accept cb for QUIC listeners to quic_session_accept().
This operation is conducted during the proto.add callback when creating
listeners.
A special care is now taken care when setting the standard callback
session_accept_fd() to not overwrite if already defined by the proto
layer.
When enabled, objects picked from the cache are checked for corruption
by comparing their contents against a pattern that was placed when they
were inserted into the cache. Objects are also allocated in the reverse
order, from the oldest one to the most recent, so as to maximize the
ability to detect such a corruption. The goal is to detect writes after
free (or possibly hardware memory corruptions). Contrary to DEBUG_UAF
this cannot detect reads after free, but may possibly detect later
corruptions and will not consume extra memory. The CPU usage will
increase a bit due to the cost of filling/checking the area and for the
preference for cold cache instead of hot cache, though not as much as
with DEBUG_UAF. This option is meant to be usable in production.
We have an anti-looping protection in process_stream() that detects bugs
that used to affect a few filters like compression in the past which
sometimes forgot to handle a read0 or a particular error, leaving a
thread looping at 100% CPU forever. When such a condition is detected,
an alert it emitted and the process is killed so that it can be replaced
by a sane one:
[ALERT] (19061) : A bogus STREAM [0x274abe0] is spinning at 2057156
calls per second and refuses to die, aborting now! Please
report this error to developers [strm=0x274abe0,3 src=unix
fe=MASTER be=MASTER dst=<MCLI> txn=(nil),0 txn.req=-,0
txn.rsp=-,0 rqf=c02000 rqa=10000 rpf=88000021 rpa=8000000
sif=EST,40008 sib=DIS,84018 af=(nil),0 csf=0x274ab90,8600
ab=0x272fd40,1 csb=(nil),0
cof=0x25d5d80,1300:PASS(0x274aaf0)/RAW((nil))/unix_stream(9)
cob=(nil),0:NONE((nil))/NONE((nil))/NONE(0) filters={}]
call trace(11):
| 0x4dbaab [c7 04 25 01 00 00 00 00]: stream_dump_and_crash+0x17b/0x1b4
| 0x4df31f [e9 bd c8 ff ff 49 83 7c]: process_stream+0x382f/0x53a3
(...)
One problem with this detection is that it used to only count the call
rate because we weren't sure how to make it more accurate, but the
threshold was high enough to prevent accidental false positives.
There is actually one case that manages to trigger it, which is when
sending huge amounts of requests pipelined on the master CLI. Some
short requests such as "show version" are sufficient to be handled
extremely fast and to cause a wake up of an analyser to parse the
next request, then an applet to handle it, back and forth. But this
condition is not an error, since some data are being forwarded by
the stream, and it's easy to detect it.
This patch modifies the detection so that update_freq_ctr() only
applies to calls made without CF_READ_PARTIAL nor CF_WRITE_PARTIAL
set on any of the channels, which really indicates that nothing is
happening at all.
This is greatly sufficient and extremely effective, as the call above
is still caught (shutr being ignored by an analyser) while a loop on
the master CLI now has no effect. The "call_rate" field in the detailed
"show sess" output will now be much lower, except for bogus streams,
which may help spot them. This field is only there for developers
anyway so it's pretty fine to slightly adjust its meaning.
This patch could be backported to stable versions in case of reports
of such an issue, but as that's unlikely, it's not really needed.
There is no need to use an MT_LIST to store frames to send from a packet
number space. This is a reminiscence for multi-threading support for the TX part.
For now we have co_getline() which reads a buffer and stops on LF, and
co_getword() which reads a buffer and stops on one arbitrary delimiter.
But sometimes we'd need to stop on a set of delimiters (CR and LF, etc).
This patch adds a new function co_getdelim() which takes a set of delimiters
as a string, and constructs a small map (32 bytes) that's looked up during
parsing to stop after the first delimiter found within the set. It also
supports an optional escape character that skips a delimiter (typically a
backslash). For the rest it works exactly like the two other variants.
During 2.4-dev, fault injection was enabled for cached pools with commit
207c09509 ("MINOR: pools: move the fault injector to __pool_alloc()"),
except that the condition for CONFIG_HAP_POOLS still depended on
DEBUG_FAIL_ALLOC not being set, which limits the usability to cases
where the define is set by hand. Let's remove it from the equation as
this is not a constraint anymore. While a bit old, there's no need to
backport this as it's only used during development.
Implement the emission of Retry packets. These packets are emitted in
response to Initial from clients without token. The token from the Retry
packet contains the ODCID from the Initial packet.
By default, Retry packet emission is disabled and the handshake can
continue without address validation. To enable Retry, a new bind option
has been defined named "quic-force-retry". If set, the handshake must be
conducted only after receiving a token in the Initial packet.
Implement the parsing of token from Initial packets. It is expected that
the token contains a CID which is the DCID from the Initial packet
received from the client without token which triggers a Retry packet.
This CID is then used for transport parameters.
Note that at the moment Retry packet emission is not implemented. This
will be achieved in a following commit.
Implement a new QUIC TLS related function
quic_tls_generate_retry_integrity_tag(). This function can be used to
calculate the AEAD tag of a Retry packet.
If an error is raised during the ClientHello callback on the server side
(ssl_sock_switchctx_cbk), the servername callback won't be called and
the client's SNI will not be saved in the SSL context. But since we use
the SSL_get_servername function to return this SNI in the ssl_fc_sni
sample fetch, that means that in case of error, such as an SNI mismatch
with a frontend having the strict-sni option enabled, the sample fetch
would not work (making strict-sni related errors hard to debug).
This patch fixes that by storing the SNI as an ex_data in the SSL
context in case the ClientHello callback returns an error. This way the
sample fetch can fallback to getting the SNI this way. It will still
first call the SSL_get_servername function first since it is the proper
way of getting a client's SNI when the handshake succeeded.
In order to avoid memory allocations are runtime into this highly used
runtime function, a new memory pool was created to store those client
SNIs. Its entry size is set to 256 bytes since SNIs can't be longer than
255 characters.
This fixes GitHub #1484.
It can be backported in 2.5.
Avoid closing idle connections if a soft stop is in progress.
By default, idle connections will be closed during a soft stop. In some
environments, a client talking to the proxy may have prepared some idle
connections in order to send requests later. If there is no proper retry
on write errors, this can result in errors while haproxy is reloading.
Even though a proper implementation should retry on connection/write
errors, this option was introduced to support back compat with haproxy <
v2.4. Indeed before v2.4, we were waiting for a last request to be able
to add a "connection: close" header and advice the client to close the
connection.
In a real life example, this behavior was seen in AWS using the ALB in
front of a haproxy. The end result was ALB sending 502 during haproxy
reloads.
This patch was tested on haproxy v2.4, with a regular reload on the
process, and a constant trend of requests coming in. Before the patch,
we see regular 502 returned to the client; when activating the option,
the 502 disappear.
This patch should help fixing github issue #1506.
In order to unblock some v2.3 to v2.4 migraton, this patch should be
backported up to v2.4 branch.
Signed-off-by: William Dauchy <wdauchy@gmail.com>
[wt: minor edits to the doc to mention other options to care about]
Signed-off-by: Willy Tarreau <w@1wt.eu>
When block by the anti-amplification limit, this is the responsability of the
client to unblock it sending new datagrams. On the server side, even if not
well parsed, such datagrams must trigger the PTO timer arming.
Switch back to QUIC_HS_ST_SERVER_HANDSHAKE state after a completed handshake
if acks must be send.
Also ensure we build post handshake frames only one time without using prev_st
variable and ensure we discard the Handshake packet number space only one time.
We need to be able to decrypt late Handshake packets after the TLS secret
keys have been discarded. If not the peer send Handshake packet which have
not been acknowledged. But for such packets, we discard the CRYPTO data.
RFC 9002 5.3. Estimating smoothed_rtt and rttvar:
MUST use the lesser of the acknowledgment delay and the peer's max_ack_delay
after the handshake is confirmed.
In ticket #1413, the transfer of FDs couldn't correctly work on alpine
linux. After a few tests with musl on another distribution it seems to
be a limitation of this libc.
The number of FD that could be sent per sendmsg was set to 253, which
does not seem to work with musl, decreasing it 252 seems to work
better, so lets set this value everywhere since it does not have that
much impact.
This must be backported in every maintained version.
Now that we support batched allocations/releases, it appears that we can
reach the same performance on H2 with shared pools and 256kB thread-local
cache as without shared pools, a fast allocator and 1MB thread-local cache.
With 512kB we're up to 10% faster on highly multiplexed H2 than without the
shared cache. This was tested on a 16-core ARM machine. Thus it's time to
slightly reduce the per-thread memory cost, which may also improve the
performance on machines with smaller L2 caches. It essentially reverts
commit f587003fe ("MINOR: pools: double the local pool cache size to 1 MB").
Since previous patch we can forcefully evict multiple objects from the
local cache, even when evicting basd on the LRU entries. Let's define
a compile-time configurable setting to batch releasing of objects. For
now we set this value to 8 items per round.
This is marked medium because eviction from the LRU will slightly change
in order to group the last items that are freed within a single cache
instead of accurately scanning only the oldest ones exactly in their
order of appearance. But this is required in order to evolve towards
batched removals.
In order to support batched allocations and releases, we'll need to
prepare chains of items linked together and that can be atomically
attached and detached at once. For this we implement a "down" pointer
in each pool_item that points to the other items belonging to the same
group. For now it's always NULL though freeing functions already check
them when trying to release everything.
At the moment we count the number of releasable objects to a shared pool
one by one. The way the formula is made allows to pre-compute the number
of available slots, so let's add a function for that so that callers can
do it once before iterating.
This takes into account the average number of entries needed and the
minimum availability per pool. The function is not used yet.
In order to support batch allocation from/to shared pools, we'll have to
support a specific representation for pool objects. The new pool_item
structure will be used for this. For now it only contains a "next"
pointer that matches exactly the current storage model. The few functions
that deal with the shared pool entries were adapted to use the new type.
There is no functionality difference at this point.
Instead of letting pool_put_to_shared_cache() pass the object to the
underlying OS layer when there's no more room, let's have the caller
check if the pool is full and either call pool_put_to_shared_cache()
or call pool_free_nocache().
Doing this sensibly simplifies the code as this function now only has
to deal with a pool and an item and only for cases where there are
local caches and shared caches. As the code was simplified and the
calls more isolated, the function was moved to pool.c.
Note that it's only called from pool_evict_from_local_cache{,s}() and
that a part of its logic might very well move there when dealing with
batches.
This function is used to know whether the shared pools are full or if we
can store more objects in them. Right now it cannot be used in a generic
way because when shared pools are not used it will return false, letting
one think pools can accept objects. Let's make one variant for each build
model.
At the moment pool_put_to_shared_cache() checks if the pool is crowded,
and if so it does the exact same job as pool_free_nocache(), otherwise
it adds the object there.
This patch rearranges the code so that the function is split in two and
either uses one path or the other, and always relies on pool_free_nocache()
in case we don't want to store the object. This way there will be a common
path with the variant not using the shared cache. The patch is better viewed
using git show -b since a whole block got reindented.
It's worth noting that there is a tiny difference now in the local cache
usage measurement, as the decrement of "used" used to be performed before
checking for pool_is_crowded() instead of being done after. This used to
result in always one less object being kept in the cache than what was
configured in minavail. The rearrangement of the code aligns it with
other call places.
Some changes affect the list element and others affect the pool stats.
Better group them together, as the compiler may not detect certain
possible optimizations after the casts made by the list macros.
One of the thread scaling challenges nowadays for the pools is the
contention on the shared caches. There's never any situation where we
have a shared cache and no local cache anymore, so we can technically
afford to transfer objects from the shared cache to the local cache
before returning them to the user via the regular path. This adds a
little bit more work per object per miss, but will permit batch
processing later.
This patch simply moves pool_get_from_shared_cache() to pool.c under
the new name pool_refill_local_from_shared(), and this function does
not return anything but it places the allocated object at the head of
the local cache.
The POOL_LINK macro is now only used for debugging, and it still requires
ifdefs around, which needlessly complicates the code. Let's replace it
and the calling code with a new pair of macros: POOL_DEBUG_SET_MARK()
and POOL_DEBUG_CHECK_MARK(), that respectively store and check the pool
pointer in the extra location at the end of the pool. This removes 4
pairs of ifdefs in the middle of the code.
This practice relying on POOL_LINK() dates from the era where there were
no pool caches, but given that the structures are a bit more complex now
and that pool caches do not make use of this feature, it is totally
useless since released elements have already been overwritten, and yet
it complicates the architecture and prevents from making simplifications
and optimizations. Let's just get rid of this feature. The pointer to
the origin pool is preserved though, as it helps detect incorrect frees
and serves as a canary for overflows.
The pools have become complex with the shared pools and the thread-local
caches, and the purpose of certain structures is never easy to grasp.
Let's add a bit of documentation there to save some long and painful
analysis to those touching that area.
This bug was introduced by d817dc73 ("MEDIUM: ssl: Load client
certificates in a ckch for backend servers") in which the creation of
the SSL_CTX for a server was moved to the configuration parser when
using a "crt" keyword instead of being done in ssl_sock_prepare_srv_ctx().
The patch 0498fa40 ("BUG/MINOR: ssl: Default-server configuration ignored by
server") made it worse by setting the same SSL_CTX for every servers
using a default-server. Resulting in any SSL option on a server applied
to every server in its backend.
This patch fixes the issue by reintroducing a string which store the
path of certificate inside the server structure, and loading the
certificate in ssl_sock_prepare_srv_ctx() again.
This is a quick fix to backport, a cleaner way can be achieve by always
creating the SSL_CTX in ssl_sock_prepare_srv_ctx() and splitting
properly the ssl_sock_load_srv_cert() function.
This patch fixes issue #1488.
Must be backported as far as 2.4.
This is a second help to dump loaded library names late at boot, once
external code has already been initialized. The purpose is to provide
a format that makes it easy to pass to "tar" to produce an archive
containing the executable and the list of dependencies. For example
if haproxy is started as "haproxy -f foo.cfg", a config check only
will suffice to quit before starting, "-q" will be used to disable
undesired output messages, and -dL will be use to dump libraries.
This will result in such a command to trivially produce a tarball
of loaded libraries:
./haproxy -q -c -dL -f foo.cfg | tar -T - -hzcf archive.tgz
Many times core dumps reported by users who experience trouble are
difficult to exploit due to missing system libraries. Sometimes,
having just a list of loaded libraries and their respective addresses
can already provide some hints about some problems.
This patch makes a step in that direction by adding a new "show libs"
command that will try to enumerate the list of object files that are
loaded in memory, relying on the dynamic linker for this. It may also
be used to detect that some foreign code embarks other undesired libs
(e.g. some external Lua modules).
At the moment it's only supported on glibc when USE_DL is set, but it's
implemented in a way that ought to make it reasonably easy to be extended
to other platforms.
We'll use this glibc function to dump loaded libs. It's been
available since glibc-2.2.4, and as it requires dlpi headers defined
in link.h, it implicitly relies on dlfcn, thus we condition it to
USE_DL. Other operating systems or libc might have different
dependencies so let's stick to the bare minimum for now.
A subtle change of target address allocation was introduced with commit
68cf3959b ("MINOR: backend: rewrite alloc of stream target address") in
2.4. Prior to this patch, a target address was allocated by function
assign_server_address() only if none was previously allocated. After
the change, the allocation became unconditional. Most of the time it
makes no difference, except when we pass multiple times through
connect_server() with SF_ADDR_SET cleared.
The most obvious fix would be to avoid allocating that address there
when already set, but the root cause is that since introduction of
dynamically allocated addresses, the SF_ADDR_SET flag lies. It can
be cleared during redispatch or during a queue redistribution without
the address being released.
This patch instead gives back all its correct meaning to SF_ADDR_SET
and guarantees that when not set no address is allocated, by freeing
that address at the few places the flag is cleared. The flag could
even be removed so that only the address is checked but that would
require to touch many areas for no benefit.
The easiest way to test it is to send requests to a proxy with l7
retries enabled, which forwards to a server returning 500:
defaults
mode http
timeout client 1s
timeout server 1s
timeout connect 1s
retry-on all-retryable-errors
retries 1
option redispatch
listen proxy
bind *:5000
server app 0.0.0.0:5001
frontend dummy-app
bind :5001
http-request return status 500
Issuing "show pools" on the CLI will show that pool "sockaddr" grows
as requests are redispatched, and remains stable with the fix. Even
"ps" will show that the process' RSS grows by ~160B per request.
This fix will need to be backported to 2.4. Note that before 2.5,
there's no strm->si[1].dst, strm->target_addr must be used instead.
This addresses github issue #1499. Special thanks to Daniil Leontiev
for providing a well-documented reproducer.
Implement a refcount on quic_conn instance. By default, the refcount is
0. Two functions are implemented to manipulate it.
* qc_conn_take() which increments the refcount
* qc_conn_drop() which decrements it. If the refcount is 0 *BEFORE*
the substraction, the instance is freed.
The refcount is incremented on retrieve_qc_conn_from_cid() or when
allocating a new quic_conn in qc_lstnr_pkt_rcv(). It is substracted most
notably by the xprt.close operation and at the end of
qc_lstnr_pkt_rcv(). The increments/decrements should be conducted under
the CID lock to guarantee thread-safety.
Add a pointer in quic_conn to its related ssl_sock_ctx. This change is
required to avoid to use the connection instance to access it.
This commit is part of the rearchitecture of xprt-quic layers and the
separation between xprt and connection instances. It will be notably
useful when the connection allocation will be delayed.
Some applications may send some information about the reason why they decided
to close a connection. Add them to CONNECTION_CLOSE frame traces.
Take the opportunity of this patch to shorten some too long variable names
without any impact.
Add traces about important frame types to chunk_tx_frm_appendf()
and call this function for any type of frame when parsing a packet.
Move it to quic_frame.c
Prepare trace support for quic_conn instances as argument. This will be
used by the xprt-quic layer in replacement of the connection.
This commit is part of the rearchitecture of xprt-quic layers and the
separation between xprt and connection instances.
Add const qualifier on arguments of several dump functions used in the
trace callback. This is required to be able to replace the first trace
argument by a quic_conn instance. The first argument is a const pointer
and so the members accessed through it must also be const.
Add a new member in ssl_sock_ctx structure to reference the quic_conn
instance if used in the QUIC stack. This member is initialized during
qc_conn_init().
This is needed to be able to access to the quic_conn without relying on
the connection instance. This commit is part of the rearchitecture of
xprt-quic layers and the separation between xprt and connection
instances.
Move qcc_get_qcs() function from xprt_quic.c to mux_quic.c. This
function is used to retrieve the qcs instance from a qcc with a stream
id. This clearly belongs to the mux-quic layer.
When a packet is present in the RX buffer at the first place
but without a null reference counter, there is no need to continue
to try to empty the buffer, it is sure the next packet will not
be at the first place!
With the DCID refactoring, the locking is more centralized. It is
possible to simplify the code for removal of a quic_conn from the ODCID
tree.
This operation can be conducted as soon as the connection has been
retrieved from the DCID tree, meaning that the peer now uses the final
DCID. Remove the bit to flag a connection for removal and just uses
ebmb_delete() on each sucessful lookup on the DCID tree. If the
quic_conn has already been removed, it is just a noop thanks to
eb_delete() implementation.
A new function named qc_retrieve_conn_from_cid() now contains all the
code to retrieve a connection from a DCID. It handle all type of packets
and centralize the locking on the ODCID/DCID trees.
This simplify the qc_lstnr_pkt_rcv() function.
If an UDP datagram contains multiple QUIC packets, they must all use the
same DCID. The datagram context is used partly for this.
To ensure this, a comparison was made on the dcid_node of DCID tree. As
this is a comparison based on pointer address, it can be faulty when
nodes are removed/readded on the same pointer address.
Replace this comparison by a proper comparison on the DCID data itself.
To this end, the dgram_ctx structure contains now a quic_cid member.
For first Initial packets, the socket source dest address is
concatenated to the DCID. This is used to be able to differentiate
possible collision between several clients which used the same ODCID.
Refactor the code to manage DCID and the concatenation with the address.
Before this, the concatenation was done on the quic_cid struct and its
<len> field incremented. In the code it is difficult to differentiate a
normal DCID with a DCID + address concatenated.
A new field <addrlen> has been added in the quic_cid struct. The <len>
field now only contains the size of the QUIC DCID. the <addrlen> is
first initialized to 0. If the address is concatenated, it will be
updated with the size of the concatenated address. This now means we
have to explicitely used either cid.len or cid.len + cid.addrlen to
access the DCID or the DCID + the address. The code should be clearer
thanks to this.
The field <odcid_len> in quic_rx_packet struct is now useless and has
been removed. However, a new parameter must be added to the
qc_new_conn() function to specify the size of the ODCID addrlen.
On haproxy implementation, generated DCID are on 8 bytes, the minimal
value allowed by the specification. Rename the constant representing
this size to inform that this is haproxy specific.
The packet number space flags were mixed with the connection level flags.
This leaded to ACK to be sent at the connection level without regard to
the underlying packet number space. But we want to be able to acknowleged
packets for a specific packet number space.
A client sends a 0-RTT data packet after an Initial one in the same datagram.
We must be able to parse such packets just after having parsed the Initial packets.
Export the code responsible which set the ->app_ops structure into
quic_set_app_ops() function. It must be called by the TLS callback which
selects the application (ssl_sock_advertise_alpn_protos) so that
to be able to build application packets after having received 0-RTT data.
This field is no more useful. Modify the traces consequently.
Also initialize ->pn_node.key value to -1, which is an illegal value
for QUIC packet number, and display it in traces if different from -1.
This patch adds the parsing of the optional condition parameters that
can be passed to the set-var and set-var-fmt actions (http as well as
tcp). Those conditions will not be taken into account yet in the var_set
function so conditions passed as parameters will not have any effect.
Since actions do not benefit from the parameter preparsing that
converters have, parsing conditions needed to be done by hand.
This patch adds the parsing of the optional condition parameters that
can be passed to the set-var converter. Those conditions will not be
taken into account yet in the var_set function so conditions passed as
parameters will not have any effect. This is true for any condition
apart from the "ifexists" one that is also used to replace the
VF_UPDATEONLY flag that was used to prevent proc scope variable creation
from a LUA module.
In LibreSSL 3.5.0, BIO is going to become opaque, so haproxy's
compat macros will no longer work. The functions they substitute
have been available since LibreSSL 2.7.0.
allowing for all platforms supporting cpu affinity to have a chance
to detect the cpu topology from a given valid node (e.g.
DragonflyBSD seems to be NUMA aware from a kernel's perspective
and seems to be willing start to provide userland means to get
proper info).
This was reported by the CI wich clang as compilator.
In file included from src/ssl_sock.c:80:
include/haproxy/xprt_quic.h:1100:50: error: passing 'int *' to parameter of
type 'unsigned int *' converts between pointers to integer types with
different sign [-Werror,-Wpointer-sign]
} while (refcnt && !HA_ATOMIC_CAS(&pkt->refcnt, &refcnt, refcnt - 1));
^~~~~~~
Initialize all flow control members on the qcc instance. Without this,
the value are undefined and it may be possible to have errors about
reached streams limit.
The xprt layer is reponsible to notify the mux of a CONNECTION_CLOSE
reception. In this case the flag QC_CF_CC_RECV is positionned on the
qcc and the mux tasklet is waken up.
One of the notable effect of the QC_CF_CC_RECV is that each qcs will be
released even if they have remaining data in their send buffers.
A qcs is not freed if there is remaining data in its buffer. In this
case, the flag QC_SF_DETACH is positionned.
The qcc io handler is responsible to remove the qcs if the QC_SF_DETACH
is set and their buffers are empty.
Replace bug.h by api.h in mux_quic header.
This is required because bug.h uses atomic operations when compiled with
DEBUG_MEM_STATS. api.h takes care of including atomic.h before bug.h.
Set the HTX EOM flag on RX the app layer. This is required to notify
about the end of the request for the stream analyzers, else the request
channel never goes to MSG_DONE state.
Remove qc_eval_pkt() which has come with the multithreading support. It
was there to evaluate the length of a TX packet before building. We could
build from several thread TX packets without consuming a packet number for nothing (when
the building failed). But as the TX packet building functions are always
executed by the same thread, the one attached to the connection, this does
not make sense to continue to use such a function. Furthermore it is buggy
since we had to recently pad the TX packet under certain circumstances.
After the handshake has succeeded, we must delete any remaining
Initial or Handshake packets from the RX buffer. This cannot be
done depending on the state the connection (->st quic_conn struct
member value) as the packet are not received/treated in order.
Add a null byte to the end of the RX buffer to notify the consumer there is no
more data to treat.
Modify quic_rx_packet_pool_purge() which is the function which remove the
RX packet from the buffer.
Also rename this function to quic_rx_pkts_del().
As the RX packets may be accessed by the QUIC connection handler (quic_conn_io_cb())
the function responsible of decrementing their reference counters must not
access other information than these reference counters! It was a very bad idea
to try to purge the RX buffer asap when executing this function.
Handle the case when the app layer sending buffer is full. A new flag
QC_SF_BLK_MROOM is set in this case and the transfer is interrupted. It
is expected that then the conn-stream layer will subscribe to SEND.
The MROOM flag is reset each time the muxer transfer data from the app
layer to its own buffer. If the app layer has been subscribed on SEND it
is woken up.
Implement the subscription in the mux on the qcs instance.
Subscribe is now used by the h3 layer when receiving an incomplete frame
on the H3 control stream. It is also used when attaching the remote
uni-directional streams on the h3 layer.
In the qc_send, the mux wakes up the qcs for each new transfer executed.
This is done via the method qcs_notify_send().
The xprt wakes up the qcs when receiving data on unidirectional streams.
This is done via the method qcs_notify_recv().
Set the QC_SF_FIN_STREAM on the app layers (h3 / hq-interop) when
reaching the HTX EOM. This is used to warn the mux layer to set the FIN
on the QUIC stream.
Re-implement the QUIC mux. It will reuse the mechanics from the previous
mux without all untested/unsupported features. This should ease the
maintenance.
Note that a lot of features are broken for the moment. They will be
re-implemented on the following commits to have a clean commit history.
ha_backtrace_to_stderr() must be declared in CRASH_NOW() macro whe HAProxy
is compiled with DEBUG_STRICT_NOCRASH. Otherwise an error is reported during
compilation:
include/haproxy/bug.h:58:26: error: implicit declaration of function ‘ha_backtrace_to_stderr’ [-Werror=implicit-function-declaration]
58 | #define CRASH_NOW() do { ha_backtrace_to_stderr(); } while (0)
This patch must be backported as far as 2.4.
If H1 headers are not fully received at once, the parsing is restarted a
last time when all headers are finally received. When this happens, the h1m
flags are sanitized to remove all value set during parsing.
But some flags where erroneously preserved. Among others, H1_MF_TE_CHUNKED
flag was not removed, what could lead to parsing error.
To fix the bug and make things easy, a mask has been added with all flags
that must be preserved. It will be more stable. This mask is used to
sanitize h1m flags.
This patch should fix the issue #1469. It must be backported to 2.5.
When the response is parsed, query items are stored in a list, attached to
the parsed response (resolve_response).
First, there is one and only one query sent at a time. Thus, there is no
reason to use a list. There is a test to be sure there is only one query
item in the response. Then, the reference on this query item is only used to
validate the domain name is the one requested. So the query list can be
removed. We only expect one query item, no reason to loop on query records.
In addition, the query domain name is now immediately checked against the
resolution domain name. This way, the query item is only manipulated during
the response parsing.
During post-parsing stage, the SSL context of a server is initialized if SSL
is configured on the server or its default-server. It is required to be able
to enable SSL at runtime. However a regression was introduced, because the
last parsed default-server is used. But it is not necessarily the
default-server line used to configure the server. This may lead to
erroneously initialize the SSL context for a server without SSL parameter or
the skip it while it should be done.
The problem is the default-server used to configure a server is not saved
during configuration parsing. So, the information is lost during the
post-parsing. To fix the bug, the SRV_F_DEFSRV_USE_SSL flag is
introduced. It is used to know when a server was initialized with a
default-server using SSL.
For the record, the commit f63704488e ("MEDIUM: cli/ssl: configure ssl on
server at runtime") has introduced the bug.
This patch must be backported as far as 2.4.
Apple libmalloc has its own notion of memory arenas as malloc_zone with
rich API having various callbacks for various allocations strategies but
here we just use the defaults.
In trim_all_pools, we advise to purge each zone as much as possible, called "greedy" mode.
As soon as the connection ID (the one choosen by the QUIC server) has been used
by the client, we can delete its original destination connection ID from its tree.
When running Key Update process, we must maintain much information
especially when the key phase bit has been toggled by the peer as
it is possible that it is due to late packets. This patch adds
quic_tls_kp new structure to do so. They are used to store
previous and next secrets, keys and IVs associated to the previous
and next RX key phase. We also need the next TX key phase information
to be able to encrypt packets for the next key phase.
When sending a CONNECTION_CLOSE frame to immediately close the connection,
do not provide CRYPTO data to the TLS stack. Do not built anything else than a
CONNECTION_CLOSE and do not derive any secret when in immediately close state.
Seize the opportunity of this patch to rename ->err quic_conn struct member
to ->error_code.
We set this TLS error when no application protocol could be negotiated
via the TLS callback concerned. It is converted as a QUIC CRYPTO_ERROR
error (0x178).
Change the way the CIDs are organized to rattach received packets DCID
to QUIC connection. This is necessary to be able to handle multiple DCID
to one connection.
For this, the quic_connection_id structure has been extended. When
allocated, they are inserted in the receiver CID tree instead of the
quic_conn directly. When receiving a packet, the receiver tree is
inspected to retrieve the quic_connection_id. The quic_connection_id
contains now contains a reference to the QUIC connection.
Add ->err member to quic_conn struct to store the connection errors.
This is the responsability of ->send_alert callback of SSL_QUIC_METHOD
struct to handle the TLS alert and consequently update ->err value.
At this time, when entering qc_build_pkt() we build a CONNECTION_CLOSE
frame close the connection when ->err value is not null.
If we want to run quic-tracker against haproxy, we must at least
support the draft version of the TLS extension for the QUIC transport
parameters (0xffa5). quic-tracker QUIC version is draft-29 at this time.
We select this depending on the QUIC version. If draft, we select the
draft TLS extension.
When establishing an outboud connection, haproxy checks if the cached
TLS session has the same SNI as the connection we are trying to
resume.
This test was done by calling SSL_get_servername() which in TLSv1.2
returned the SNI. With TLSv1.3 this is not the case anymore and this
function returns NULL, which invalidates any outboud connection we are
trying to resume if it uses the sni keyword on its server line.
This patch fixes the problem by storing the SNI in the "reused_sess"
structure beside the session itself.
The ssl_sock_set_servername() now has a RWLOCK because this session
cache entry could be accessed by the CLI when trying to update a
certificate on the backend.
This fix must be backported in every maintained version, however the
RWLOCK only exists since version 2.4.
Implement a new app_ops layer for quic interop. This layer uses HTTP/0.9
on top of QUIC. Implementation is minimal, with the intent to be able to
pass interoperability test suite from
https://github.com/marten-seemann/quic-interop-runner.
It is instantiated if the negotiated ALPN is "hq-interop".
Remove the hardcoded initialization of h3 layer on mux init. Now the
ALPN is looked just after the SSL handshake. The app layer is then
installed if the ALPN negotiation returned a supported protocol.
This required to add a get_alpn on the ssl_quic layer which is just a
call to ssl_sock_get_alpn() from ssl_sock. This is mandatory to be able
to use conn_get_alpn().
This change is required to be able to use multiple app_ops layer on top
of QUIC. The stream-interface will now call the mux snd_buf which is
just a proxy to the app_ops snd_buf function.
The architecture may be simplified in the structure to install the
app_ops on the stream_interface and avoid the detour via the mux layer
on the sending path.
In 1.8 when muxes and conn_streams were introduced, the call to
conn_full_close() was replaced with a call to cs_close() which only
relied on shutr/shutw (commits 6978db35e ("MINOR: connection:
add cs_close() to close a conn_stream") and a553ae96f ("MEDIUM:
connection: replace conn_full_close() with cs_close()")). By then
this was fine, and the rare risk of non-idempotent calls was addressed
by the muxes implementing the functions (e.g. mux_pt).
Later with commit 325607397 ("MEDIUM: stream: do not forcefully close
the client connection anymore"), stream_free() started to call cs_close()
instead of forcibly closing the connection via conn_full_close(). At this
point this started to break idempotence because it was possible to emit
a shutw() (e.g. when option httpclose was set), then to have it called
agian upon stream_free() via cs_close(). By then it was not a problem
since only mux_pt would implement this and did check for idempotence.
When HTX was implemented and mux-h1/h2 offered support for shutw/shutr,
the idempotence changed a little bit because the last shutdown mode
(normal/silent) was recorded and used at the moment of closing. The
call to cs_close() uses the silent mode and will replace the current
one. This has an effect on data pending in the buffer if the FIN could
not be sent before cs_close(), because lingering may be disabled and
final data lost in the network stack.
Interestingly, during 2.4-dev3, this was addressed as the side effect
of an improvement by commit 3c82d8b32 ("MINOR: mux-h1: Rework how
shutdowns are handled"), where the H1 mux's shutdown function becomes
explicitly idempotent. However older versions (2.3 to 2.0) do not have
it.
This patch addresses the issue globally by making sure that cs_shutr()
and cs_shutw() are idempotent and cannot have their data truncated by
a late cs_close(). It fixes the truncation that is observed in 2.3 and
2.2 as described in issue #1450.
This must be backported as far as 2.0, along with commit f14d750bf
("BUG/MEDIUM: conn-stream: Don't reset CS flags on close") which it
depends on.
Implement a reload failure counter which counts the number of failure
since the last success. This counter is available in 'show proc' over
the master CLI.
cs_close() and cs_drain_and_close() are called to close a conn-stream.
cs_shutr() and cs_shutw() are called with the appropriate modes. But the
conn-stream is not released at this stage. However the flags are
reset. Thus, after a cs_close(), we loose shutdown flags. If cs_close() is
performed several times, it is a problem. And indeed, it is possible. On one
hand, the stream-interface may close the conn-stream. On the other end, the
stream always closes it when it is released.
It is a problem for the H1 multiplexer. Because the conn-stream flags are
reset, the shutr and shutw are performed twice. For a delayed shutdown, the
dirty mode is used instead of the normal one because the last call to
h1_shutw() overwrite H1C flags set by the first call. This leads to dirty
shutdowns while normal ones are required. At the end, it is possible to
truncate the messages.
This bug was revealed by the commit a85c522d4 ("BUG/MINOR: mux-h1: Save
shutdown mode if the shutdown is delayed").
This patch is related to the issue #1450. It must be backported as far as
2.0.
- add new metric: `haproxy_backend_agg_server_check_status`
it counts the number of servers matching a specific check status
this permits to exclude per server check status as the usage is often
to rely on the total. Indeed in large setup having thousands of
servers per backend the memory impact is not neglible to store the per
server metric.
- realign promex_str_metrics array
quite simple implementation - we could improve it later by adding an
internal state to the prometheus exporter, thus to avoid counting at
every dump.
this patch is an attempt to close github issue #1312. It may bebackported
to 2.4 if requested.
Signed-off-by: William Dauchy <wdauchy@gmail.com>
`info_field_names` and `stat_field_names` no longer exist and have been
moved in stats.c
To avoid changing this comment, just mention the name of the new table
`info_fields` and `stat_fields`
Signed-off-by: William Dauchy <wdauchy@gmail.com>
This function claims to perform an strncat()-like operation but it does
not, it always copies the indicated number of bytes, regardless of the
presence of a NUL character (what is currently done by chunk_memcat()).
Let's remove it and explicitly replace it with chunk_memcat().
Commit 3d2093af9 ("MINOR: connection: Add a connection error code sample
fetch") added these convenient sample-fetch functions but it appears that
due to a misunderstanding the redundant "conn" part was kept in their
name, causing confusion, since "fc" already stands for "front connection".
Let's simply call them "fc_err" and "bc_err" to match all other related
ones before they appear in a final release. The VTC they appeared in were
also updated, and the alpha sort in the keywords table updated.
Cc: William Lallemand <wlallemand@haproxy.org>
->frms_rwlock is an old lock supposed to be used when several threads
could handle the same connection. This is no more the case since this
commit:
"MINOR: quic: Attach the QUIC connection to a thread."
Add a buffer per QUIC connection. At this time the listener which receives
the UDP datagram is responsible of identifying the underlying QUIC connection
and must copy the QUIC packets to its buffer.
->pkt_list member has been added to quic_conn struct to enlist the packets
in the order they have been copied to the connection buffer so that to be
able to consume this buffer when the packets are freed. This list is locked
thanks to a R/W lock to protect it from concurent accesses.
quic_rx_packet struct does not use a static buffer anymore to store the QUIC
packets contents.
At this time we allocate an RX buffer by thread.
Also take the opportunity offered by this patch to rename TX related variable
names to distinguish them from the RX part.
This patch renames all dns extra counters and stats functions, types and
enums using the 'resolv' prefix/suffixes.
The dns extra counter domain id used on cli was replaced by "resolvers"
instead of "dns".
The typed extra counter prefix dumping resolvers domain "D." was
also renamed "N." because it points counters on a Nameserver.
This was done to finish the split between "resolver" and "dns" layers
and to avoid further misunderstanding when haproxy will handle dns
load balancing.
This should not be backported.
This patch add a union and struct into dns_counter struct to split
application specific counters.
The only current existing application is the resolver.c layer but
in futur we could handle different application such as dns load
balancing with others specific counters.
This patch should not be backported.
Handle properly websocket streams if the server uses an ALPN with both
h1 and h2. Add a new field h2_ws in the server structure. If set to off,
reuse is automatically disable on backend and ALPN is forced to http1.x
if possible. Nothing is done if on.
Implement a mechanism to be able to use a different http version for
websocket streams. A new server member <ws> represents the algorithm to
select the protocol. This can overrides the server <proto>
configuration. If the connection uses ALPN for proto selection, it is
updated for websocket streams to select the right protocol.
Three mode of selection are implemented :
- auto : use the same protocol between non-ws and ws streams. If ALPN is
use, try to update it to "http/1.1"; this is only done if the server
ALPN contains "http/1.1".
- h1 : use http/1.1
- h2 : use http/2.0; this requires the server to support RFC8441 or an
error will be returned by haproxy.
Add a new parameter force_mux_ops. This will be useful to specify an
alternative to the srv->mux_proto field. If non-NULL, it will be use to
force the mux protocol wether srv->mux_proto is set or not.
This argument will become useful to install a mux for non-standard
streams, most notably websocket streams.
Implement a new function to update the ALPN on an existing connection.
on an existing connection. The ALPN from the ssl context can be checked
to update the ALPN only if it is a subset of the context value.
This method will be useful to change a connection ALPN for websocket,
must notably if the server does not support h2 websocket through the
rfc8441 Extended Connect.
Define a new stream flag SF_WEBSOCKET and a new cs flag CS_FL_WEBSOCKET.
The conn-stream flag is first set by h1/h2 muxes if the request is a
valid websocket upgrade. The flag is then converted to SF_WEBSOCKET on
the stream creation.
This will be useful to properly manage websocket streams in
connect_server().
With this feature the lua implementation of the httpclient is now able
to stream a payload larger than an haproxy buffer.
The hlua_httpclient_send() function is now split into:
hlua_httpclient_send() which initiate the httpclient and parse the lua
parameters
hlua_httpclient_snd_yield() which will send the request and be called
again to stream the request if the body is larger than an haproxy buffer
hlua_httpclient_rcv_yield() which will receive the response and store it
in the lua buffer.
This patch add a way to handle HTTP requests streaming using a
callback.
The end of the data must be specified by using the "end" parameter in
httpclient_req_xfer().
The memcpy() call in the aarch64 version of __ha_cas_dw() is sometimes
inlined and sometimes not, depending on the gcc version. It's only used
to copy two void*, so let's use direct assignment instead of memcpy().
It would also be possible to change the asm code to directly write there,
but it's not worth it.
With this change the code is 8kB smaller with gcc-5.4.
__atomic_compare_exchange() is incorrectly documented in the gcc builtins
doc, it says the desired value is "type *desired" while in reality it is
"const type *desired" as expected since that value must in no way be
modified by the operation. However it seems that clang has implemented
it as documented, and reports build warnings when fed a const.
This is quite problematic because it means we have to betry the callers,
pretending we won't touch their constants but not knowing what the
compiler would do with them, and possibly hiding future bugs.
Instead of forcing a cast, let's just switch to the better
__atomic_compare_exchange_n() that takes a value instead of a pointer.
At least with this one there is no doubt about how the input will be
used.
It was verified that the output object code is the same both in clang
and gcc with this change.
At a few places we were still using protocol_by_family() instead of
the richer protocol_lookup(). The former is limited as it enforces
SOCK_STREAM and a stream protocol at the control layer. At least with
protocol_lookup() we don't have this limitationn. The values were still
set for now but later we can imagine making them configurable on the
fly.
Instead of using sock_type and ctrl_type to select a protocol, let's
make use of the new protocol type. For now they always match so there
is no change. This is applied to address parsing and to socket retrieval
from older processes.
The protocol selection is currently performed based on the family,
control type and socket type. But this is often not enough, as both
only provide DGRAM or STREAM, leaving few variants. Protocols like
SCTP for example might be indistinguishable from TCP here. Same goes
for TCP extensions like MPTCP.
This commit introduces a new enum proto_type that is placed in each
and every protocol definition, that will usually more or less match
the sock_type, but being an enum, will support additional values.
For now, these addresses are never set. But the idea is to be able to set, at
least first, the client source and destination addresses at the stream level
without updating the session or connection ones.
Of course, because these addresses are carried by the strream-interface, it
would be possible to set server source and destination addresses at this level
too.
Functions to fill these addresses have been added: si_get_src() and
si_get_dst(). If not already set, these functions relies on underlying
layers to fill stream-interface addresses. On the frontend side, the session
addresses are used if set, otherwise the client connection ones are used. On
the backend side, the server connection addresses are used.
And just like for sessions and conncetions, si_src() and si_dst() may be used to
get source and destination addresses or the stream-interface. And, if not set,
same mechanism as above is used.
For now, these addresses are never set. But the idea is to be able to set
client source and destination addresses at the session level without
updating the connection ones.
Functions to fill these addresses have been added: sess_get_src() and
sess_get_dst(). If not already set, these functions relies on
conn_get_src() and conn_get_dst() to fill session addresses.
And just like for conncetions, sess_src() and sess_dst() may be used to get
source and destination addresses. However, if not set, the corresponding
address from the underlying client connection is returned. When this
happens, the addresses is filled in the connection object.
conn_get_src() and conn_get_dst() functions are used to fill the source and
destination addresses of a connection. On success, ->src and ->dst
connection fields can be safely used.
For convenience, 2 new functions are added here: conn_src() and conn_dst().
These functions return the corresponding address, as a const and only if it
is already set. Otherwise NULL is returned.
Flags used to set the execution context of a lua txn are used as an enum. It is
not uncommon but there are few flags otherwise. So to remove ambiguities, a
comment and a _NONE value are added to have a clear definition of supported
values.
This patch should fix the issue #1429. No backport needed.
httpclient_req_gen() takes a payload argument which can be use to put a
payload in the request. This payload can only fit a request buffer.
This payload can also be specified by the "body" named parameter within
the lua. httpclient.
It is also used within the CLI httpclient when specified as a CLI
payload with "<<".
Use include file <sys/time.h> to fix compilation error with timeval in
some files. This is as reported as 'man 7 system_data_types'. The build
error is reported on NetBSD 9.2.
This should be backported up to 2.2.
Some browsers may send Initial packets with sizes greater than 1252 bytes
(QUIC_INITIAL_IPV4_MTU). Let us increase this size limit up to 2048 bytes.
Also use this size for "max_udp_payload_size" transport parameter to limit
the size of the datagrams we want to receive.
Sometimes we'd like to do our best to drain pending data before closing
in order to save the peer from risking to receive an RST on close.
This adds a new connection flag CO_FL_WANT_DRAIN that is used to
trigger a call to conn_ctrl_drain() from conn_ctrl_close(), and the
sock_drain() function ignores fd_recv_ready() if this flag is set,
in order to catch latest data. It's not used for now.
This applicationn specific flag was added in 2.4-dev by commit 6fa8bcdc7
("MINOR: task: add an application specific flag to the state: TASK_F_USR1")
to help preserve a the idle connections status across wakeup calls. While
the code to do this was OK for tasklets, it was wrong for tasks, as in an
effort not to lose it when setting the RUNNING flag (that tasklets don't
have), it ended up being inconditionally set. It just happens that for now
no regular tasks use it, only tasklets.
This fix makes sure we always atomically perform (state & flags | running)
there, using a CAS. It also does it for tasklets because it was possible
to lose some such flags if set by another thread, even though this should
not happen with current code. In order to make the code more readable (and
avoid the previous mistake of repeated flags in the bit field), a new
TASK_PERSISTENT aggregate was declared in task.h for this.
In practice the CAS is cheap here because task states are stable or
convergent so the loop will almost never be taken.
This should be backported to 2.4.
This macro is similar to LIST_INLIST() except that it is guaranteed to
perform the test atomically, so that even if LIST_INLIST() is intrumented
with debugging code to perform extra consistency checks, it will not fail
when used in the context of barriers and atomic ops.
perf top shows that we spend a lot of time trying to read item->type in
the lookup loop, because the node is placed after the very long name,
so when the node is found, no data is in the cache yet. Let's simply
move the node upper in the struct. This results in the CPU usage of
resolv_validate_dns_response() to drop by 4 points.
A bogus test in b_get_varint(), b_put_varint(), b_peek_varint() shifts
the end of the buffer by one byte. Since the bug is the same in the read
and write functions, the buffer contents remain compatible, which explains
why this bug was not detected earlier. But if the buffer ends on an
aligned address or page, it can result in a one-byte overflow which will
typically cause a crash or an inconsistent behavior.
This API is only used by rings (e.g. for traces and boot messages) and
by DNS responses, so the probability to hit it is extremely low, but a
crash on boot was observed.
This must be backported to 2.2.
With SRV records, a huge amount of time is spent looking for records
by walking long lists. It is possible to reduce this by indexing values
in trees instead. However the whole code relies a lot on the list
ordering, and even implements some round-robin on it to distribute IP
addresses to servers.
This patch starts carefully by replacing the list with a an eb32 tree
that is still used like a list, with a constant key 0. Since ebtrees
preserve insertion order for duplicates, the tree walk visits the nodes
in the exact same order it did with the lists. This allows to implement
the required infrastructure without changing the behavior.
This one was used to indicate whether the callee had to follow particularly
safe code path when removing resolutions. Since the code now uses a kill
list, this is not needed anymore.
This code is dangerous enough that we certainly don't want external code
to ever approach it, let's not export unnecessary functions like this one.
It was made static and a comment was added about its purpose.
In order for all the error return values to be distributed on the same
side (instead of surrounding the success error code), the return values
for errors other than a simple verification failure are switched to
negative values. This way the result of the jwt_verify converter can be
compared strictly to 1 as well relative to 0 (any <= 0 return value is
an error).
The documentation was also modified to discourage conversion of the
return value into a boolean (which would definitely not work).
The PR_FL_READY flags must now be set on a proxy at the end of the
configuration validity check to notify it is fully configured and may be
safely used.
For now there is no real usage of this flag. But it will be usefull for
referenced default proxies to finish their configuration only once.
This patch is mandatory to support TCP/HTTP rules in defaults sections.
A proxy may now references the defaults section it is used. To do so, a
pointer on the default proxy was added in the proxy structure. And a
refcount must be used to track proxies using a default proxy. A default
proxy is destroyed iff its refcount is equal to zero and when it drops to
zero.
All this stuff must be performed during init/deinit staged for now. All
unreferenced default proxies are removed after the configuration parsing.
This patch is mandatory to support TCP/HTTP rules in defaults sections.
It is now possible to designate the defaults section to use by adding a name
of the corresponding defaults section and referencing it in the desired
proxy section. However, this introduces an ambiguity. This named defaults
section may still be implicitly used by other proxies if it is the last one
defined. In this case for instance:
default common
...
default frt from common
...
default bck from common
...
frontend fe from frt
...
backend be from bck
...
listen stats
...
Here, it is not really obvious the last section will use the 'bck' defaults
section. And it is probably not the expected behaviour. To help users to
properly configure their haproxy, a warning is now emitted if a defaults
section is explicitly AND implicitly used. The configuration manual was
updated accordingly.
Because this patch adds a warning, it should probably not be backported to
2.4. However, if is is backported, it depends on commit "MINOR: proxy:
Introduce proxy flags to replace disabled bitfield".
This change is required to support TCP/HTTP rules in defaults sections. The
'disabled' bitfield in the proxy structure, used to know if a proxy is
disabled or stopped, is replaced a generic bitfield named 'flags'.
PR_DISABLED and PR_STOPPED flags are renamed to PR_FL_DISABLED and
PR_FL_STOPPED respectively. In addition, everywhere there is a test to know
if a proxy is disabled or stopped, there is now a bitwise AND operation on
PR_FL_DISABLED and/or PR_FL_STOPPED flags.
These two fields are exclusive as they depend on the data type.
Let's move them into a union to save some precious bytes. This
reduces the struct resolv_answer_item size from 600 to 576 bytes.
The struct resolv_answer_item contains an address field of type
"sockaddr" which is only 16 bytes long, but which is used to store
either IPv4 or IPv6. Fortunately, the contents only overlap with
the "target" field that follows it and that is large enough to
absorb the extra bytes needed to store AAAA records. But this is
dangerous as just moving fields around could result in memory
corruption.
The fix uses a union and removes the casts that were used to hide
the problem.
Older versions need to be checked and possibly fixed. This needs
to be backported anyway.
In multi-threaded mode, on operating systems supporting multiple listeners on
the same IP:port, this will automatically create this number of multiple
identical listeners for the same line, all bound to a fair share of the number
of the threads attached to this listener. This can sometimes be useful when
using very large thread counts where the in-kernel locking on a single socket
starts to cause a significant overhead. In this case the incoming traffic is
distributed over multiple sockets and the contention is reduced. Note that
doing this can easily increase the CPU usage by making more threads work a
little bit.
If the number of shards is higher than the number of available threads, it
will automatically be trimmed to the number of threads. A special value
"by-thread" will automatically assign one shard per thread.
This function's purpose will be to duplicate a listener in INIT state.
This will be used to ease declaration of listeners spanning multiple
groups, which will thus require multiple FDs hence multiple receivers.
With groups at some point we'll have to have distinct masks/groups in the
receiver and the bind_conf, because a single bind_conf might require to
instantiate multiple receivers (one per group).
Let's split the thread mask and group to have one for the bind_conf and
another one for the receiver while it remains easy to do. This will later
allow to use different storage for the bind_conf if needed (e.g. support
multiple groups).
In file included from include/haproxy/jwt.h:25:
include/haproxy/jwt-t.h:66:2: error: unknown type name 'EVP_PKEY'
EVP_PKEY *pkey;
^
1 error generated.
Fix this compilation issue by inserting openssl-compat.h in jwt-t.h
This new converter takes a JSON Web Token, an algorithm (among the ones
specified for JWS tokens in RFC 7518) and a public key or a secret, and
it returns a verdict about the signature contained in the token. It does
not simply return a boolean because some specific error cases cas be
specified by returning an integer instead, such as unmanaged algorithms
or invalid tokens. This enables to distinguich malformed tokens from
tampered ones, that would be valid format-wise but would have a bad
signature.
This converter does not perform a full JWT validation as decribed in
section 7.2 of RFC 7519. For instance it does not ensure that the header
and payload parts of the token are completely valid JSON objects because
it would need a complete JSON parser. It only focuses on the signature
and checks that it matches the token's contents.
A JWT signed with the RSXXX or ESXXX algorithm (RSA or ECDSA) requires a
public certificate to be verified and to ensure it is valid. Those
certificates must not be read on disk at runtime so we need a caching
mechanism into which those certificates will be loaded during init.
This is done through a dedicated ebtree that is filled during
configuration parsing. The path to the public certificates will need to
be explicitely mentioned in the configuration so that certificates can
be loaded as early as possible.
This tree is different from the ckch one because ckch entries are much
bigger than the public certificates used in JWT validation process.
This helper function splits a JWT under Compact Serialization format
(dot-separated base64-url encoded strings) into its different sub
strings. Since we do not want to manage more than JWS for now, which can
only have at most three subparts, any JWT that has strictly more than
two dots is considered invalid.
The full list of possible algorithms used to create a JWS signature is
defined in section 3.1 of RFC7518. This patch adds a helper function
that converts the "alg" strings into an enum member.
This fetch can be used to retrieve the data contained in an HTTP
Authorization header when the Bearer scheme is used. This is used when
transmitting JSON Web Tokens for instance.
On receiving CONNECTION_CLOSE frame, the mux is flagged for immediate
connection close. A stream is closed even if there is data not ACKed
left if CONNECTION_CLOSE has been received.
The mux tx buffers have been rewritten with buffers attached to qcs
instances. qc_buf_available and qc_get_buf functions are updated to
manipulates qcs. All occurences of the unused qcc ring buffer are
removed to ease the code maintenance.
Defer the shutting of a qcs if there is still data in its tx buffers. In
this case, the conn_stream is closed but the qcs is kept with a new flag
QC_SF_DETACH.
On ACK reception, the xprt wake up the shut_tl tasklet if the stream is
flagged with QC_SF_DETACH. This tasklet is responsible to free the qcs
and possibly the qcc when all bidirectional streams are removed.
Remove the tx mux ring buffers in qcs, which should be in the qcc. For
the moment, use a simple architecture with 2 simple tx buffers in the
qcs.
The first buffer is used by the h3 layer to prepare the data. The mux
send operation transfer these into the 2nd buffer named xprt_buf. This
buffer is only freed when an ACK has been received.
This architecture is functional but not optimal for two reasons :
- it won't limit the buffer usage by connection
- each transfer on a new stream requires an allocation
This new ssllib_name_startswith precondition check can be used to
distinguish application linked with OpenSSL from the ones linked with
other SSL libraries (LibreSSL or BoringSSL namely). This check takes a
string as input and returns 1 when the SSL library's name starts with
the given string. It is based on the OpenSSL_version function which
returns the same output as the "openssl version" command.
These ones are passed on rule creation for the sole purpose of being
reported in "show sess", which is not done yet. For now the entries
are allocated upon rule creation and freed in free_act_rules().
Rules are currently allocated using calloc() by their caller, which does
not make it very convenient to pass more information such as the file
name and line number.
This patch introduces new_act_rule() which performs the malloc() and
already takes in argument the ruleset (ACT_F_*), the file name and the
line number. This saves the caller from having to assing ->from, and
will allow to improve the internal storage with more info.
Rename __GLOBL and __GLOBL1 to __HA_GLOBL and __HA_GLOBL1, as the former are
already defined on FreeBSD.
This should be backported to 2.4, 2.3 and 2.2.
There have been a large number of issues reported with conn_cur
synchronization because the concept is wrong. In an active-passive
setup, pushing the local connections count from the active node to
the passive one will result in the passive node to have a higher
counter than the real number of connections. Due to this, after a
switchover, it will never be able to close enough connections to
go down to zero. The same commonly happens on reloads since the new
process preloads its values from the old process, and if no connection
happens for a key after the value is learned, it is impossible to reset
the previous ones. In active-active setups it's a bit different, as the
number of connections reflects the number on the peer that pushed last.
This patch solves this by marking the "conn_cur" local and preventing
it from being learned from peers. It is still pushed, however, so that
any monitoring system that collects values from the peers will still
see it.
The patch is tiny and trivially backportable. While a change of behavior
in stable branches is never welcome, it remains possible to fix issues
if reports become frequent.
In the configuration sometimes we'll omit a thread group number to designate
a global thread number range, and sometimes we'll mention the group and
designate IDs within that group. The operation is more complex than it
seems due to the need to check for ranges spanning between multiple groups
and determining groups from threads from bit masks and remapping bit masks
between local/global.
This patch adds a function to perform this operation, it takes a group and
mask on input and updates them on output. It's designed to be used by "bind"
lines but will likely be usable at other places if needed.
For situations where specified threads do not exist in the group, we have
the choice in the code between silently fixing the thread set or failing
with a message. For now the better option seems to return an error, but if
it turns out to be an issue we can easily change that in the future. Note
that it should only happen with "x/even" when group x only has one thread.
This extends the "thread" statement of bind lines to support an optional
thread group number. When unspecified (0) it's an absolute thread range,
and when specified it's one relative to the thread group. Masks are still
used so no more than 64 threads may be specified at once, and a single
group is possible. The directive is not used for now.
This is the equivalent of "tid" for ease of access. In the future if we
make th_cfg a pure thread-local array (not a pointer), it may make sense
to move it there.
ha_set_tid() was randomly used either to explicitly set thread 0 or to
set any possibly incomplete thread during boot. Let's replace it with
a pointer to a valid thread or NULL for any thread. This allows us to
check that the designated threads are always valid, and to ignore the
thread 0's mapping when setting it to NULL, and always use group 0 with
it during boot.
The initialization code is also cleaner, as we don't pass ugly casts
of a thread ID to a pointer anymore.
This will be a convenient way to communicate the thread ID and its
local ID in the group, as well as their respective bits when creating
the threads or when only a pointer is given.
This will ease the reporting of the current thread group ID when coming
from the thread itself, especially since it returns the visible ID,
starting at 1.
This takes care of unassigned threads groups and places unassigned
threads there, in a more or less balanced way. Too sparse allocations
may still fail though. For now with a maximum group number fixed to 1
nothing can really fail.
A the "tg" thread-local variable now always points to the current
thread group. It's pre-initializd to the first one during boot and is
set to point to the thread's one by ha_set_tid(). This last one takes
care of checking whether the thread group was assigned or not because
it may be called during boot before threads are initialized.
This registers a mapping of threads to groups by enumerating for each thread
what group it belongs to, and marking the group as assigned. It takes care of
checking for redefinitions, overlaps, and holes. It supports both individual
numbers and ranges. The thread group is referenced from the thread config.
This creates a struct tgroup_info which knows the thread ID of the first
thread in a group, and the number of threads in it. For now there's only
one thread group supported in the configuration, but it may be forced to
other values for development purposes by defining MAX_TGROUPS, and it's
enabled even when threads are disabled and will need to remain accessible
during boot to keep a simple enough internal API.
For the purpose of easing the configurations which do not specify a thread
group, we're starting group numbering at 1 so that thread group 0 can be
"undefined" (i.e. for "bind" lines or when binding tasks).
The goal will be to later move there some global items that must be
made per-group.
We want to make sure that the current thread_info accessed via "ti" will
remain constant, so that we don't accidentally place new variable parts
there and so that the compiler knows that info retrieved from there is
not expected to have changed between two function calls.
Only a few init locations had to be adjusted to use the array and the
rest is unaffected.
The last 3 fields were 3 list heads that are per-thread, and which are:
- the pool's LRU head
- the buffer_wq
- the streams list head
Moving them into thread_ctx completes the removal of dynamic elements
from the struct thread_info. Now all these dynamic elements are packed
together at a single place for a thread.
The TI_FL_STUCK flag is manipulated by the watchdog and scheduler
and describes the apparent life/death of a thread so it changes
all the time and it makes sense to move it to the thread's context
for an active thread.
The "thread_info" name was initially chosen to store all info about
threads but since we now have a separate per-thread context, there is
no point keeping some of its elements in the thread_info struct.
As such, this patch moves prev_cpu_time, prev_mono_time and idle_pct to
thread_ctx, into the thread context, with the scheduler parts. Instead
of accessing them via "ti->" we now access them via "th_ctx->", which
makes more sense as they're totally dynamic, and will be required for
future evolutions. There's no room problem for now, the structure still
has 84 bytes available at the end.
The scheduler contains a lot of stuff that is thread-local and not
exclusively tied to the scheduler. Other parts (namely thread_info)
contain similar thread-local context that ought to be merged with
it but that is even less related to the scheduler. However moving
more data into this structure isn't possible since task.h is high
level and cannot be included everywhere (e.g. activity) without
causing include loops.
In the end, it appears that the task_per_thread represents most of
the per-thread context defined with generic types and should simply
move to tinfo.h so that everyone can use them.
The struct was renamed to thread_ctx and the variable "sched" was
renamed to "th_ctx". "sched" used to be initialized manually from
run_thread_poll_loop(), now it's initialized by ha_set_tid() just
like ti, tid, tid_bit.
The memset() in init_task() was removed in favor of a bss initialization
of the array, so that other subsystems can put their stuff in this array.
Since the tasklet array has TL_CLASSES elements, the TL_* definitions
was moved there as well, but it's not a problem.
The vast majority of the change in this patch is caused by the
renaming of the structures.
We used to remap SI_TKILL to SI_LWP when SI_TKILL was not available
(e.g. FreeBSD) but that's ugly and since we need this only in a single
switch/case block in wdt.c it's even simpler and cleaner to perform the
two tests there, so let's do this.
The watchdog timer had no more reason for being shared with the struct
thread_info since the watchdog is the only user now. Let's remove it
from the struct and move it to a static array in wdt.c. This removes
some ifdefs and the need for the ugly mapping to empty_t that might be
subject to a cast to a long when compared to TIMER_INVALID. Now timer_t
is not known outside of wdt.c and clock.c anymore.
This removes the knowledge of clockid_t from anywhere but clock.c, thus
eliminating a source of includes burden. The unused clock_id field was
removed from thread_info, and the definition setting of clockid_t was
removed from compat.h. The most visible change is that the function
now_cpu_time_thread() now takes the thread number instead of a tinfo
pointer.
The code that deals with timer creation for the WDT was moved to clock.c
and is called with the few relevant arguments. This removes the need for
awareness of clock_id from wdt.c and as such saves us from having to
share it outside. The timer_t is also known only from both ends but not
from the public API so that we don't have to create a fake timer_t
anymore on systems which do not support it (e.g. macos).
This was previously open-coded in run_thread_poll_loop(). Now that
we have clock.c dedicated to such stuff, let's move the code there
so that we don't need to keep such ifdefs nor to depend on the
clock_id.
Instead of fiddling with before_poll and after_poll in
activity_count_runtime(), the function is now called by
clock_entering_poll() which passes it the number of microseconds
spent working. This allows to remove all calls to
activity_count_runtime() from the pollers.
The entering_poll/leaving_poll/measure_idle functions that were hard
to classify and used to move to various locations have now been placed
into clock.c since it's precisely about time-keeping. The functions
were renamed to clock_*. The samp_time and idle_time values are now
static since there is no reason for them to be read from outside.
There is currently a problem related to time keeping. We're mixing
the functions to perform calculations with the os-dependent code
needed to retrieve and adjust the local time.
This patch extracts from time.{c,h} the parts that are solely dedicated
to time keeping. These are the "now" or "before_poll" variables for
example, as well as the various now_*() functions that make use of
gettimeofday() and clock_gettime() to retrieve the current time.
The "tv_*" functions moved there were also more appropriately renamed
to "clock_*".
Other parts used to compute stolen time are in other files, they will
have to be picked next.
It was brough by an unneeded addition of a local variable after a test
in commit f7f53afcf ("BUILD/MEDIUM: tcp: set-mark setting support for
FreeBSD."). No backport needed.
Remove the quic_conn from the receiver connection_ids tree on
quic_conn_free. This fixes a crash due to dangling references in the
tree after a quic connection release.
This operation must be conducted under the listener lock. For this
reason, the quic_conn now contains a reference to its attached listener.
Following include reorganzation, there is some missing include files for
task.h when compiling with DEBUG_TASK :
- activity.h for task_profiling_mask
- time.h for now_mono_time()
This is present since the following commit
d8b325c748
REORG: task: uninline the loop time measurement code
No need to backport this.
These ones are rarely used or only to waste CPU cycles waiting, and are
the last ones requiring system includes in thread.h. Let's uninline them
and move them to thread.c.
This removes the thread identifiers from struct thread_info and moves
them only in static array in thread.c since it's now the only file that
needs to touch it. It's also the only file that needs to include
pthread.h, beyond haproxy.c which needs it to start the poll loop. As
a result, much less system includes are needed and the LoC reduced by
around 3%.
haproxy.c still has to deal with pthread-specific low-level stuff that
is OS-dependent. We should not have to deal with this there, and we do
not need to access pthread anywhere else.
Let's move these 3 functions to thread.c and keep empty inline ones for
when threads are disabled.
It's not needed to inline it at all (one call per loop) and it introduces
dependencies, let's move it to fd.c.
Removing the few remaining includes that came with it further reduced
by ~0.2% the LoC and the build time is now below 6s.
TV_ETERNITY, TV_ETERNITY_MS and MAX_DELAY_MS may be configured and
ought to be in defaults.h so that they can be inherited from everywhere
without including time.h and could also be redefined if neede
(particularly for MAX_DELAY_MS).
It's pointless to inline this, it's called exactly once per poll loop,
and it depends on time.h which is quite deep. Let's move that to task.c
along with sched_report_idle().
The remaining large functions are those allocating/initializing and
occasionally freeing connections, conn_streams and sockaddr. Let's
move them to connection.c. In fact, cs_free() is the only one-liner
but let's move it along with the other ones since a call will be
small compared to the rest of the work done there.
The following inlined functions are particularly large (and probably not
inlined at all by the compiler), and together represent roughly half of
the file, while they're used at most once per connection. They were moved
to connection.c.
conn_upgrade_mux_fe, conn_install_mux_fe, conn_install_mux_be,
conn_install_mux_chk, conn_delete_from_tree, conn_init, conn_new,
conn_free
No need to include the full tree management code, type files only
need the definitions. Doing so reduces the whole code size by around
3.6% and the build time is down to just 6s.
ebtree is one piece using a lot of inlines and each tree root or node
definition needed by many of our structures requires to parse and
compile all these includes, which is large and painfully slow. Let's
move the very basic definitions to their own file and include it from
ebtree.h.
The following functions are quite heavy and have no reason to be kept
inlined:
srv_release_conn, srv_lookup_conn, srv_lookup_conn_next,
srv_add_to_idle_list
They were moved to server.c. It's worth noting that they're a bit
at the edge between server and connection and that maybe we could
create an idle-conn file for these in the near future.
We do not really need to have them inlined, and having xxhash.h included
by connection.h results in this 4700-lines file being processed 101 times
over the whole project, which accounts for 13.5% of the total size!
Additionally, half of the functions are only needed from connection.c.
Let's move the functions there and get rid of the painful include.
The build time is now down to 6.2s just due to this.
The hash type stored everywhere is XXH64_hash_t, which annoyingly forces
everyone to include the huge xxhash file. We know it's an uint64_t because
that's its purpose and the type is only made to abstract it on machines
where uint64_t is not availble. Let's switch the type to uint64_t
everywhere and avoid including xxhash from the type file.
Plenty of includes were present there only for struct pointers resulting
in them being used from many other places. The LoC reduced again by more
than 1% by cleaning this.
This one is expensive in code size because it comes with xxhash.h at a
low level of dependency that's inherited at plenty of places, and for
a function does doesn't benefit from inlining and could possibly even
benefit from not being inline given that it's large and called from the
scheduler.
Moving it to activity.c reduces the LoC by 1.2% and the binary size by
~1kB.
This function has no reason for being inlined, it's called from non
critical places (once in pollers), is quite large and comes with
dependencies (time and freq_ctr). Let's move it to acitvity.c. That's
another 0.4% less LoC to build.
These are ticks, not timeval, and they're a cause for plenty of files
including time.h just to access now_ms that's only used with ticks
functions. Let's move them over there.
The idle time calculation stuff was moved to task.h by commit 6dfab112e
("REORG: sched: move idle time calculation from time.h to task.h") but
these two variables that are only maintained by task.{c,h} were still
left in time.{c,h}. They have to move as well.
These two counters were the only ones not in the global struct, while
the SSL freq counters or the req counts are already in it, this forces
stats.c to include ssl_sock just to know about them. Let's move them
over there with their friends. This reduces from 408 to 384 the number
of includes of opensslconf.h.
This one has nothing to do with ssl_sock as it manipulates the struct
server only. Let's move it to server.c and remove unneeded dependencies
on ssl_sock.h. This further reduces by 10% the number of includes of
opensslconf.h and by 0.5% the number of compiled lines.
This one doesn't use anything from an SSL context, it only checks the
type of the transport layer of a connection, thus it belongs to
connection.h. This is particularly visible due to all the ifdefs
around it in various call places.
This is exactly the same as for listeners, servers only include
openssl-compat to provide the SSL_CTX type to use as two pointers to
contexts, and to detect if NPN, ALPN, and cipher suites are supported,
and save up to 5 pointers in the ssl_ctx struct if not supported. This
is pointless, as these ones have all been supported for about a decade,
and including this file comes with a long dependency chain that impacts
lots of other files. The ctx was made a void*.
Now the build time was significantly reduced, from 9.2 to 8.1 seconds,
thanks to opensslconf.h being included "only" 456 times instead of 2424
previously!
The total number of lines of code compiled was reduced by 15%.
Listeners only include openssl-compat to provide the SSL_CTX type to
use as two pointers to contexts, and to detect if NPN, ALPN, and cipher
suites are supported, and save up to 5 pointers in the ssl_bind_conf
struct if not supported. This is pointless, as these ones have all been
supported for about a decade, and including this file comes with a long
dependency chain that impacts lots of other files. The initial_ctx and
default_ctx can perfectly remain void* instead of SSL_CTX*.
These functions have no reason for being inlined, and they require some
includes with long dependencies. Let's move them to listener.c and trim
unused includes in listener.h.
This file includes streams, proxies, Lua just for some definitions of
structures for which we only have a pointer. Let's drop this. That's
responsible for 0.2% of all the lines of code.
The lock-debugging code in thread.h has no reason to be inlined. the
functions are quite fat and perform a lot of operations so there's no
saving keeping them inlined. Worse, most of them are in fact not
inlined, resulting in a significantly bigger executable.
This patch moves all this part from thread.h to thread.c. The functions
are still exported in thread.h of course. This results in ~166kB less
code:
text data bss dec hex filename
3165938 99424 897376 4162738 3f84b2 haproxy-before
2991987 99424 897376 3988787 3cdd33 haproxy-after
In addition the build time with thread debugging enabled has shrunk
from 19.2 to 17.7s thanks to much less code to be parsed in thread.h
that is included virtually everywhere.
pool-os.h relies on a number of includes solely because the
pool_alloc_area() function was inlined, and this only because we want
the normal version to be inlined so that we can track the calling
places for the memory profiler. It's worth noting that it already
does not work at -O0, and that when UAF is enabled we don't care a
dime about profiling.
This patch does two things at once:
- force-inline the functions so that pool_alloc_area() is still
inlined at -O0 to help track malloc() users ;
- uninline the UAF version of these (that rely on mmap/munmap)
and move them to pools.c so that we can remove all unneeded
includes.
Doing so reduces by ~270kB or 0.15% the total build size.
These ones are called from a few places in the code and are only provided
by ebtree.h, which is not normal given that some callers do not even use
ebtree.
channel, stream_interface, appctx, buffer, proxy and htx ones are used
in function arguments and most of them are not defined but were inherited
from intermediary inclues. Let's define them here and drop the unneeded
includes.
Some structures are inherited via intermediary includes (e.g. dns_counters
comes from a long path). Let's define the missing ones and includes vars-t
that is needed in the structure.
We're using variable-to-sample conversion at least 4 times in the code,
two of which are bogus. Let's introduce a generic conversion function
that performs the required checks.
This one only handles integers, contrary to its sibling with the suffix
_str that only handles strings. Let's rename it and uninline it since it
may well be used from outside.
The SSL stuff in struct server takes less than 3% of it and requires
lots of annoying ifdefs in the code just to take care of the cases
where the field is absent. Let's get rid of this and stop including
openssl-compat from server.c to detect NPN and ALPN capabilities.
This reduces the total LoC by another 0.4%.
During httpclient_destroy, add a condition in the BUG_ON which checks
that the client was started before it has ended. A httpclient structure
could have been created without being started.
httpclient_stop_and_destroy() tries to destroy the httpclient structure
if the client was stopped.
In the case the client wasn't stopped, it ask the client to stop itself
and to destroy the httpclient structure itself during the release of the
applet.
That's where that code initially was but it had been moved to
activity_count_runtime() for pure reasons of dependency loops. These
ones are no longer true so we can move that code back to the scheduler
and keep it where the information are updated and checked.
time.h is a horrible place to put activity calculation, it's a
historical mistake because the functions were there. We already have
most of the parts in sched.{c,h} and these ones make an exception in
the middle, forcing time.h to include some thread stuff and to access
the before/after_poll and idle_pct values.
Let's move these 3 functions to task.h with the other ones. They were
prefixed with "sched_" instead of the historical "tv_" which already
made no sense anymore.
I don't know why I inlined this one, this makes no sense given that it's
only used for stats, and it starts a circular dependency on tinfo.h which
can be problematic in the future. In addition, all the stuff related to
idle time calculation should be with the rest of the scheduler, which
currently is in task.{c,h}, so let's move it there.
We'll need to improve the API to pass other arguments in the future, so
let's start to adapt better to the current use cases. task_new() is used:
- 18 times as task_new(tid_bit)
- 18 times as task_new(MAX_THREADS_MASK)
- 2 times with a single bit (in a loop)
- 1 in the debug code that uses a mask
This patch provides 3 new functions to achieve this:
- task_new_here() to create a task on the calling thread
- task_new_anywhere() to create a task to be run anywhere
- task_new_on() to create a task to run on a specific thread
The change is trivial and will allow us to later concentrate the
required adaptations to these 3 functions only. It's still possible
to call task_new() if needed but a comment was added to encourage the
use of the new ones instead. The debug code was not changed and still
uses it.
Work lists were a mechanism introduced in 1.8 to asynchronously delegate
some work to be performed on another thread via a dedicated task.
The only user was the listeners, to deal with the queue. Nowadays
the tasklets have made this much more convenient, and have replaced
work_lists in the listeners. It seems there will be no valid use case
of work lists anymore, so better get rid of them entirely and keep the
scheduler code cleaner.
__task_queue() must absolutely not be called with TICK_ETERNITY or it
will place a never-expiring node upfront in the timers queue, preventing
any timer from expiring until the process is restarted. Code was found
to cause this using "task_schedule(task, now_ms)" which does this one
millisecond every 49.7 days, so let's add a condition against this. It
must never trigger since any process susceptible to trigger it would
already accumulate tasks until it dies.
An extra test was added in wake_expired_tasks() to detect tasks whose
timeout would have been changed after being queued.
An improvement over this could be in the future to use a non-scalar
type (union/struct) for expiration dates so as to avoid the risk of
using them directly like this. But now_ms is already such a valid
time and this specific construct would still not be caught.
This could even be backported to stable versions to help detect other
occurrences if any.
The ssl_bc_hsk_err sample fetch will need to raise more errors than only
handshake related ones hence its renaming to a more generic ssl_bc_err.
This patch is required because some handshake failures that should have
been caught by this fetch (verify error on the server side for instance)
were missed. This is caused by a change in TLS1.3 in which the
'Finished' state on the client is reached before its certificate is sent
(and verified) on the server side (see the "Protocol Overview" part of
RFC 8446).
This means that the SSL_do_handshake call is finished long before the
server can verify and potentially reject the client certificate.
The ssl_bc_hsk_err will then need to be expanded to catch other types of
errors.
This change is also applied to the frontend fetches (ssl_fc_hsk_err
becomes ssl_fc_err) and to their string counterparts.
In case of a connection error happening after the SSL handshake is
completed, the error code stored in the connection structure would not
always be set, hence having some connection failures being described as
successful in the fc_conn_err or bc_conn_err sample fetches.
The most common case in which it could happen is when the SSL server
rejects the client's certificate. The SSL_do_handshake call on the
client side would be sucessful because the client effectively sent its
client hello and certificate information to the server, but the next
call to SSL_read on the client side would raise an SSL_ERROR_SSL code
(through the SSL_get_error function) which is decribed in OpenSSL
documentation as a non-recoverable and fatal SSL error.
This patch ensures that in such a case, the connection's error code is
set to a special CO_ERR_SSL_FATAL value.
There's no reason CONFIG_HAP_POOLS and its opposite are located into
pools-t.h, it forces those that depend on them to inlcude the file.
Other similar options are normally dealt with in defaults.h, which is
part of the default API, so let's do that.
According to the RFC7230, "chunked" encoding must not be applied more than
once to a message body. To handle this case, h1_parse_xfer_enc_header() is
now responsible to fail when a parsing error is found. It also fails if the
"chunked" encoding is not the last one for a request.
To help the parsing, two H1 parser flags have been added: H1_MF_TE_CHUNKED
and H1_MF_TE_OTHER. These flags are set, respectively, when "chunked"
encoding and any other encoding are found. H1_MF_CHNK flag is used when
"chunked" encoding is the last one.
This commit provides an hlua_httpclient object which is a bridge between
the httpclient and the lua API.
The HTTPClient is callable in lua this way:
local httpclient = core.httpclient()
local response = httpclient:get("http://127.0.0.1:9000/?s=9999")
core.Debug("Status: ".. res.status .. ", Reason : " .. res.reason .. ", Len:" .. string.len(res.body) .. "\n")
The resulting response object will provide a "status" field which
contains the status code, a "reason" string which contains the reason
string, and a "body" field which contains the response body.
The implementation uses the httpclient callback to wake up the lua task
which yield each time it pushes some data. The httpclient works in the
same thread as the lua task.
The transient flag CO_RFL_BUF_NOT_STUCK should now be set when the mux's
rcv_buf() function is called, in si_cs_recv(), to be sure the mux is able to
perform some optimisation during data copy. This flag is set when we are
sure the channel buffer is not stuck. Concretely, it happens when there are
data scheduled to be sent.
It is not a fix and this flag is not used for now. But it makes sense to have
this info to be sure to be able to do some optimisations if necessary.
This patch is related to the issue #1362. It may be backported to 2.4 to
ease future backports.
HTX_FL_FRAGMENTED flag is now set on an HTX message when it is
fragmented. It happens when an HTX block is removed in the middle of the
message and flagged as unused. HTX_FL_FRAGMENTED flag is removed when all
data are removed from the message or when the message is defragmented.
Note that some optimisations are still possible because the flag can be
avoided in other situations. For instance when the last header of a bodyless
message is removed.
If the stream-interface is waiting for more buffer room to store incoming
data, it is important at the stream level to stop to wait for more data to
continue. Thanks to the previous patch ("BUG/MEDIUM: stream-int: Notify
stream that the mux wants more room to xfer data"), the stream is woken up
when this happens. In this patch, we take care to interrupt the
corresponding tcp-content ruleset or to stop waiting for the HTTP message
payload.
To ease detection of the state, si_rx_blocked_room() helper function has
been added. It returns non-zero if the stream interface's Rx path is blocked
because of lack of room in the input buffer.
This patch is part of a series related to the issue #1362. It should be
backported as ar as 2.0, probably with some adaptations. So be careful
during backports.
When the mux failed to transfer data to the upper layer because of a lack of
room, it is important to wake the stream up to let it handle this
event. Otherwise, if the stream is waiting for more data, both the stream
and the mux reamin blocked waiting for each other.
When this happens, the mux set the CS_FL_WANT_ROOM flag on the
conn-stream. Thus, in si_cs_recv() we are able to detect this event. Today,
the stream-interface is blocked. But, it is not enough to wake the stream
up. To fix the bug, CF_READ_PARTIAL flag is extended to also handle cases
where a read exception occurred. This flag should idealy be renamed. But for
now, it is good enough. By setting this flag, we are sure the stream will be
woken up.
This patch is part of a series related to the issue #1362. It should be
backported as far as 2.0, probably with some adaptations. So be careful
during backports.
When a message is parsed and copied into the channel buffer, in
h1_process_demux(), more space is requested if some pending data remain
after the parsing while the channel buffer is not empty. To do so,
CS_FL_WANT_ROOM flag is set. It means the H1 parser needs more space in the
channel buffer to continue. In the stream-interface, when this flag is set,
the SI is considered as blocked on the RX path. It is only unblocked when
some data are sent.
However, it is not accurrate because the parsing may be stopped because
there is not enough data to continue. For instance in the middle of a chunk
size. In this case, some data may have been already copied but the parser is
blocked because it must receive more data to continue. If the calling SI is
blocked on RX at this stage when the stream is waiting for the payload
(because http-buffer-request is set for instance), the stream remains stuck
infinitely.
To fix the bug, we must request more space to the app layer only when it is
not possible to copied more data. Actually, this happens when data remain in
the input buffer while the H1 parser is in states MSG_DATA or MSG_TUNNEL, or
when we are unable to copy headers or trailers into a non-empty buffer.
The first condition is quite easy to handle. The second one requires an API
refactoring. h1_parse_msg_hdrs() and h1_parse_msg_tlrs() fnuctions have been
updated. Now it is possible to know when we need more space in the buffer to
copy headers or trailers (-2 is returned). In the H1 mux, a new H1S flag
(H1S_F_RX_CONGESTED) is used to track this state inside h1_process_demux().
This patch is part of a series related to the issue #1362. It should be
backported as far as 2.0, probably with some adaptations. So be careful
during backports.
During the packet loss detection we must treat the paquet number
in this order Initial -> Handshake -> O1RTT. This was not the case
due to the chosen order to implement the array of packet number space
which was there before the packet loss detection implementation.
The STREAM data to send coming from the upper layer must be stored until
having being acked by the peer. To do so, we store them in buffer structs,
one by stream (see qcs.tx.buf). Each time a STREAM is built by quic_push_frame(),
its offset must match the offset of the first byte added to the buffer (modulo
the size of the buffer) by the frame. As they are not always acknowledged in
order, they may be stored in eb_trees ordered by their offset to be sure
to sequentially delete the STREAM data from their buffer, in the order they
have been added to it.
This function does exactly the same thing as b_xfer() which transfers
data from a struct buffer to another one but without zero copy when
the destination buffer is empty. This is at least useful to transfer
h3 data to the QUIC mux from buffer with garbage medata which have
been used to build h3 frames without too much memcopy()/memmove().
The peer transport parameter values were not initialized with
the default ones (when absent), especially the
"active_connection_id_limit" parameter with 2 as default value
when absent from received remote transport parameters. This
had as side effect to send too much NEW_CONNECTION_ID frames.
This was the case for curl which does not announce any
"active_connection_id_limit" parameter.
Also rename ->idle_timeout to ->max_idle_timeout to reflect the RFC9000.
These salts are used to derive initial secrets to decrypt the first Initial packet.
We support draft-29 and v1 QUIC version initial salts.
Add parameters to our QUIC-TLS API functions used to derive these secret for
these salts.
Make our xprt_quic use the correct initial salt upon QUIC version field found in
the first paquet. Useful to support connections with curl which use draft-29
QUIC version.
Move the "ACK required" bit from the packet number space to the connection level.
Force the "ACK required" option when acknowlegding Handshake or Initial packet.
A client may send three packets with a different encryption level for each. So,
this patch modifies qc_treat_rx_pkts() to consider two encryption level passed
as parameters, in place of only one.
Make qc_conn_io_cb() restart its process after the handshake has succeeded
so that to process any Application level packets which have already been received
in the same datagram as the last CRYPTO frames in Handshake packets.
Make qc_prep_hdshk_pkts() and qui_conn_io_cb() handle the case
where we enter them with QUIC_HS_ST_COMPLETE or QUIC_HS_ST_CONFIRMED
as connection state with QUIC_TLS_ENC_LEVEL_APP and QUIC_TLS_ENC_LEVEL_NONE
to consider to prepare packets.
quic_get_tls_enc_levels() is modified to return QUIC_TLS_ENC_LEVEL_APP
and QUIC_TLS_ENC_LEVEL_NONE as levels to consider when coalescing
packets in the same datagram.
qc_build_pkt() has recently been modified to support any type of
supported frame at any encryption level (assuming that an encryption level does
not support any type of frame) but quic_tls_level_pkt_type()
prevented it from building application level packet type because it was written
only for the handshake.
This patch simply adds the remaining encryption level QUIC_TLS_ENC_LEVEL_APP
which must be supported by quic_tls_level_pkt_type().