One check was missing for the 'polarity' of the test. Now 'unless'
works. BTW, 'unless' provides a nice way to perform one-line auth :
acl valid-user http_auth(user-list)
http-request auth unless valid-user
We're already able to know if a request is a proxy request or a
normal one, and we have an option "http-use-proxy-header" which states
that proxy headers must be checked. So let's switch to use the proxy
authentication headers and responses when this option is set and we're
facing a proxy request. That allows haproxy to enforce auth in front
of a proxy.
Support the new syntax (http-request allow/deny/auth) in
http stats.
Now it is possible to use the same syntax is the same like in
the frontend/backend http-request access control:
acl src_nagios src 192.168.66.66
acl stats_auth_ok http_auth(L1)
stats http-request allow if src_nagios
stats http-request allow if stats_auth_ok
stats http-request auth realm LB
The old syntax is still supported, but now it is emulated
via private acls and an aditional userlist.
Just as for the req* rules, we can now condition rsp* rules with ACLs.
ACLs match on response, so volatile request information cannot be used.
A warning is emitted if a configuration contains such an anomaly.
From now on, if request filters have ACLs defined, these ACLs will be
evaluated to condition the filter. This will be used to conditionally
remove/rewrite headers based on ACLs.
Krzysztof Oledzki suggested to disable keep-alive when a process
is going down due to a reload, in order to avoid ever-lasting
sessions. This is a simple and very efficient solution as it
ensures that at most one more request will be handled on a
keep-alive connection after the process has received a SIGUSR1
signal.
We must trim any excess data from the response buffer when recycling
a keep-alive connection, because we may have blocked an invalid response
from a server that we don't want to accidentely forward once we disable
the analysers, nor do we want those data to come along with next response.
A typical example of such data would be from a buggy server responding to
a HEAD with some data, or sending more than the advertised content-length.
For deciding to set the BF_EXPECT_MORE, we reused the same code as in
http_wait_for_request(), but here we must ignore buf->lr which is not
yet set and useless. This might only have caused random sub-optimal
behaviours.
Despite what is explicitly stated in HTTP specifications,
browsers still use the undocumented Proxy-Connection header
instead of the Connection header when they connect through
a proxy. As such, proxies generally implement support for
this stupid header name, breaking the standards and making
it harder to support keep-alive between clients and proxies.
Thus, we add a new "option http-use-proxy-header" to tell
haproxy that if it sees requests which look like proxy
requests, it should use the Proxy-Connection header instead
of the Connection header.
When using "option persist" or "force-persist", we want to know from the
logs if the cookie referenced a valid server or a down server. Till here
the flag reported a valid server even if the server was down, which is
misleading. Now we correctly report that the requested server was down.
We can typically see "--DI" when using "option persist" with redispatch,
ad "SCDN" when using force-persist on a down server.
This is used to force access to down servers for some requests. This
is useful when validating that a change on a server correctly works
before enabling the server again.
We use to delay the response if there is a new request in the buffer.
However, if the pending request is incomplete, we should not delay the
pending responses.
This can cause parts of responses to be truncated in case of
pipelined requests if the second request generates an error
before the first request is completely flushed.
This one is the next step of previous patch. It correctly computes
the response mode and the Connection flag transformations depending
on the request mode and version, and the response version and headers.
We're now also able to add "Connection: keep-alive", and to convert
server's close during a keep-alive connection to a server-close
connection.
We need to improve Connection header handling in the request for it
to support the upcoming keep-alive mode. Now we have two flags which
keep in the session the information about the presence of a
Connection: close and a Connection: keep-alive headers in the initial
request, as well as two others which keep the current state of those
headers so that we don't have to parse them again. Knowing the initial
value is essential to know when the client asked for keep-alive while
we're forcing a close (eg in server-close mode). Also the Connection
request parser is now able to automatically remove single header values
at the same time they are parsed. This provides greater flexibility and
reliability.
All combinations of listen/front/back in all modes and with both
1.0 and 1.1 have been tested.
Calling this function after http_find_header2() automatically deletes
the current value of the header, and removes the header itself if the
value is the only one. The context is automatically adjusted for a
next call to http_find_header2() to return the next header. No other
change nor test should be made on the transient context though.
The close mode of a transaction would be switched to tunnel mode
at the end of the processing, letting a lot of pending data pass
in the other direction if any. Let's fix that by checking for the
close mode during state resync too.
We must set the error flags when detecting that a client has reset
a connection or timed out while waiting for a new request on a keep-alive
connection, otherwise process_session() sets it itself and counts one
request error.
That explains why some sites were showing an increase in request errors
with the keep-alive.
While waiting in a keep-alive state for a request, we want to silently
close if we don't get anything. However if we get a partial request it's
different because that means the client has started to send something.
This requires a new transaction flag. It will be used to implement a
distinct timeout for keep-alive and requests.
This change, suggested by Cyril Bont, makes a lot of sense and
would have made it obvious that sessid was not properly initialized
while switching to keep-alive. The code is now cleaner.
The stream_int_cond_close() function was added to preserve the
contents of the response buffer because stream_int_retnclose()
was buggy. It flushed the response instead of flushing the
request. This caused issues with pipelined redirects followed
by error messages which ate the previous response.
This might even have caused object truncation on pipelined
requests followed by an error or by a server redirection.
Now that this is fixed, simply get rid of the now useless
function.
I've tried to follow all the pool_alloc2/pool_free2 calls in the code
to track memory leaks. I've found one which only happens when there's
already no more memory when allocating a new appsession cookie.
Sometimes it can be desired to return a location which is the same
as the request with a slash appended when there was not one in the
request. A typical use of this is for sending a 301 so that people
don't reference links without the trailing slash. The name of the
new option is "append-slash" and it can be used on "redirect"
statements in prefix mode.
When using server redirection, it is possible to specify a path
consisting of only one slash. While this is discouraged (risk of
loop) it may sometimes be useful combined with content switching.
The prefixing of a '/' then causes two slashes to be returned in
the response. So we now do as with the other redirects, don't
prepend a slash if it's alone.
Some message pointers were not usable once the message reached the
HTTP_MSG_DONE state. This is the case for ->som which points to the
body because it is needed to parse chunks. There is one case where
we need the beginning of the message : server redirect. We have to
call http_get_path() after the request has been parsed. So we rely
on ->sol without counting on ->som. In order to achieve this, we're
making ->rq.{u,v} relative to the beginning of the message instead
of the buffer. That simplifies the code and makes it cleaner.
Preliminary tests show this is OK.
This might have been introduced with chunk extensions. Note that
the server redirect still does not work because http_get_path()
cannot get the correct path once the request message is in the
HTTP_MSG_DONE state (->som does not point to the start of message
anymore).
If we accept a new request and that request produces an immediate
response (error, redirect, ...), then we may fail to send it in
case of pipelined requests if the response buffer is full. To avoid
this, we check the availability of at least maxrewrite bytes in the
response buffer before accepting a new pipelined request.
During a redirect, we used to send the last chunk of response with
stream_int_cond_close(). But this is wrong in case of pipeline,
because if the response already contains something, this function
will refrain from touching the buffer. Use a concatenation function
instead.
Also, this call might still fail when the buffer is full, we need
a second fix to refrain from parsing an HTTP request as long as the
response buffer is full, otherwise we may not even be able to return
a pending redirect or an error code.
That patch was incorrect because under some circumstances, the
capture memory could be freed by session_free() and then again
by http_end_txn(), causing a double free and an eventual segfault.
The pool use count was also reported wrong due to this bug.
The cleanup code was removed from session_free() to remain only
in http_end_txn().
Hank A. Paulson reported a massive memory leak when using keep-alive
mode. The information he provided made it easy to find that captured
request and response headers were erased but not released when renewing
a request.
Several HTTP analysers used to set those flags to values that
were useful but without considering the possibility that they
were not called again to clean what they did. First, replace
direct flag manipulation with more explicit macros. Second,
enforce a rule stating that any buffer which changes one of
these flags from the default must restore it after completion,
so that other analysers see correct flags.
With both this fix and the previous one about analyser bits,
we should not see any more stuck sessions.
Commit 0dfdf19b64 introduced a
regression because the connection header is now parsed and checked
depending on the configured options, but the options are set after
calling it instead of being set before.
Historically, "option httpclose" has always worked the same way. It
only mangles the "Connection" header in the request and the response
if needed, but does not affect the connection by itself, and ignores
any further data. It is dangerous to change this behaviour without
leaving any other alternative. If an active close is desired, it's
better to make use of "option forceclose" which does exactly what
it intends to do.
So as of now, "option httpclose" will only mangle the headers as
before, and will only affect the connection by itself when combined
with another connection-related option (eg: keepalive or server-close).
We basically have to mimmic the code of process_session() here, so
when the remote output is closed, we must abort otherwise we'll end
up with data which cannot leave the buffer.
By default this function returned 0 indicating an end of analysis.
This was not a problem as long as it was the last analyser in the
chain but becomes quite a big one now since it skips the forwarder
with auto_close enabled, causing some data to pass under the nose
of the last one undetected.
There were still several situations leading to CLOSE_WAIT sockets
remaining there forever because some complex transitions were
obviously not caught due to the impossibility to resync changes
between the request and response FSMs.
This patch now centralizes the global transaction state and feeds
it from both request and response transitions. That way, whoever
finishes first, there will be no issue for converging to the correct
state.
Some heavy use of the new debugging function has helped a lot. Maybe
those calls could be removed after some time. First tests are very
positive.
This function outputs to fd #-1 the status of request and response
buffers, the transaction states, the stream interface states, etc...
That way, it's easy to find that output in an strace report, correctly
placed WRT the other syscalls.
The data forwarders are analysers. As such, the have to check for
various situations on which they have to abort, one of them being
the lack of data with closed input. Now we don't leave the functions
anymore without performing these checks. This has solved the new
CLOSE_WAIT issue that became more noticeable since last patch.
It may happen that we forward a close just after we sent the last
chunk, because we forgot to clear the AUTO_CLOSE flag.
This issue caused some pages to be truncated depending on some
timing races. Issue initially reported by Cyril Bont.
The cookie parser could be fooled by spaces or commas in cookie names
and values, causing the persistence cookie not to be matched if located
just after such a cookie. Now spaces found in values are considered as
part of the value, and spaces, commas and semi-colons found in values
or names, are skipped till next cookie name.
This fix must be backported to 1.3.
It makes sense to permit a client to keep its connection when
performing a redirect to the same host. We only detect the fact
that the redirect location begins with a slash to use the keep-alive
(if the client supports it).
By default we automatically wait for enough data to fill large
packets if buf->to_forward is not null. This causes a problem
with POST/Expect requests which have a data size but no data
immediately available. Instead of causing noticeable delays on
such requests, simply add a flag to disable waiting when sending
requests.
In server-close mode particularly, the response buffer is marked for
no-auto-close after a response passed through. This prevented a POST
request from being aborted on errors, timeouts or anything if the
response was received before the request was complete.
If we enable reading of a request immediately after completing
another one, we end up performing small reads until the request
buffer is complete. This takes time and makes it harder to realign
the buffer when needed. Just enable reading when we need to.
The rq.u field is relative to buf->data, not to msg->sol. We have
to subtract msg->som everywhere this error was made. Maybe it will
be simpler to have a pointer to the buffer in the message and find
appropriate data there.
Many times we see a lot of short responses in HTTP (typically 304 on a
reload). It is a waste of network bandwidth to send that many small packets
when we know we can merge them. When we know that another HTTP request is
following a response, we set BF_EXPECT_MORE on the response buffer, which
will turn MSG_MORE on exactly once. That way, multiple short responses can
leave pipelined if their corresponding requests were also pipelined.
We used to forward more trailers than required, causing a
desynchronization of the output. Now we schedule all for forwarding
as soon as we encounter them.
This option enables HTTP keep-alive on the client side and close mode
on the server side. This offers the best latency on the slow client
side, and still saves as many resources as possible on the server side
by actively closing connections. Pipelining is supported on both requests
and responses, though there is currently no reason to get pipelined
responses.
When too large a message lies in a buffer before parsing a new
request/response, we can now wait for previous outgoing data to
leave the buffer before attempting to parse again. After that
we can consider the opportunity to realign the buffer if needed.
The HTTP parser needed the msg structure to hold pre-initialized pointers.
This causes a trouble with keep-alive because if some data is still in the
buffer, the pointers can be anywhere after the data and later become invalid
when the buffer gets realigned.
It was not needed to rely on that since we have two valid information
in the buffer itself :
- buf->lr : last visited place
- buf->w + buf->send_max : beginning of next message
So by doing the maths only on those values, we can avoid doing tricks
on msg->som.
When we catch an error from the server, speed up the connection
abort since we don't want to remain long with pending data in the
socket, and we want to be able to reuse our source port ASAP.
The "forceclose" option used to close the output channel to the
server once it started to respond. While this happened to work with
most servers, some of them considered this as a connection abort and
immediately stopped responding.
Now that we're aware of the end of a request and response, we're able
to trivially handle this option and properly close both sides when the
server's response is complete.
During this change it appeared that forwarding could be allowed when
the BF_SHUTW_NOW flag was set on a buffer, which obviously is not
acceptable and was causing some trouble. This has been fixed too and
is the reason for the MEDIUM status on this patch.
There were still issues with the buffer alignment. Now we ensure
that we always align it before a request or response is completely
parsed if there is less than maxrewrite bytes free at the end. In
practice, it's not called that often and ensures we can always work
as expected.
In many places where we perform header insertion, an error control
is performed but due to a mistake, it cannot match any error :
if (unlikely(error) < 0)
instead of
if (unlikely(error < 0))
This prevents error 400 responses from being sent when the buffer is
full due to many header additions. This must be backported to 1.3.
The body parser will be used in close and keep-alive modes. It follows
the stream to keep in sync with both the request and the response message.
Both chunked transfer-coding and content-length are supported according to
RFC2616.
The multipart/byterange encoding has not yet been implemented and if not
seconded by any of the two other ones, will be forwarded till the close,
as requested by the specification.
Both the request and the response analysers converge into an HTTP_MSG_DONE
state where it will be possible to force a close (option forceclose) or to
restart with a fresh new transaction and maintain keep-alive.
This change is important. All tests are OK but any possible behaviour
change with "option httpclose" might find its root here.
When parsing body for URL parameters, we must not consider that
data are available from buf->data but from buf->data + msg->som.
This is not a problem right now but may become with keep-alive.
When parsing a request that does not start at the beginning of the
buffer, we may experience a buffer full issue. In order to avoid
this, we try to realign the buffer if it is not really full. That
will be required when we have to deal with pipelined requests.
Some wrong operations were performed on buffers, assuming the
offsets were relative to the beginning of the request while they
are relative to the beginning of the buffer. In practice this is
not yet an issue since both are the same... until we add support
for keep-alive.
It's not enough to know if the connection will be in CLOSE or TUNNEL mode,
we still need to know whether we want to read a full message to a known
length or read it till the end just as in TUNNEL mode. Some updates to the
RFC clarify slightly better the corner cases, in particular for the case
where a non-chunked encoding is used last.
Now we also take care of adding a proper "connection: close" to messages
whose size could not be determined.
Chunked encoding can be slightly more complex than what was implemented.
Specifically, it supports some optional extensions that were not parsed
till now if present, and would have caused an error to be returned.
Also, now we enforce check for too large values in chunk sizes in order
to ensure we never overflow.
Last, we're now able to return a request error if we can't read the
chunk size because the buffer is already full.
This state indicates that an HTTP message (request or response) is
complete. This will be used to know when we can re-initialize a
new transaction. Right now we only switch to it after the end of
headers if there is no data. When other analysers are implemented,
we can switch to this state too.
The condition to reuse a connection is when the response finishes
after the request. This will have to be checked when setting the
state.
The response 1xx was set too low and required a lot of tests along
the code in order to avoid some processing. We still left the test
after the response rewrite rules so that we can eliminate unwanted
headers if required.
This code really belongs to the http part since it's transaction-specific.
This will also make it easier to later reinitialize a transaction in order
to support keepalive.
We used to apply a limit to each buffer's size in order to leave
some room to rewrite headers, then we used to remove this limit
once the session switched to a data state.
Proceeding that way becomes a problem with keepalive because we
have to know when to stop reading too much data into the buffer
so that we can leave some room again to process next requests.
The principle we adopt here consists in only relying on to_forward+send_max.
Indeed, both of those data define how many bytes will leave the buffer.
So as long as their sum is larger than maxrewrite, we can safely
fill the buffers. If they are smaller, then we refrain from filling
the buffer. This means that we won't risk to fill buffers when
reading last data chunk followed by a POST request and its contents.
The only impact identified so far is that we must ensure that the
BF_FULL flag is correctly dropped when starting to forward. Right
now this is OK because nobody inflates to_forward without using
buffer_forward().
Up to now, we only had a flag in the session indicating if it had to
work in "connection: close" mode. This is not at all compatible with
keep-alive.
Now we ensure that both sides of a connection act independantly and
only relative to the transaction. The HTTP version of the request
and response is also correctly considered. The connection already
knows several modes :
- tunnel (CONNECT or no option in the config)
- keep-alive (when permitted by configuration)
- server-close (close the server side, not the client)
- close (close both sides)
This change carefully detects all situations to find whether a request
can be fully processed in its mode according to the configuration. Then
the response is also checked and tested to fix corner cases which can
happen with different HTTP versions on both sides (eg: a 1.0 client
asks for explicit keep-alive, and the server responds with 1.1 without
a header).
The mode is selected by a capability elimination algorithm which
automatically focuses on the least capable agent between the client,
the frontend, the backend and the server. This ensures we won't get
undesired situtations where one of the 4 "agents" is not able to
process a transaction.
No "Connection: close" header will be added anymore to HTTP/1.0 requests
or responses since they're already in close mode.
The server-close mode is still not completely implemented. The response
needs to be rewritten as keep-alive before being sent to the client if
the connection was already in server-close (which implies the request
was in keep-alive) and if the response has a content-length or a
transfer-encoding (but only if client supports 1.1).
A later improvement in server-close mode would probably be to detect
some situations where it's interesting to close the response (eg:
redirections with remote locations). But even then, the client might
close by itself.
It's also worth noting that in tunnel mode, no connection header is
affected in either direction. A tunnelled connection should theorically
be notified at the session level, but this is useless since by definition
there will not be any more requests on it. Thus, we don't need to add a
flag into the session right now.
The POST body analysis was split between two analysers for historical
reasons. Now we only have one analyser which checks content length
and waits for enough data to come.
Right now this analyser waits for <url_param_post_limit> bytes of
body to reach the buffer, or the first chunk. But this could be
improved to wait for any other amount of data or any specific
contents.
Implement decreasing health based on observing communication between
HAProxy and servers.
Changes in this version 2:
- documentation
- close race between a started check and health analysis event
- don't force fastinter if it is not set
- better names for options
- layer4 support
Changes in this version 3:
- add stats
- port to the current 1.4 tree
In order to support keepalive, we'll have to differentiate
normal sessions from tunnel sessions, which are the ones we
don't want to analyse further.
Those are typically the CONNECT requests where we don't care
about any form of content-length, as well as the requests
which are forwarded on non-close and non-keepalive proxies.
To sum up :
- len : it's now the max number of characters for the value, preventing
garbaged results.
- a new option "prefix" is added, this allows to use dynamic cookie
names (e.g. ASPSESSIONIDXXX).
Previously in the thread, I wanted to use the value found with
"capture cookie" but when i started to update the documentation, I
found this solution quite weird. I've made a small rework to not
depend on "capture cookie".
- There's the posssiblity to define the URL parser mode (path parameters
or query string).
We now set msg->col and msg->sov to the first byte of non-header.
They will be used later when parsing chunks. A new macro was added
to perform size additions on an http_msg in order to limit the risks
of copy-paste in the long term.
During this operation, it appeared that the http_msg struct was not
optimal on 64-bit, so it was re-ordered to fill the holes.
An HTTP message can be decomposed into several sub-states depending
on the transfer-encoding. We'll have to keep these state information
while parsing chunks, so we must extend the values. In order not to
change everything, we'll now consider that anything >= MSG_BODY is
the body, and that the value indicates the precise state. The
MSG_ERROR status which was greater than MSG_BODY was moved for this.
This patch extends and corrects the functionality introduced by
"Collect & provide http response codes received from servers":
- responses are now also accounted for frontends
- backend's and frontend's counters are incremented based
on responses sent to client, not received from servers
We also check the close status and terminate the server persistent
connection if appropriate. Note that since this change, we'll not
get any "Connection: close" headers added to HTTP/1.0 responses
anymore, which is good.
The code part which waits for an HTTP response has been extracted
from the old function. We now have two analysers and the second one
may re-enable the first one when an 1xx response is encountered.
This has been tested and works.
The calls to stream_int_return() that were remaining in the wait
analyser have been converted to stream_int_retnclose().
Store those elements in the transaction. RFC2616 is strictly followed.
Note that requests containing two different content-length fields are
discarded as invalid.
This patch has 2 goals :
1. I wanted to test the appsession feature with a small PHP code,
using PHPSESSID. The problem is that when PHP gets an unknown session
id, it creates a new one with this ID. So, when sending an unknown
session to PHP, persistance is broken : haproxy won't see any new
cookie in the response and will never attach this session to a
specific server.
This also happens when you restart haproxy : the internal hash becomes
empty and all sessions loose their persistance (load balancing the
requests on all backend servers, creating a new session on each one).
For a user, it's like the service is unusable.
The patch modifies the code to make haproxy also learn the persistance
from the client : if no session is sent from the server, then the
session id found in the client part (using the URI or the client cookie)
is used to associated the server that gave the response.
As it's probably not a feature usable in all cases, I added an option
to enable it (by default it's disabled). The syntax of appsession becomes :
appsession <cookie> len <length> timeout <holdtime> [request-learn]
This helps haproxy repair the persistance (with the risk of losing its
session at the next request, as the user will probably not be load
balanced to the same server the first time).
2. This patch also tries to reduce the memory usage.
Here is a little example to explain the current behaviour :
- Take a Tomcat server where /session.jsp is valid.
- Send a request using a cookie with an unknown value AND a path
parameter with another unknown value :
curl -b "JSESSIONID=12345678901234567890123456789012" http://<haproxy>/session.jsp;jsessionid=00000000000000000000000000000001
(I know, it's unexpected to have a request like that on a live service)
Here, haproxy finds the URI session ID and stores it in its internal
hash (with no server associated). But it also finds the cookie session
ID and stores it again.
- As a result, session.jsp sends a new session ID also stored in the
internal hash, with a server associated.
=> For 1 request, haproxy has stored 3 entries, with only 1 which will be usable
The patch modifies the behaviour to store only 1 entry (maximum).
When processing a GET or HEAD request in close mode, we know we don't
need to read anything anymore on the socket, so we can disable it.
Doing this can save up to 40% of the recv calls, and half of the
epoll_ctl calls.
For this we need a buffer flag indicating that we're not interesting in
reading anymore. Right now, this flag also disables both polled reads.
We might benefit from disabling only speculative reads, but we will need
at least this flag when we want to support keepalive anyway.
Currently we don't disable the flag on completion, but it does not
matter as we close ASAP when performing the shutw().
Till now we would only set SN_CONN_CLOSED after rewriting it. Now we
set it just after checking the Connection header so that we can use
the result later if required.
Recent "struct chunk rework" introduced a NULL pointer dereference
and now haproxy segfaults if auth is required for stats but not found.
The reason is that size_t cannot store negative values, but current
code assumes that "len < 0" == uninitialized.
This patch fixes it.
This patch allows to collect & provide separate statistics for each socket.
It can be very useful if you would like to distinguish between traffic
generate by local and remote users or between different types of remote
clients (peerings, domestic, foreign).
Currently no "Session rate" is supported, but adding it should be possible
if we found it useful.
Doing this, we can remove the last BF_HIJACK user and remove
produce_content(). s->data_source could also be removed but
it is currently used to detect if the stats or a server was
used.
Due to a misplaced call to stream_int_retnclose(), the stats output
buffer was erased before each call to produce_content(), resulting
in missing pieces in the stats output if the connection was not
fast enough between haproxy and the client.
We will need to modify the stats dump functions so that they can
be used in interactive mode. For this, we want their caller to
prepare the connection for a close, not themselves to do it.
Let's simply move the stream_int_retnclose() out.
The BF_WRITE_ENA buffer flag became very complex to deal with, because
it was used to :
- enable automatic connection
- enable close forwarding
- enable data forwarding
The last point was not very true anymore since we introduced ->send_max,
but still the test remained everywhere. This was causing issues such as
impossibility to connect without forwarding data, impossibility to prevent
closing when data was forwarded, etc...
This patch clarifies the situation by getting rid of this multi-purpose
flag and replacing it with :
- data forwarding based only on ->send_max || ->pipe ;
- a new BF_AUTO_CONNECT flag to allow automatic connection and only
that ;
- ability to perform an automatic connection when ->send_max or ->pipe
indicate that data is waiting to leave the buffer ;
- a new BF_AUTO_CLOSE flag to let the producer automatically set the
BF_SHUTW_NOW flag when it gets a BF_SHUTR.
During this cleanup, it was discovered that some tests were performed
twice, or that the BF_HIJACK flag was still tested, which is not needed
anymore since ->send_max replcaed it. These places have been fixed too.
These cleanups have also revealed a few areas where the other flags
such as BF_EMPTY are not cleanly used. This will be an opportunity for
a second patch.
HTTP supports status codes 100 and 101 to report protocol indications,
which are followed by the requests's response. Till now, haproxy would
only see those responses without parsing subsequent ones. That means
that cookie additions were only performed on 1xx messages for instance,
which does not work since headers must be ignored with 1xx messages.
Also, logs were not terribly useful with the common 100 status code
in response to "Expect: 100-continue" during POST some requests.
This change adds support for such messages. Now haproxy sees them,
forwards them and skips them until it finds a correct response, which
it logs and processes. As an exception, header removal/rewriting still
work on 1xx responses in order to be able to strip out sensible
information that may have accidentely been left by another equipment
(possibly an older haproxy itself). But headers addition are disabled
however.
This change brings the ability to loop on response without data, which
is a starting point to support keepalive. The change is marked as major
as a few fixes had to be performed in the HTTP message parser.
Tarpit was broken by recent splitting of analysers. It would still
let the connection go to the server due to a missing buffer_write_dis().
Also, it was performed too late (after content switching rules).
The first step towards dynamic buffer size consists in removing
all static definitions of the buffer size. Instead, we store a
buffer's size in itself. Right now they're all preinitialized
to BUFSIZE, but we will change that.
s->srv_error was set depending on the frontend's protocol. Now it is
set by the HTTP analyser, so that even when switching from a TCP
frontend to an HTTP backend, we can have HTTP error messages.
This Linux-specific option was never really used in production and
has since been superseded by new splicing options brought by recent
Linux kernels.
It caused several particular cases in the code because the kernel
would take care of the session without haproxy being able to do
anything on it, which became hard to handle in the new architecture.
Let's simply get rid of it now that there is a replacement available.
Since we can now switch from TCP to HTTP, we need to be able to apply
the HTTP request timeout after switching. That means we need to take
it from the backend and not from the frontend. Since the backend points
to the frontend before switching, that changes nothing for the normal
case.
This patch allows a TCP frontend to switch to an HTTP backend.
During the switch, missing structures are automatically allocated.
The HTTP parser is enabled so that the backend first waits for a
full HTTP request.
Now that we can perform TCP-based content switching, it makes sense
to be able to detect HTTP traffic and act accordingly. We already
have an HTTP decoder, we just have to call it in order to detect HTTP
protocol. Note that since the decoder will automatically fill in the
interesting fields of the HTTP transaction, it would make sense to
use this parsing to extend HTTP matching to TCP.
The HTTP processing has been splitted into 7 steps, one of which
is not anymore HTTP-specific (content-switching). That way, it
becomes possible to use "use_backend" rules in TCP mode. A new
"use_server" directive should follow soon.
Some stream analysers might become generic enough to be called
for several bits. So we cannot have the analyser bit hard coded
into the analyser itself. Let's make the caller inform the callee.
We want to split several steps in HTTP processing so that
we can call individual analysers depending on what processing
we want to perform. The first step consists in splitting the
part that waits for a request from the rest.
redirect rules are documented as being processed last before
use_backend but were mistakenly processed before block rules.
Fortunately very few people use a mix of block and redirect
rules, so this bug has never been reported yet.
Some big traffic sites have trouble dealing with logs and tend to
disable them. Here are two new options to help cope with massive
logs.
- dontlog-normal only disables logging for 100% successful
connections, other ones will still be logged
- log-separate-errors will cause non-100% successful connections
to be logged at level "err" instead of level "info" so that a
properly configured syslog daemon can send them to a different
file for longer conservation.
I have attached a patch which will add on every http request a new
header 'X-Original-To'. If you have HAProxy running in transparent mode
with a big number of SQUID servers behind it, it is very nice to have
the original destination ip as a common header to make decisions based
on it.
The whole thing is configurable with a new option 'originalto'. I have
updated the sourcecode as well as the documentation. The 'haproxy-en.txt'
and 'haproxy-fr.txt' files are untouched, due to lack of my french
language knowledge. ;)
Also the patch adds this header for IPv4 only. I haven't any IPv6 test
environment running here and don't know if getsockopt() with SO_ORIGINAL_DST
will work on IPv6. If someone knows it and wants to test it I can modify
the diff. Feel free to ask me questions or things which should be changed. :)
--Maik
The pointer arithmetics was wrong in http_capture_bad_message().
This has no impact right now because the error only msg->som was
affected and right now it's always 0. But this was a bug waiting
for keepalive support to strike.
It's useful to be able to accept an invalid header name in a request
or response but still be able to monitor further such errors. Now,
when an invalid request/response is received and accepted due to
an "accept-invalid-http-{request|response}" option, the invalid
request will be captured for later analysis with "show errors" on
the stats socket.
Sometimes it is required to let invalid requests pass because
applications sometimes take time to be fixed and other servers
do not care. Thus we provide two new options :
option accept-invalid-http-request (for the frontend)
option accept-invalid-http-response (for the backend)
When those options are set, invalid requests or responses do
not cause a 403/502 error to be generated.
When the reader does not expect to read lots of data, it can
set BF_READ_DONTWAIT on the request buffer. When it is set,
the stream_sock_read callback will not try to perform multiple
reads, it will return after only one, and clear the flag.
That way, we can immediately return when waiting for an HTTP
request without trying to read again.
On pure request/responses schemes such as monitor-uri or
redirects, this has completely eliminated the EAGAIN occurrences
and the epoll_ctl() calls, resulting in a performance increase of
about 10%. Similar effects should be observed once we support
HTTP keep-alive since we'll immediately disable reads once we
get a full request.
term_trace was very useful while reworking the lower layers but has almost
completely been removed from every place it was referenced. Even the few
remaining ones were not accurate, so it's better to completely remove those
references and re-add them from scratch later if needed.
With this change, all frontends, backends, and servers maintain a session
counter and a timer to compute a session rate over the last second. This
value will be very useful because it varies instantly and can be used to
check thresholds. This value is also reported in the stats in a new "rate"
column.
Each proxy instance, either frontend or backend, now has some room
dedicated to storing a complete dated request or response in case
of parsing error. This will make it possible to consult errors in
order to find the exact cause, which is particularly important for
troubleshooting faulty applications.
If an invalid character is encountered while parsing an HTTP message, we
want to get buf->lr updated to reflect it.
Along this change, a few useless __label__ declarations have been removed
because they caused gcc to consume stack space without putting anything
there.
If the prefix is set to "/", it means the user does not want to alter
the original URI, so we don't want to insert a new slash before the
original URI.
(cherry-picked from commit 02a35c74942c1bce762e996698add1270e6a5030)
It is now possible to set or clear a cookie during a redirection. This
is useful for logout pages, or for protecting against some DoSes. Check
the documentation for the options supported by the "redirect" keyword.
(cherry-picked from commit 4af993822e880d8c932f4ad6920db4c9242b0981)
If "drop-query" is present on a "redirect" line using the "prefix" mode,
then the returned Location header will be the request URI without the
query-string. This may be used on some login/logout pages, or when it
must be decided to redirect the user to a non-secure server.
(cherry-picked from commit f2d361ccd73aa16538ce767c766362dd8f0a88fd)
Cookie capture would only work by pure luck on the request but did
never work on responses since only the backend was checked. The fix
consists in always checking frontend for cookie captures.
(cherry picked from commit a83c5ba9315a7c47cda2698280b7e49a9d3eb374)
Both should process the response buffer equally. They now both
clear the hijack bit once done, and both receive a pointer to
the response buffer in their arguments.
Instead of calling a hard-coded function to produce data, let's
reference this function into the buffer and call it from there
when BF_HIJACK is set. This goes in the direction of more generic
session management code.
The TCP analyser has moved to proto_tcp.c. Breaking the function
has required finer use of the return value and adding some tests
to process_session().
It was a bit awkward to have session.c call return_srv_error() for
HTTP error messages related to servers. The function has been adapted
to be passed a pointer to the faulty stream interface, and is now a
pointer in the session. It is possible that in the future, it will
become a callback in the stream interface itself.
The new function looks like the previous one except that it operates
at the stream interface level and assumes an already closed SI.
Also remove some old unused occurrences of srv_close_with_err().
In order to avoid having to call per-protocol logging function directly
from session.c, it's better to assign the logging function when the session
is created. This also eliminates a test when the function is needed, and
opens the way to more complete logging functions.
proto_http.c was not suitable for session-related processing, it was
just convenient for the tranformation.
Some more splitting must occur: process_request/response in proto_http.c
must be split again per protocol, and the caller must run a list.
Some functions should be directly attached to the session or the buffer
(eg: perform_http_redirect, return_srv_error, http_sess_log).
All the processing has now completely been split in layers. As of
now, everything is still in process_session() which is not the right
place, but the code sequence works. Timeouts, retries, errors, all
work.
The shutdown sequence has been strictly applied: BF_SHUTR/BF_SHUTW
are only assigned by lower layers. Upper layers can only indicate
their wish to close using BF_SHUTR_NOW and BF_SHUTW_NOW.
When a shutdown is performed on a stream interface, the buffer flags
are updated accordingly and re-checked by upper layers. A lot of care
has been taken to ensure that aborts during intermediate connection
setups are correctly handled and shutdowns correctly propagated to
both buffers.
A future evolution would consist in ensuring that BF_SHUT?_NOW may
be set at any time, and applies only when the buffer is empty. This
might help with error messages, but might complicate the processing
of data remaining in buffers.
Some useless buffer flag combinations have been removed.
Stat counters are still broken (eg: per-server total number of sessions).
Error messages should be delayed to the close instant and be produced by
protocol.
Many functions must now move to proper locations.
It sometimes happens that a connection is aborted at the exact same moment
it establishes. We have to close the socket and not only to shut it down
for writes.
Some corner cases remain. We have to handle the shutr/shutw at the stream
interface and only report the status to the buffer, not the opposite.
Two new functions are used instead : buffer_check_{shutr,shutw}.
It is indeed more adequate to check for new closures only when the
buffer reports them.
Several remaining unclosed connections were detected after a test,
even before this patch, so a bug remains. To reproduce, try the
following during 30 seconds :
inject30l4 -n 20000 -l -t 1000 -P 10 -o 4 -u 100 -s 100 -G 127.0.0.1:8000/
There were rare situations where it was not easy to detect that a failed
session attempt had occurred and needed some server cleanup. In particular,
client aborts sometimes lead to session leaks on the server side.
A new state "SI_ST_DIS" (disconnected) has been introduced for this. When
a session has been closed at a stream interface but the server cleanup has
not occurred, this state is entered instead of CLO. The cleanup is then
performed there and the state goes to CLO.
A new diagram has been added to show possible stream_interface state
transitions that can occur in a stream-sock. It makes debugging easier.
The server sessions are now only decremented when entering SI_ST_CER
and SI_ST_CLO states. A state is clearly missing between EST and CLO,
or after CLO (eg: END), because many cleanups are performed upon CLO
and must rely on tricks to ensure being done only once.
The goal of next changes will be to improve what has been started.
Ideally, the FD should only notify the SI about the change, which
should itself only notify the session when it has some news or when
it needs help (eg: redispatch). The buffer's error processing should
not change the FD's status immediately, otherwise we risk race conds
between a pending connect and a shutw (for instance). Also, the new
connect attempt should only be made after layer 7 and all the crap
above buffers.
It is quite hard to track when the current session has already been counted
or discounted from the server's total number of established sessions. For
this reason, we introduce a new session flag, SN_CURR_SESS, which indicates
if the current session is one of those reported by the server or not. It
simplifies session accounting and makes it far more robust. It also makes
it possible to perform a last-minute cleanup during session_free().
Right now, with this fix and a few more buffer transitions fixes, no session
were found to remain after a test.
Tracking connection status changes was hard, and some code was
redundant. A new SI_ST_CER state was added to the stream interface
to indicate a past connection error, and an SI_FL_ERR flag was
added to report past I/O error. The stream_sock code does not set
the connection to SI_ST_CLO anymore in case of I/O error, it's
the upper layer which does it. This makes it possible to know
exactly when the file descriptors are allocated.
The new SI_ST_CER state permitted to split tcp_connection_status()
in two parts, one processing SI_ST_CON and the other one SI_ST_CER.
Synchronous connection errors now make use of this last state, hence
eliminating duplicate code.
Some ib<->ob copy paste errors were found and fixed, and all entities
setting SI_ST_CLO also shut the buffers down.
Some of these stream_interface specific functions and structures
have migrated to a new stream_interface.c file.
Some types of errors are still not detected by the buffers. For
instance, let's assume the following scenario in one single pass
of process_session: a connection sits in SI_ST_TAR state during
a retry. At TAR expiration, a new connection attempt is made, the
connection is obtained and srv->cur_sess is increased. Then the
buffer timeout is fires and everything is cleared, the new state
becomes SI_ST_CLO. The cleaning code checks that previous state
was either SI_ST_CON or SI_ST_EST to release the connection. But
that's wrong because last state is still SI_ST_TAR. So the
server's connection count does not get decreased.
This means that prev_state must not be used, and must be replaced
by some transition detection instead of level detection.
The following debugging line was useful to track state changes :
fprintf(stderr, "%s:%d: cs=%d ss=%d(%d) rqf=0x%08x rpf=0x%08x\n", __FUNCTION__, __LINE__,
s->si[0].state, s->si[1].state, s->si[1].err_type, s->req->flags, s-> rep->flags);
The connection setup code has been refactored in order to
make it run only on low level (stream interface). Several
complicated functions have been removed from backend.c,
and we now have sess_update_stream_int() to manage
an assigned connection, sess_prepare_conn_req() to assign a
server to a connection request, perform_http_redirect() to
redirect instead of connecting to server, and return_srv_error()
to return connection error status messages.
The stream_interface status changes are checked before adjusting
buffer flags, so that the buffers can be informed about this lower
level update.
A new connection is initiated by changing si->state from SI_ST_INI
to SI_ST_REQ.
The code seems to work but is awfully dirty. Some functions need
to be moved, and the layering is not yet quite clear.
A lot of dead old code has simply been removed.
It was not practical to have QUEUE and TAR timers in buffers, as they caused
triggering of the timeout flags. Move them to the stream interface where they
belong.
Now we have almost two distinct parts between tcp and http.
Only the connection establishment code still requires some
resynchronization, the rest does not.
Those entries were really needed for cleaner and better code. Using them
has permitted to automatically close a file descriptor during a shut write,
reducing by 20% the number of calls to process_session() and derived
functions.
Process_session() does not need to know the file descriptor anymore, though
it still remains very complicated due to the special case for the connect
mode.
As of now, a stream socket does not directly wake up the task
but it does contact the stream interface which itself knows the
task. This allows us to perform a few cleanups upon errors and
shutdowns, which reduces the number of calls to data_update()
from 8 per session to 2 per session, and make all the functions
called in the process_session() loop completely swappable.
Some improvements are required. We need to provide a shutw()
function on stream interfaces so that one side which closes
its read part on an empty buffer can propagate the close to
the remote side.
When an accept() creates a new FD, it is already marked as set for
reads. But the task will be woken up without first checking if the
socket could be read.
The speculative I/O gives us a chance to either read the FD if there
are data pending on it, or immediately mark it for poll mode if
nothing is pending.
Simply doing this reduces the number of calls to process_session
from 6 to 5 per session, 2 to 1 calls to process_request, 10% less
calls to epoll_ctl, fd_clr, fd_set, stream_sock_data_update, 20%
less eb32_insert/eb_delete, etc... General performance increase
seems to be around 3%.
The buffer flags became a big bazaar. Re-arrange them
so that their names are more explicit and so that they
are more easily readable in hex form. Some aggregates
have also been adjusted.
It was a waste to constantly update the file descriptor's status
and timeouts during a flags update. So stream_sock_process_data
has been slit in two parts :
stream_sock_data_update() => computes updated flags
stream_sock_data_finish() => computes timeouts
Only the first one is called during flag updates. The second one
is only called upon completion. The number of calls to fd_set/fd_clr
has now significantly dropped.
Also, it's useless to check for errors and timeouts in the
process_session() loop, it's enough to check for them at the
beginning.
The client side now relies on stream_sock_process_data(). One
part has not yet been re-implemented, it concerns the calls
to produce_content().
process_session() has been adjusted to correctly check for
changing bits in order not to call useless functions too many
times.
It already appears that stream_sock_process_data() should be
split so that the timeout computations are only performed at
the exit of process_session().
We really want to ensure that we don't miss a timeout update and do not
update them for nothing. So the code takes care of updating the timeout
in the two following circumstances :
- it was not set
- some I/O has been performed
Maybe we'll be able to remove that from stream_sock_{read|write}, or
we'll find a way to ensure that we never have to re-enable this.
srv_state has been removed from HTTP state machines, and states
have been split in either TCP states or analyzers. For instance,
the TARPIT state has just become a simple analyzer.
New flags have been added to the struct buffer to compensate this.
The high-level stream processors sometimes need to force a disconnection
without touching a file-descriptor (eg: report an error). But if
they touched BF_SHUTW or BF_SHUTR, the file descriptor would not
be closed. Thus, the two SHUT?_NOW flags have been added so that
an application can request a forced close which the stream interface
will be forced to obey.
During this change, a new BF_HIJACK flag was added. It will
be used for data generation, eg during a stats dump. It
prevents the producer on a buffer from sending data into it.
BF_SHUTR_NOW /* the producer must shut down for reads ASAP */
BF_SHUTW_NOW /* the consumer must shut down for writes ASAP */
BF_HIJACK /* the producer is temporarily replaced */
BF_SHUTW_NOW has precedence over BF_HIJACK. BF_HIJACK has
precedence over BF_MAY_FORWARD (so that it does not need it).
New functions buffer_shutr_now(), buffer_shutw_now(), buffer_abort()
are provided to manipulate BF_SHUT* flags.
A new type "stream_interface" has been added to describe both
sides of a buffer. A stream interface has states and error
reporting. The session now has two stream interfaces (one per
side). Each buffer has stream_interface pointers to both
consumer and producer sides.
The server-side file descriptor has moved to its stream interface,
so that even the buffer has access to it.
process_srv() has been split into three parts :
- tcp_get_connection() obtains a connection to the server
- tcp_connection_failed() tests if a previously attempted
connection has succeeded or not.
- process_srv_data() only manages the data phase, and in
this sense should be roughly equivalent to process_cli.
Little code has been removed, and a lot of old code has been
left in comments for now.
When any processing remains on a buffer, it must be up to the
processing functions to set the termination flags, because they
are the only ones who know about higher levels.
It's a shame not to use buffer->wex for connection timeouts since by
definition it cannot be used till the connection is not established.
Using it instead of ->cex also makes the buffer processing more
symmetric.
Instead of calling all functions in a loop, process_session now
calls them according to buffer flags changes. This ensures that
we almost never call functions for nothing. The flags settings
are still quite coarse, but the number of average functions
calls per session has dropped from 31 to 18 (the calls to
process_srv dropped from 13 to 7 and the calls to process_cli
dropped from 13 to 8).
This could still be improved by memorizing which flags each
function uses, but that would add a level of complexity which
is not desirable and maybe even not worth the small gain.
It is not always convenient to run checks on req->l in functions to
check if a buffer is empty or full. Now the stream_sock functions
set flags BF_EMPTY and BF_FULL according to the buffer contents. Of
course, functions which touch the buffer contents adjust the flags
too.
BF_SHUTR_PENDING and BF_SHUTW_PENDING were poor ideas because
BF_SHUTR is the pending of BF_SHUTW_DONE and BF_SHUTW is the
pending of BF_SHUTR_DONE. Remove those two useless and confusing
"pending" versions and rename buffer_shut{r,w}_* functions.
process_response is not allowed to touch srv_state (this is an
incident which has survived the code migration). This bug was
causing connection exhaustion on frontend due to some closed
sockets marked SV_STDATA again.
It wasn't really wise to separate BF_MAY_CONNECT and BF_MAY_FORWARD,
as it caused trouble in TCP mode because the connection was allowed
but not the forwarding. Remove BF_MAY_CONNECT.
Since the separation of TCP and HTTP state machines, the HTTP
code must not play anymore with the file descriptor status
without checking if they are closed. Remains of such practice
have caused busy loops under some circumstances (mainly when
client closed during headers response).
A new member has been added to the struct session. It keeps a trace
of what block of code performs a close or a shutdown on a socket, and
in what sequence. This is extremely convenient for post-mortem analysis
where flag combinations and states seem impossible. A new ABORT_NOW()
macro has also been added to make the code immediately segfault where
called.
All references to CL_STSHUT* and SV_STSHUT* were removed where
possible. Some of them could not be removed because they are
still in use by the unix sockets.
A bug remains at this stage. Injecting with a very short timeout
sometimes leads to a client in close state and a server in data
state with all buffer flags indicating a shutdown but the server
fd still enable, thus causing a busy loop.
The HTTP response is now processed in its own function, regardless of
the TCP state. All FSMs have become fairly simpler and must still be
improved by removing useless CL_STSHUT* and SV_STSHUT* (still used by
proto_uxst). The number of calls to process_* is still huge though.
Next steps consist in :
- removing useless assignments of CL_STSHUT* and SV_STSHUT*
- add a BF_EMPTY flag to buffers to indicate an empty buffer
- returning smarter values in process_* so that each callee
may explicitly indicate whom needs to be called after it.
- unify read and write timeouts for a same side. The way it
is now is too complicated and error-prone
- auditing code for regression testing
We're close to getting something which works fairly better now.
TCP timeouts are not managed anymore by the response FSM. Warning,
the FORCE_CLOSE state does not work anymore for now. All remaining
bugs causing stale connections have been swept.
The HTTP response code has been moved to a specific function
called "process_response" and the SV_STHEADERS state has been
removed and replaced with the flag AN_RTR_HTTP_HDR.
Due to a recent change in the FSMs, if the client closes with buffer
full, then the server loops waiting for headers. We can safely ignore
this case since the server FSM will have to be reworked too. Let's
fix the root cause for now.
For the first time, HTTP and TCP are not merged anymore. All request
processing has moved to process_request while the TCP processing of
the frontend remains in process_cli. The code is a lot cleaner,
simpler, smaller (1%) and slightly faster (1% too).
Right now, the HTTP state machine cannot easily command the TCP
state machine, but it does not cause that many difficulties.
The response processing has not yet been extracted, and the unix-stream
state machines have to be broken down that way too.
The CL_STDATA, CL_STSHUTR and CL_STSHUTW states still exist and are
exactly the sames. They will have to be all merged into CL_STDATA
once the work has stabilized. It is also possible that this single
state will disappear in favor of just buffer flags.
The SV_STANALYZE state was installed on the server side but was really
meant to be processed with the rest of the request on the client side.
It suffered from several issues, mostly related to the way timeouts were
handled while waiting for data.
All known issues related to timeouts during a request - and specifically
a request involving body processing - have been raised and fixed. At this
point, the code is a bit dirty but works fine, so next steps might be
cleanups with an ability to come back to the current state in case of
trouble.
This is a first attempt at separating data processing from the
TCP state machine. Those two states have been replaced with flags
in the session indicating what needs to be analyzed. The corresponding
code is still called before and in lieu of TCP states.
Next change should get rid of the specific SV_STANALYZE which is in
fact a client state.
Then next change should consist in making it possible to analyze
TCP contents while being in CL_STDATA (or CL_STSHUT*).
Client timeout could be refreshed in stream_sock_*, but this is
undesired when the timeout is already set to eternity. The effect
is that a session could still be aborted if client timeout was
smaller than server timeout. A second effect is that sessions
expired on the server side would expire with "cD" flags.
The fix consists in not updating it if it was not previously set.
A cleaner method might consist in updating the buffer timeout. This
is probably what will be done later when the state machines only
deal with the buffers.
Due to a copy-paste typo, the client timeout was refreshed instead
of the server's when waiting for server response. This means that
the server's timeout remained eternity.
If an HTTP/0.9-like POST request is sent to haproxy while
configured with url_param + check_post, it will crash. The
reason is that the total buffer length was computed based
on req->total (which equals the number of bytes read) and
not req->l (number of bytes in the buffer), thus leading
to wrong size calculations when calling memchr().
The affected code does not look like it could have been
exploited to run arbitrary code, only reads were performed
at wrong locations.
A new buffer flag BF_MAY_FORWARD has been added so that the client
FSM can check whether it is allowed to forward the response to the
client. The client FSM does not have to monitor the server state
anymore.
A new buffer flag BF_MAY_CONNECT has been added so that the server
FSM can check whether it is allowed to establish a connection or
not. That way, the client FSM only has to move this flag and the
server side does not need to monitor client state anymore.
The open/close nature of each half of the client side is known
to the buffer, so let the server state machine rely on this
instead of checking the client state for CL_STSHUT* or
CL_STCLOSE.
Because I needed it in my situation - here's a quick patch to
allow changing of the "x-forwarded-for" header by using a suboption to
"option forwardfor".
Suboption "header XYZ" will set the header from "x-forwarded-for" to "XYZ".
Default is still "x-forwarded-for" if the header value isn't defined.
Also the suboption 'except a.b.c.d/z' still works on the same line.
So it's now: option forwardfor [except a.b.c.d[/z]] [header XYZ]
All currently known ACL verbs have been assigned a type which makes
it possible to detect inconsistencies, such as response values used
in request rules.
It should be stated as a rule that a C file should never
include types/xxx.h when proto/xxx.h exists, as it gives
less exposure to declaration conflicts (one of which was
caught and fixed here) and it complicates the file headers
for nothing.
Only types/global.h, types/capture.h and types/polling.h
have been found to be valid includes from C files.
Some people need to inspect contents of TCP requests before
deciding to forward a connection or not. A future extension
of this demand might consist in selecting a server farm
depending on the protocol detected in the request.
For this reason, a new state CL_STINSPECT has been added on
the client side. It is immediately entered upon accept() if
the statement "tcp-request inspect-delay <xxx>" is found in
the frontend configuration. Haproxy will then wait up to
this amount of time trying to find a matching ACL, and will
either accept or reject the connection depending on the
"tcp-request content <action> {if|unless}" rules, where
<action> is either "accept" or "reject".
Note that it only waits that long if no definitive verdict
can be found earlier. That generally implies calling a fetch()
function which does not have enough information to decode
some contents, or a match() function which only finds the
beginning of what it's looking for.
It is only at the ACL level that partial data may be processed
as such, because we need to distinguish between MISS and FAIL
*before* applying the term negation.
Thus it is enough to add "| ACL_PARTIAL" to the last argument
when calling acl_exec_cond() to indicate that we expect
ACL_PAT_MISS to be returned if some data is missing (for
fetch() or match()). This is the only case we may return
this value. For this reason, the ACL check in process_cli()
has become a lot simpler.
A new ACL "req_len" of type "int" has been added. Right now
it is already possible to drop requests which talk too early
(eg: for SMTP) or which don't talk at all (eg: HTTP/SSL).
Also, the acl fetch() functions have been extended in order
to permit reporting of missing data in case of fetch failure,
using the ACL_TEST_F_MAY_CHANGE flag.
The default behaviour is unchanged, and if no rule matches,
the request is accepted.
As a side effect, all layer 7 fetching functions have been
cleaned up so that they now check for the validity of the
layer 7 pointer before dereferencing it.
This is the first attempt at moving all internal parts from
using struct timeval to integer ticks. Those provides simpler
and faster code due to simplified operations, and this change
also saved about 64 bytes per session.
A new header file has been added : include/common/ticks.h.
It is possible that some functions should finally not be inlined
because they're used quite a lot (eg: tick_first, tick_add_ifset
and tick_is_expired). More measurements are required in order to
decide whether this is interesting or not.
Some function and variable names are still subject to change for
a better overall logics.
The run queue scheduler now considers task->nice to queue a task and
to pick a task out of the queue. This makes it possible to boost the
access to statistics (both via HTTP and UNIX socket). The UNIX socket
receives twice as much a boost as the HTTP socket because it is more
sensible.
If the system date is set backwards while haproxy is running,
some scheduled events are delayed by the amount of time the
clock went backwards. This is particularly problematic on
systems where the date is set at boot, because it seldom
happens that health-checks do not get sent for a few hours.
Before switching to use clock_gettime() on systems which
provide it, we can at least ensure that the clock is not
going backwards and maintain two clocks : the "date" which
represents what the user wants to see (mostly for logs),
and an internal date stored in "now", used for scheduled
events.
The dequeuing logic was completely wrong. First, a task was assigned
to all servers to process the queue, but this task was never scheduled
and was only woken up on session free. Second, there was no reservation
of server entries when a task was assigned a server. This means that
as long as the task was not connected to the server, its presence was
not accounted for. This was causing trouble when detecting whether or
not a server had reached maxconn. Third, during a redispatch, a session
could lose its place at the server's and get blocked because another
session at the same moment would have stolen the entry. Fourth, the
redispatch option did not work when maxqueue was reached for a server,
and it was not possible to do so without indefinitely hanging a session.
The root cause of all those problems was the lack of pre-reservation of
connections at the server's, and the lack of tracking of servers during
a redispatch. Everything relied on combinations of flags which could
appear similarly in quite distinct situations.
This patch is a major rework but there was no other solution, as the
internal logic was deeply flawed. The resulting code is cleaner, more
understandable, uses less magics and is overall more robust.
As an added bonus, "option redispatch" now works when maxqueue has
been reached on a server.
When a server terminates a connection, the next session in its
own queue was immediately processed. Because of this, if all
server queues are always filled, then no new anonymous request
will be processed. Consider oldest request between global and
server queues to choose from which to pick the request.
An improvement over this will consist in adding a configurable
offset when comparing expiration dates, so that cookie-less
requests can get either less or more priority.
A new "redirect" keyword adds the ability to send an HTTP 301/302/303
redirection to either an absolute location or to a prefix followed by
the original URI. The redirection is conditionned by ACL rules, so it
becomes very easy to move parts of a site to another site using this.
This work was almost entirely done at Exceliance by Emeric Brun.
A test-case has been added in the tests/ directory.
This patch allows to specify a domain used when inserting a cookie
providing a session stickiness. Usefull for example with wildcard domains.
The patch adds one new variable to the struct proxy: cookiedomain.
When set the domain is appended to a Set-Cookie header.
Domain name is validated using the new invalid_domainchar() function.
It is basically invalid_char() limited to [A-Za-z0-9_.-]. Yes, the test
is too trivial and does not cover all wrong situations, but the main
purpose is to detect most common mistakes, not intentional abuses.
The underscore ("_") character is not RFC-valid but as it is
often (mis)used so I decided to allow it.
This patch extends the "url_param" load balancing method by introducing
the "check_post" option. Using this option enables analysis of the beginning
of POST requests to search for the specified URL parameter.
The patch also fixes a few minor typos in comments that were discovered
during code review.
If a client does a sudden dirty close (CL_STCLOSE) during a server
connect turn-around, then the number of server connections is
decremented twice. This causes huge problems on the affected
server because when its connection number becomes negative, it
overflows and prevents the server from accepting new connections
due to an apparent saturation.
The fix consists in not decrementing the counter if the server is
in a turn-around state.
Due to the way the stats socket work, it was not possible to
maintain the information related to the command entered, so
after filling a whole buffer, the request was lost and it was
considered that there was nothing to write anymore.
The major reason was that some flags were passed directly
during the first call to stats_dump_raw() instead of being
stored persistently in the session.
To definitely fix this problem, flags were added to the stats
member of the session structure.
A second problem appeared. When the stats were produced, a first
call to client_retnclose() was performed, then one or multiple
subsequent calls to buffer_write_chunks() were done. But once the
stats buffer was full and a reschedule operated, the buffer was
flushed, the write flag cleared from the buffer and nothing was
done to re-arm it.
For this reason, a check was added in the proto_uxst_stats()
function in order to re-call the client FSM when data were added
by stats_dump_raw(). Finally, the whole unix stats dump FSM was
rewritten to avoid all the magics it depended on. It is now
simpler and looks more like the HTTP one.
The new "leastconn" LB algorithm selects the server which has the
least established or pending connections. The weights are considered,
so that a server with a weight of 20 will get twice as many connections
as the server with a weight of 10.
The algorithm respects the minconn/maxconn settings, as well as the
slowstart since it is a dynamic algorithm. It also correctly supports
backup servers (one and all).
It is generally suited for protocols with long sessions (such as remote
terminals and databases), as it will ensure that upon restart, a server
with no connection will take all new ones until its load is balanced
with others.
A test configuration has been added in order to ease regression testing.
When haproxy decides that session needs to be redispatched it chose a server,
but there is no guarantee for it to be a different one. So, it often
happens that selected server is exactly the same that it was previously, so
a client ends up with a 503 error anyway, especially when one sever has
much bigger weight than others.
Changes from the previous version:
- drop stupid and unnecessary SN_DIRECT changes
- assign_server(): use srvtoavoid to keep the old server and clear s->srv
so SRV_STATUS_NOSRV guarantees that t->srv == NULL (again)
and get_server_rr_with_conns has chances to work (previously
we were passing a NULL here)
- srv_redispatch_connect(): remove t->srv->cum_sess and t->srv->failed_conns
incrementing as t->srv was guaranteed to be NULL
- add avoididx to get_server_rr_with_conns. I hope I correctly understand this code.
- fix http_flush_cookie_flags() and move it to assign_server_and_queue()
directly. The code here was supposed to set CK_DOWN and clear CK_VALID,
but: (TX_CK_VALID | TX_CK_DOWN) == TX_CK_VALID == TX_CK_MASK so:
if ((txn->flags & TX_CK_MASK) == TX_CK_VALID)
txn->flags ^= (TX_CK_VALID | TX_CK_DOWN);
was really a:
if ((txn->flags & TX_CK_MASK) == TX_CK_VALID)
txn->flags &= TX_CK_VALID
Now haproxy logs "--DI" after redispatching connection.
- defer srv->redispatches++ and s->be->redispatches++ so there
are called only if a conenction was redispatched, not only
supposed to.
- don't increment lbconn if redispatcher selected the same sarver
- don't count unsuccessfully redispatched connections as redispatched
connections
- don't count redispatched connections as errors, so:
- the number of connections effectively served by a server is:
srv->cum_sess - srv->failed_conns - srv->retries - srv->redispatches
and
SUM(servers->failed_conns) == be->failed_conns
- requires the "Don't increment server connections too much + fix retries" patch
- needs little more testing and probably some discussion so reverting to the RFC state
Tests #1:
retries 4
redispatch
i) 1 server(s): b (wght=1, down)
b) sessions=5, lbtot=1, err_conn=1, retr=4, redis=0
-> request failed
ii) server(s): b (wght=1, down), u (wght=1, down)
b) sessions=4, lbtot=1, err_conn=0, retr=3, redis=1
u) sessions=1, lbtot=1, err_conn=1, retr=0, redis=0
-> request FAILED
iii) 2 server(s): b (wght=1, down), u (wght=1, up)
b) sessions=4, lbtot=1, err_conn=0, retr=3, redis=1
u) sessions=1, lbtot=1, err_conn=0, retr=0, redis=0
-> request OK
iv) 2 server(s): b (wght=100, down), u (wght=1, up)
b) sessions=4, lbtot=1, err_conn=0, retr=3, redis=1
u) sessions=1, lbtot=1, err_conn=0, retr=0, redis=0
-> request OK
v) 1 server(s): b (down for first 4 SYNS)
b) sessions=5, lbtot=1, err_conn=0, retr=4, redis=0
-> request OK
Tests #2:
retries 4
i) 1 server(s): b (down)
b) sessions=5, lbtot=1, err_conn=1, retr=4, redis=0
-> request FAILED
Commit 98937b8757 while fixing
one bug introduced another one. With "retries 4" and
"option redispatch" haproxy tries to connect 4 times to
one server server and 1 time to a second one. However
logs showed 5 connections to the first server (the
last one was counted twice) and 2 to the second.
This patch also fixes srv->retries and be->retries increments.
Now I get: 3 retries and 1 error in a first server (4 cum_sess)
and 1 error in a second server (1 cum_sess) with:
retries 4
option redispatch
and: 4 retries and 1 error (5 cum_sess) with:
retries 4
So, the number of connections effectively served by a server is:
srv->cum_sess - srv->failed_conns - srv->retries
We've been trying to use the latest release (1.3.14.2) of haproxy to do
sticky sessions. Cookie insertion is not an option for us, although we
would much rather use it, as we are trying to work around a problem where
cookies are unreliable. The appsession functionality only partially worked
(it wouldn't read the session id out of a query string) until we made the
following code change to the get_srv_from_appsession function in
proto_http.c.
State and offsets within http_msg were incorrectly set to signed int.
Turning them into unsigned slightly improved performance while reducing
code size.
Now when a server has "redir <prefix>" on its config line, any HEAD or GET
request addressing it will lead to a 302 with Location set to "<prefix>"
immediately followed by the relative URI of the incoming request. This makes
it very easy to send redirect to browsers to check remote static servers, as
well as to provide redirection for remote sites when the local one is down.
Commit 8b3977ffe3 removed "t->logs.bytes_in = 0;"
but instead it should change it into "t->logs.bytes_out = 0;" as since
583bc96606 counters are incremented not set.
It should be incremented in session_process_counters while sending data to a
client:
bytes = s->rep->total - s->logs.bytes_out;
s->logs.bytes_out = s->rep->total;
However, if we increment (set) s->logs.bytes_out while processing
"logasap", statistics get wrong values added for headers: 0 or even
negative if haproxy adds some headers itself.
To test it, please enable logasap and download one empty file and look at
stats. Without my fix information available on that page are invalid, for
example:
# pxname,svname,qcur,qmax,scur,smax,slim,stot,bin,bout,dreq,dresp,ereq,econ,eresp,wretr,wredis,status,weight,act,bck,chkfail,chkdown,lastchg,downtime,qlimit,pid,iid,sid,throttle,lbtot,
www,b,0,0,0,1,,1,24,-92,,0,,0,0,0,,UP,1,1,0,0,0,3121,0,,1,2,1,,1,
www,BACKEND,0,0,0,1,0,1,24,-92,0,0,,0,0,0,0,UP,1,1,0,,0,3121,0,,1,2,0,,1,
a copy-paste typo was present in the reconnection code responsible
for respatching. The client's FSM would not be re-evaluated if an
error occurred. It looks harmless but better fix it.
Several users have complained that when haproxy gets a connection
failure due to an active reject from a server, it immediately
retries, often leading to the same situation being repeated until
the retry counter reaches zero.
Now if a connection error shows up, a turn-around state of 1 second
is applied before retrying. This is performed by faking a connection
timeout in order not to touch much code. However, a cleaner method
would involve an extra state.
This patch extends a little previously added functionality to also
count retries and redispatches for servers. Now it is possible to know
which server causes redispatches as it is not always the same that takes
most retries.
While working with the code I found that redistribute_pending() does not increment
srv->redispatches && be->redispatches. I don't know how to test it but
I think the fix is correct. If not I can withdraw it.
I also extended logs to show how many retries were done and if redispatching
was necessary ('+'). I'm using an additional session flag SN_REDISP to match
redispatched connections. I had to rearrange all defines in session.h to make
more room for it.
The documentation about logs was also fixed a little (sorry, english only),
as current version uses totally different format. BTW: examples are still
outdated, maybe next time...
Finally, I changed %d -> %u for retries/redispatches as those variables
are declared as unsigned.
It was abnormal to see more connect errors than connect attempts.
This was caused by the fact that the server's connection count was
not incremented for failed connect() attempts.
Now the per-server connections are correctly incremented for each
connect() attempt. This includes the retries too. The number of
connections effectively served by a server will then be :
srv->cum_sess - srv->errors - srv->warnings
In order to offer DoS protection, it may be required to lower the maximum
accepted time to receive a complete HTTP request without affecting the client
timeout. This helps protecting against established connections on which
nothing is sent. The client timeout cannot offer a good protection against
this abuse because it is an inactivity timeout, which means that if the
attacker sends one character every now and then, the timeout will not
trigger. With the HTTP request timeout, no matter what speed the client
types, the request will be aborted if it does not complete in time.
This patch adds a possibility to invert most of available options by
introducing the "no" keyword, available as an additional prefix.
If it is found arguments are shifted left and an additional flag (inv)
is set.
It allows to use all options from a current defaults section, except
the selected ones, for example:
-- cut here --
defaults
contimeout 4200
clitimeout 50000
srvtimeout 40000
option contstats
listen stats 1.2.3.4:80
no option contstats
-- cut here --
Currenly inversion works only with the "option" keyword.
The patch also moves last_checks calculation at the end of the readcfgfile()
function and changes "PR_O_FORCE_CLO | PR_O_HTTP_CLOSE" into "PR_O_FORCE_CLO"
in cfg_opts so it is possible to invert forceclose without breaking httpclose
(and vice versa) and to invert tcpsplice in one proxy but to keep a proper
last_checks value when tcpsplice is used in another proxy. Now, the code
checks for PR_O_FORCE_CLO everywhere it checks for PR_O_HTTP_CLOSE.
I also decided to depreciate "redisp" and "redispatch" keywords as it is IMHO
better to use "option redispatch" which can be inverted.
Some useful documentation were added and at the same time I sorted
(alfabetically) all valid options both in the code and the documentation.
Now the connect timeout, tarpit timeout and queue timeout are
distinct. In order to retain compatibility with older versions,
if either queue or tarpit is left unset both in the proxy and
in the default proxy, then it is inherited from the connect
timeout as before.
Under certain circumstances, it is very useful to be able to fail some
monitor requests. One specific case is when the number of servers in
the backend falls below a certain level. The new "monitor fail" construct
followed by either "if"/"unless" <condition> makes it possible to specify
ACL-based conditions which will make the monitor return 503 instead of
200. Any number of conditions can be passed. Another use may be to limit
the requests to local networks only.
Hello,
You will find attached an updated release of previously submitted patch.
It polish some part and extend ACL engine to match IP and PORT parsed in
HTTP request. (and take care of comments made by Willy ! ;))
Best regards,
Alexandre
By default, counters used for statistics calculation are incremented
only when a session finishes. It works quite well when serving small
objects, but with big ones (for example large images or archives) or
with A/V streaming, a graph generated from haproxy counters looks like
a hedgehog.
This patch implements a contstats (continous statistics) option.
When set counters get incremented continuously, during a whole session.
Recounting touches a hotpath directly so it is not enabled by default,
as it has small performance impact (~0.5%).
Small optimization: in some cases, it's not interesting to call
functions which are dedicated to checking the cache headers or
cookies. Avoid calling them when not necessary.
localtime() was called with pointers to tv_sec, which is time_t on
some platforms and long on others. A problem was encountered on
Sparc64 under OpenBSD where tv_sec is long (64 bits) and time_t is
32 bits. Since this architecture is big-endian, it exhibited the
bug because localtime() always worked with the high part of the
value which is always zero. This problem was identified and debugged
by Thierry Fournier.
The correct solution is to pass the date by value and not by pointer,
through an intermediate function. The use of localtime_r() instead of
localtime() also made it possible to get rid of the first call to
localtime() since it does not need to allocate memory anymore.
It is important to know how your installation performs. Haproxy masks
connection errors, which is extremely good for a client but it is bad for
an administrator (except people believing that "ignorance is a bless").
Attached patch adds retries and redispatches counters, so now haproxy:
1. For server:
- counts retried connections (masked or not)
2. For backends:
- counts retried connections (masked or not) that happened to
a slave server
- counts redispatched connections
- does not count successfully redispatched connections as backend errors.
Errors are increased only when client does not get a valid response,
in other words: with failed redispatch or when this function is not
enabled.
3. For statistics:
- display Retr (retries) and Redis (redispatches) as a "Warning"
information.
It is now possible to get CSV ouput from the statistics by
simply appending ";csv" to the HTTP request sent to get the
stats. The fields keep the same ordering as in the HTML page,
and a field "pxname" has been prepended at the beginning of
the line.
For people who manage many haproxies, it is sometimes convenient
to be informed of their version. This patch adds this, with the
option to disable this report by specifying "stats hide-version".
Also, the feature may be permanently disabled by setting the
STATS_VERSION_STRING to "" (empty string), or the format can
simply be adjusted.
I noticed that haproxy, with "cookie (...) nocache" option, always adds
"Cache-control: private" at the end of a header list received from this
server:
Cache-Control: no-cache
(...)
Set-Cookie: SERVERID=s6; path=/
Cache-control: private
or:
Set-Cookie: ASPSESSIONIDCSRCTSSB=HCCBGGACGBHDHMMKIOILPHNG; path=/
Cache-control: private
Set-Cookie: SERVERID=s5; path=/
Cache-control: private
It may be just redundant (two "Cache-control: private"), but sometimes it
may be quite confused as we may end with two different, more and less
restricted directions (no-cache & private) and even quite conflicting
directions (eg. public & private):
So, I added and rearranged a code, so now haproxy adds a "Cache-control:
private" header only when there is no the same (private) or more
restrictive (no-cache) one. It was done in three steps:
1. Use check_response_for_cacheability to check if response is
not cacheable. I simply moved this call before http_header_add_tail2.
2. Use TX_CACHEABLE (not TX_CACHE_COOK - apache <= 1.3.26) to check if we
need to add a Cache-control header. If we add it, clear TX_CACHEABLE and
TX_CACHE_COOK.
3. Check cacheability not only with PR_O_CHK_CACHE but also with
PR_O_COOK_NOC, so:
- unlikely(t->be->options & PR_O_CHK_CACHE))
+ (t->be->options & (PR_O_CHK_CACHE|PR_O_COOK_NOC)))
txn->flags |= TX_CACHEABLE | TX_CACHE_COOK;
I removed this unlikely since I believe that now it is not so unlikely.
The patch is definitely not perfect, proxy should probably also remove
"Cache-control: public". Unfortunately, I do not know the code good enough
to do in myself, yet. ;)
Anyway, I think that even now, it should be very useful.
When switching from a frontend to a backend, the "retries" parameter
was not kept, resulting in the impossibility to reconnect after the
first connection failure. This problem was reported and analyzed by
Krzysztof Oledzki.
While fixing the code, it appeared that some of the backend's timeouts
were not updated in the session when using "use_backend" or "default_backend".
It seems this had no impact but just in case, it's better to set them as
they should have been.
src/chtbl.c, src/hashpjw.c and src/list.c are distributed under
an obscure license. While Aleks and I believe that this license
is OK for haproxy, other people think it is not compatible with
the GPL.
Whether it is or not is not the problem. The fact that it rises
a doubt is sufficient for this problem to be addressed. Arnaud
Cornet rewrote the unclear parts with clean GPLv2 and LGPL code.
The hash algorithm has changed too and the code has been slightly
simplified in the process. A lot of care has been taken in order
to respect the original API as much as possible, including the
LGPL for the exportable parts.
The new code has not been thoroughly tested but it looks OK now.
The stats page now supports an option to hide servers which are DOWN
and to enable/disable automatic refresh. It is also possible to ask
for an immediate refresh.
Sometimes it may be desirable to automatically refresh the
stats page. Most browsers support the "Refresh:" header with
an interval in seconds. Specifying "stats refresh xxx" will
automatically add this header.
The GCD used when computing the servers' weights causes the total
weight of the backend to appear lower than expected because it is
divided by the GCD. Easy solution consists in recomputing the GCD
from the first server and apply it to the global weight.
When a very large number of servers is configured (thousands),
shutting down many of them at once could lead to large number
of calls to recalc_server_map() which already takes some time.
This would result in an O(N^3) computation time, leading to
noticeable pauses on slow embedded CPUs on test platforms.
Instead, mark the map as dirty and recalc it only when needed.
The new "use_backend" keyword permits full content switching by the
use of ACLs. Its usage is simple :
use_backend <backend_name> {if|unless} <acl_cond>
Implemented the "-i" option on ACLs to state that the matching
will have to be performed for all patterns ignoring case. The
usage is :
acl <aclname> <aclsubject> -i pattern1 ...
If a pattern must begin with "-", either it must not be the first one,
or the "--" option should be specified first.
'path', 'path_reg', 'path_beg', 'path_end', 'path_sub', 'path_dir'
and 'path_dom' have been implemented to process the path component
of the URI. It starts after the host part, and stops before the
question mark.
hdr(x), hdr_reg(x), hdr_beg(x), hdr_end(x), hdr_sub(x), hdr_dir(x),
hdr_dom(x), hdr_cnt(x) and hdr_val(x) have been implemented. They
apply to any of the possibly multiple values of header <x>.
Right now, hdr_val() is limited to integer matching, but it should
reasonably be upgraded to match long long ints.
Some fetches such as 'line' or 'hdr' need to know the direction of
the test (request or response). A new 'dir' parameter is now
propagated from the caller to achieve this.
ACLs now support operators such as 'eq', 'le', 'lt', 'ge' and 'gt'
in order to give more flexibility to the language. Because of this
change, the 'dst_limit' keyword changed to 'dst_conn' and now requires
either a range or a test such as 'dst_conn lt 1000' which is more
understandable.
A second occurrence of read-timeout rearming was present in stream_sock.c.
To fix the problem, it was necessary to put the shutdown information in
the buffer (already planned).
There is a long-time bug causing busy loops when either client-side
or server-side enters a SHUTR state. When writing data to the FD,
it was possible to re-arm the read side if the write had been paused.
ETERNITY is not 0 anymore, so all timeouts will not be initialized
to ETERNITY by a simple calloc(). We have to explictly assign them.
This bug caused random session aborts.