While working on the changes required to make the health checks use the
new connections, it started to become obvious that some naming was not
logical at all in the connections. Specifically, it is not logical to
call the "data layer" the layer which is in charge for all the handshake
and which does not yet provide a data layer once established until a
session has allocated all the required buffers.
In fact, it's more a transport layer, which makes much more sense. The
transport layer offers a medium on which data can transit, and it offers
the functions to move these data when the upper layer requests this. And
it is the upper layer which iterates over the transport layer's functions
to move data which should be called the data layer.
The use case where it's obvious is with embryonic sessions : an incoming
SSL connection is accepted. Only the connection is allocated, not the
buffers nor stream interface, etc... The connection handles the SSL
handshake by itself. Once this handshake is complete, we can't use the
data functions because the buffers and stream interface are not there
yet. Hence we have to first call a specific function to complete the
session initialization, after which we'll be able to use the data
functions. This clearly proves that SSL here is only a transport layer
and that the stream interface constitutes the data layer.
A similar change will be performed to rename app_cb => data, but the
two could not be in the same commit for obvious reasons.
Alex Markham reported and diagnosed a bug appearing on 1.5-dev11,
causing a crash on x86_64 when header hashing is used. The cause is
a missing (int) cast causing a negative offset to appear positive
and the resulting pointer to go out of bounds.
The crash is not possible anymore since 1.5-dev12 because a second
bug caused the negative sign to disappear so the pointer is always
within range but always wrong, so balance hdr() never works anymore.
This fix restores the correct behaviour and ensures the sign is
correct.
The last uses of the stream interfaces were in tcp_connect_server() and
could easily and more appropriately be moved to its callers, si_connect()
and connect_server(), making a lot more sense.
Now the function should theorically be usable for health checks.
It also appears more obvious that the file is split into two distinct
parts :
- the protocol layer used at the connection level
- the tcp analysers executing tcp-* rules and their samples/acls.
We need to have the source and destination addresses in the connection.
They were lying in the stream interface so let's move them. The flags
SI_FL_FROM_SET and SI_FL_TO_SET have been moved as well.
It's worth noting that tcp_connect_server() almost does not use the
stream interface anymore except for a few flags.
It has been identified that once we detach the connection from the SI,
it will probably be needed to keep a copy of the server-side addresses
in the SI just for logging purposes. This has not been implemented right
now though.
Some parts of the sock_ops structure were only used by the stream
interface and have been moved into si_ops. Some of them were callbacks
to the stream interface from the connection and have been moved into
app_cp as they're the application seen from the connection (later,
health-checks will need to use them). The rest has moved to data_ops.
Normally at this point the connection could live without knowing about
stream interfaces at all.
The "raw_sock" prefix will be more convenient for naming functions as
it will be prefixed with the data layer and suffixed with the data
direction. So let's rename the files now to avoid any further confusion.
The #include directive was also removed from a number of files which do
not need it anymore.
At the moment, the struct is still embedded into the struct channel, but
all the functions have been updated to use struct buffer only when possible,
otherwise struct channel. Some functions would likely need to be splitted
between a buffer-layer primitive and a channel-layer function.
Later the buffer should become a pointer in the struct buffer, but doing so
requires a few changes to the buffer allocation calls.
This is a massive rename. We'll then split channel and buffer.
This change needs a lot of cleanups. At many locations, the parameter
or variable is still called "buf" which will become ambiguous. Also,
the "struct channel" is still defined in buffers.h.
This patch brings a new "whole" parameter to "balance uri" which makes
the hash work over the whole uri, not just the part before the query
string. Len and depth parameter are still honnored.
The reason for this new feature is explained below.
I have 3 backend servers, each accepting different form of HTTP queries:
http://backend1.server.tld/service1.php?q=...
http://backend1.server.tld/service2.php?q=...
http://backend2.server.tld/index.php?query=...&subquery=...
http://backend3.server.tld/image/49b8c0d9ff
Each backend server returns a different response based on either:
- the URI path (the left part of the URI before the question mark)
- the query string (the right part of the URI after the question mark)
- or the combination of both
I wanted to set up a common caching cluster (using 6 Squid servers, each
configured as reverse proxy for those 3 backends) and have HAProxy balance
the queries among the Squid servers based on URL. I also wanted to achieve
hight cache hit ration on each Squid server and send the same queries to
the same Squid servers. Initially I was considering using the 'balance uri'
algorithm, but that would not work as in case of backend2 all queries would
go to only one Squid server. The 'balance url_param' would not work either
as it would send the backend3 queries to only one Squid server.
So I thought the simplest solution would be to use 'balance uri', but to
calculate the hash based on the whole URI (URI path + query string),
instead of just the URI path.
We start to move everything needed to manage a connection to a special
entity "struct connection". We have the data layer operations and the
control operations there. We'll also have more info in the future such
as file descriptors and applet contexts, so that in the end it becomes
detachable from the stream interface, which will allow connections to
be reused between sessions.
For now on, we start with minimal changes.
Since the recent buffer reorg, msg->som is redundant with buf->p but still
appears at a number of places. This tiny patch allows to confirm that som
follows two states :
- 0 from the moment the message starts to be parsed
- relative offset to ->p for start of chunk when parsing chunks
During this second state, ->sol is never used, so we should probably merge
the two.
This is a left-over from the buffer changes. Msg->sol is always null at the
end of the parsing, so we must not use it anymore to read headers or find
the beginning of a message. As a side effect, the dump of the request in
debug mode is working again because it was relying on msg->sol not being
null.
Maybe it will even be mergeable with another of the message pointers.
The recent split between the buffers and HTTP messages in 1.5-dev9 caused
a major trouble : in the past, we used to keep a pointer to HTTP data in the
buffer struct itself, which was the cause of most of the pain we had to deal
with buffers.
Now the two are split but we lost the information about the beginning of
the HTTP message once it's being forwarded. While it seems normal, it happens
that several parts of the code currently rely on this ability to inspect a
buffer containing old contents :
- balance uri
- balance url_param
- balance url_param check_post
- balance hdr()
- balance rdp-cookie()
- http-send-name-header
All these happen after the data are scheduled for being forwarded, which
also causes a server to be selected. So for a long time we've been relying
on supposedly sent data that we still had a pointer to.
Now that we don't have such a pointer anymore, we only have one possibility :
when we need to inspect such data, we have to rewind the buffer so that ->p
points to where it previously was. We're lucky, no data can leave the buffer
before it's being connecting outside, and since no inspection can begin until
it's empty, we know that the skipped data are exactly ->o. So we rewind the
buffer by ->o to get headers and advance it back by the same amount.
Proceeding this way is particularly important when dealing with chunked-
encoded requests, because the ->som and ->sov fields may be reused by the
chunk parser before the connection attempt is made, so we cannot rely on
them.
Also, we need to be able to come back after retries and redispatches, which
might change the size of the request if http-send-name-header is set. All of
this is accounted for by the output queue so in the end it does not look like
a bad solution.
No backport is needed.
Instead of hard-coding sock_raw in connect_server(), we set this socket
operation at config parsing time. Right now, only servers and peers have
it. Proxies are still hard-coded as sock_raw. This will be needed for
future work on SSL which requires a different socket layer.
Commit e164e7a removed get_src/get_dst setting in the stream interfaces but
forgot to set it in proto_tcp. Get the feature back because we need it for
logging, transparent mode, ACLs etc... We now rely on the stream interface
direction to know what syscall to use.
One benefit of doing it this way is that we don't use getsockopt() anymore
on outgoing stream interfaces nor on UNIX sockets.
We'll soon have an SSL socket layer, and in order to ease the difference
between the two, we use the name "sock_raw" to designate the one which
directly talks to the sockets without any conversion.
Patterns were using a bitmask to indicate if request or response was desired
in fetch functions and keywords. ACLs were using a bitmask in fetch keywords
and a single bit in fetch functions. ACLs were also using an ACL_PARTIAL bit
in fetch functions indicating that a non-final fetch was performed, which was
an abuse of the existing direction flag.
The change now consists in using :
- a capabilities field for fetch keywords => SMP_CAP_REQ/RES to indicate
if a keyword supports requests, responses, both, etc...
- an option field for fetch functions to indicate what the caller expects
(request/response, final/non-final)
The ACL_PARTIAL bit was reversed to get SMP_OPT_FINAL as it's more explicit
to know we're working on a final buffer than on a non-final one.
ACL_DIR_* were removed, as well as PATTERN_FETCH_*. L4 fetches were improved
to support being called on responses too since they're still available.
The <dir> field of all fetch functions was changed to <opt> which is now
unsigned.
The patch is large but mostly made of cosmetic changes to accomodate this, as
almost no logic change happened.
Having the args everywhere will make it easier to share fetch functions
between patterns and ACLs. The only place where we could have needed
the expr was in the http_prefetch function which can do well without.
Previously, both pattern, backend and persist_rdp_cookie would build fake
ACL expressions to fetch an RDP cookie by calling acl_fetch_rdp_cookie().
Now we switch roles. The RDP cookie fetch function is provided as a sample
fetch function that all others rely on, including ACL. The code is exactly
the same, only the args handling moved from expr->args to args. The code
was moved to proto_tcp.c, but probably that a dedicated file would be more
suited to content handling.
These ones were either unused or improperly used. Some integers were marked
read-only, which does not make much sense. Buffers are not read-only, they're
"constant" in that they must be kept intact after any possible change.
This one is not needed anymore as we can return the data and its type in the
sample provided by the caller. ACLs now always return the proper type. BOOL
is already returned when the result is expected to be processed as a boolean.
temp_pattern has been unexported now.
The new sample types are necessary for the acl-pattern convergence.
These types are boolean and signed int. Some types were renamed for
less ambiguity (ip->ipv4, integer->uint).
A large number of ACLs make use of frontend, backend or table names in their
arguments, and fall back to the current proxy when no argument is passed. If
the expected capability is not available, the ACL silently fails at runtime.
Now we make all those names mandatory in the parser and we rely on
acl_find_targets() to replace the missing names with the holding proxy,
then to perform the appropriate tests, and to reject errors at parsing
time.
It is possible that some faulty configurations will get rejected from now
on, while they used to silently fail till now. This is the reason why this
change is marked as MAJOR.
Proxy names are now resolved when the config is parsed and not at runtime.
This means that errors will be caught for real instead of having an ACL
silently never match. Another benefit is that the fetch will be much faster
since the lookup will not have to be performed anymore, eg for all ACLs
based on explicitly named stick-tables.
However some buggy configurations which used to silently fail in the past
will now refuse to load, hence the MAJOR tag.
The types and minimal number of ACL keyword arguments are now stored in
their declaration. This will allow many more fantasies if some ACL use
several arguments or types.
Doing so required to rework all ACL keyword declarations to add two
parameters. So this was a good opportunity for a general cleanup and
to sort all entries in alphabetical order.
We still have two pending issues :
- parse_acl_expr() checks for errors but has no way to report them to
the user ;
- the types of some arguments are still not resolved and kept as strings
(eg: ARGT_FE/BE/TAB) for compatibility reasons, which must be resolved
in acl_find_targets()
The ACL parser now uses the argument parser to build a typed argument list.
Right now arguments are all strings and only one argument is supported since
this is what ACLs currently support.
msg->sol is now a relative pointer just like all other ones. There is no
more absolute references to the buffer outside the struct buffer itself.
Next two cleanups should include removing buffer references to functions
which already have an msg, and removal of wrapping detection in request
and response parsing which cannot wrap by definition.
These offsets were relative to the buffer itself. Now they're relative to
the buffer's origin (buf->p) which normally corresponds to the start of
current message.
This saves a big dependency between the HTTP message struct and the buffers.
It appeared during this change that ->col is not used anymore (it will have
to be removed). Next step is to turn ->eol and ->sol from absolute to relative.
We don't have buf->l anymore. We have buf->i for pending data and
the total length is retrieved by adding buf->o. Some computation
already become simpler.
Despite extreme care, bugs are not excluded.
It's worth noting that msg->err_pos as set by HTTP request/response
analysers becomes relative to pending data and not to the beginning
of the buffer. This has not been completed yet so differences might
occur when outgoing data are left in the buffer.
These callbacks are used to retrieve the source and destination address
of a socket. The address flags are not hold on the stream interface and
not on the session anymore. The addresses are collected when needed.
This still needs to be improved to store the IP and port separately so
that it is not needed to perform a getsockname() when only the IP address
is desired for outgoing traffic.
The hash of IPv6 addresses was not properly aligned and resulted in the
last quarter of the address not being hashed. In practice, this is rarely
detected since MAC addresses are used in the second half. But this becomes
very visible with IPv6-mapped IPv4 addresses such as ::FFFF:1.2.3.4 where
the IPv4 part is never hashed.
This bug has been there forever, since introduction of "balance source" in
v1.2.11. The fix must then be backported to all stable versions.
Thanks to Alex Markham for reporting this issue to the list !
%Bi return the backend source IP
%Bp return the backend source port
Add a function pointer in logformat_type to do additional configuration
during the log-format variable parsing.
The principle behind this load balancing algorithm was first imagined
and modeled by Steen Larsen then iteratively refined through several
work sessions until it would totally address its original goal.
The purpose of this algorithm is to always use the smallest number of
servers so that extra servers can be powered off during non-intensive
hours. Additional tools may be used to do that work, possibly by
locally monitoring the servers' activity.
The first server with available connection slots receives the connection.
The servers are choosen from the lowest numeric identifier to the highest
(see server parameter "id"), which defaults to the server's position in
the farm. Once a server reaches its maxconn value, the next server is used.
It does not make sense to use this algorithm without setting maxconn. Note
that it can however make sense to use minconn so that servers are not used
at full load before starting new servers, and so that introduction of new
servers requires a progressively increasing load (the number of servers
would more or less follow the square root of the load until maxconn is
reached). This algorithm ignores the server weight, and is more beneficial
to long sessions such as RDP or IMAP than HTTP, though it can be useful
there too.
The new function does not return IP addresses but header values instead,
so that the caller is free to make what it want of them. The conversion
is not quite clean yet, as the previous test which considered that address
0.0.0.0 meant "no address" is still used. A different IP parsing function
should be used to take this into account.
Now strings and data blocks are stored in the temp_pattern's chunk
and matched against this one.
The rdp_cookie currently makes extensive use of acl_fetch_rdp_cookie()
and will be a good candidate for the initial rework so that ACLs use
the patterns framework and not the other way around.
All ACL fetches which return integer value now store the result into
the temporary pattern struct. All ACL matches which rely on integer
also get their value there.
Note: the pattern data types are not set right now.
This is 1.5-specific. It causes issues with transparent source binding involving
hdr_ip. We must not try to bind() to a foreign address when the family is not set,
and we must set the family when an address is set.
Stream interfaces used to distinguish between client and server addresses
because they were previously of different types (sockaddr_storage for the
client, sockaddr_in for the server). This is not the case anymore, and this
distinction is confusing at best and has caused a number of regressions to
be introduced in the process of converting everything to full-ipv6. We can
now remove this and have a much cleaner code.
Nick Chalk reported that a connection to a server which has no port specified
used twice the port number. The reason is that the port number was taken from
the wrong part of the address, the client's destination address was used as the
base port instead of the server's configured address.
Thanks to Nick for his helpful diagnostic.
A similar issue as the previous one causes port mapping to fail in some
combinations of client and server address families. Using the macros fixes
the issue.
Adding health checks has become a real pain, with cross-references to all
checks everywhere because they're all a single bit. Since they're all
exclusive, let's change this to have a check number only. We reserve 4
bits allowing up to 16 checks (15+tcp), only 7 of which are currently
used. The code has shrunk by almost 1kB and we saved a few option bits.
The "dispatch" option has been moved to px->options, making a few tests
a bit cleaner.
Since we now have the copy of the target in the session, use it instead
of relying on the SI for it. The SI drops the target upon unregister()
so applets such as stats were logged as "NOSRV".
This option enables use of the PROXY protocol with the server, which
allows haproxy to transport original client's address across multiple
architecture layers.
It's very annoying that frontend and backend stats are merged because we
don't know what we're observing. For instance, if a "listen" instance
makes use of a distinct backend, it's impossible to know what the bytes_out
means.
Some points take care of not updating counters twice if the backend points
to the frontend, indicating a "listen" instance. The thing becomes more
complex when we try to add support for server side keep-alive, because we
have to maintain a pointer to the backend used for last request, and to
update its stats. But we can't perform such comparisons anymore because
the counters will not match anymore.
So in order to get rid of this situation, let's have both frontend AND
backend stats in the "struct proxy". We simply update the relevant ones
during activity. Some of them are only accounted for in the backend,
while others are just for frontend. Maybe we can improve a bit on that
later, but the essential part is that those counters now reflect what
they really mean.
This patch turns internal server addresses to sockaddr_storage to
store IPv6 addresses, and makes the connect() function use it. This
code already works but some caveats with getaddrinfo/gethostbyname
still need to be sorted out while the changes had to be merged at
this stage of internal architecture changes. So for now the config
parser will not emit an IPv6 address yet so that user experience
remains unchanged.
This change should have absolutely zero user-visible effect, otherwise
it's a bug introduced during the merge, that should be reported ASAP.
This one has been removed and is now totally superseded by ->target.
To get the server, one must use target_srv(&s->target) instead of
s->srv now.
The function ensures that non-server targets still return NULL.
s->prev_srv is used by assign_server() only, but all code paths leading
to it now take s->prev_srv from the existing s->srv. So assign_server()
can do that copy into its own stack.
If at one point a different srv is needed, we still have a copy of the
last server on which we failed a connection attempt in s->target.
When dealing with HTTP keep-alive, we'll have to know if we can reuse
an existing connection. For that, we'll have to check if the current
connection was made on the exact same target (referenced in the stream
interface).
Thus, we need to first assign the next target to the session, then
copy it to the stream interface upon connect(). Later we'll check for
equivalence between those two operations.
Till now we used the fact that the dispatch address was not null to use
the dispatch mode. This is very unconvenient, so let's have a dedicated
option.
When doing a connect() on a stream interface, some information is needed
from the server and from the backend. In some situations, we don't have
a server and only a backend (eg: peers). In other cases, we know we have
an applet and we don't want to connect to anything, but we'd still like
to have the info about the applet being used.
For this, we now store a pointer to the "target" into the stream interface.
The target describes what's on the other side before trying to connect. It
can be a server, a proxy or an applet for now. Later we'll probably have
descriptors for multiple-stage chains so that the final information may
still be found.
This will help removing many specific cases in the code. It already made
it possible to remove the "srv" and "be" parameters to tcpv4_connect_server().
Bryan Talbot reported that POST requests with a query string were not
correctly processed if the hash parameter was the first one, because
the delimiter that was looked for to trigger the parsing was '&' instead
of '?'.
Also, while checking the code, it became apparent that it was enough for
a query string to be present in the request for POST parameters to be
ignored, even if the url_param was in the body and not in the URL.
The code has then been fixed like this :
1) look for URL param. If found, return it.
2) if no URL param was found and method is POST, then look it up into
the body
The code now seems to pass all request combinations.
This patch must be backported to 1.4 since 1.4 is equally broken right now.
Till now, the forwarding code was making use of the hdr_content_len member
to hold the size of the last chunk parsed. As such, it was reset after being
scheduled for forwarding. The issue is that this entry was reset before the
data could be viewed by backend.c in order to parse a POST body, so the
"balance url_param check_post" did not work anymore.
In order to fix this, we need two things :
- the chunk size (reset upon every forward)
- the total body size (not reset)
hdr_content_len was thus replaced by the former (hence the size of the patch)
as it makes more sense to have it stored that way than the way around.
This patch should be backported to 1.4 with care, considering that it affects
the forwarding code.
When the number of servers is a multiple of the size of the input set,
map-based hash can be inefficient. This typically happens with 64
servers when doing URI hashing. The "avalanche" hash-type applies an
avalanche hash before performing a map lookup in order to smooth the
distribution. The result is slightly less smooth than the map for small
numbers of servers, but still better than the consistent hashing.
Till now when a server was configured with address 0.0.0.0, the
connection was forwarded to this address which generally is intercepted
by the system as a local address, so this was completely useless.
One sometimes useful feature for outgoing transparent proxies is to
be able to forward the connection to the same address the client
requested. This patch fixes the meaning of 0.0.0.0 precisely to
ensure that the connection will be forwarded to the initial client's
destination address.
It's not normal to initialize the server-side stream interface from the
accept() function, because it may change later. Thus, we introduce a new
stream_sock_prepare_interface() function which is called just before the
connect() and which sets all of the stream_interface's callbacks to the
default ones used for real sockets. The ->connect function is also set
at the same instant so that we can easily add new server-side protocols
soon.
The 'client.c' file now only contained frontend-specific functions,
so it has naturally be renamed 'frontend.c'. Same for client.h. This
has also been an opportunity to remove some cross references from
files that should not have depended on it.
In the end, this file should contain a protocol-agnostic accept()
code, which would initialize a session, task, etc... based on an
accept() from a lower layer. Right now there are still references
to TCP.
Some ACLs in the client ought to belong to proto_tcp, or protocols.
This file should only contain frontend-specific information and will
be renamed that way in next commit.
Some functions which act on generic buffer contents without being
tcp-specific were historically in proto_tcp.c. This concerns ACLs
and RDP cookies. Those have been moved away to more appropriate
locations. Ideally we should create some new files for each layer6
protocol parser. Let's do that later.
This ACL was missing in complex setups where the status of a remote site
has to be considered in switching decisions. Until there, using a server's
status in an ACL required to have a dedicated backend, which is a bit heavy
when multiple servers have to be monitored.
Using get_ip_from_hdr2() we can look for occurrence #X or #-X and
extract the IP it contains. This is typically designed for use with
the X-Forwarded-For header.
Using "usesrc hdr_ip(name,occ)", it becomes possible to use the IP address
found in <name>, and possibly specify occurrence number <occ>, as the
source to connect to a server. This is possible both in a server and in
a backend's source statement. This is typically used to use the source
IP previously set by a upstream proxy.
The transparent proxy address selection was set in the TCP connect function
which is not the most appropriate place since this function has limited
access to the amount of parameters which could produce a source address.
Instead, now we determine the source address in backend.c:connect_server(),
right after calling assign_server_address() and we assign this address in
the session and pass it to the TCP connect function. This cannot be performed
in assign_server_address() itself because in some cases (transparent mode,
dispatch mode or http_proxy mode), we assign the address somewhere else.
This change will open the ability to bind to addresses extracted from many
other criteria (eg: from a header).
Isidore Li reported an occasional segfault when using URL hashing, and
kindly provided backtraces and core files to help debugging.
The problem was triggered by reset connections before the URL was sent,
and was due to the same bug which was fixed by commit e45997661b
(connections were attempted in case of connection abort). While that
bug was already fixed, it appeared that the same segfault could be
triggered when URL hashing is configured in an HTTP backend when the
frontend runs in TCP mode and no URL was seen. It is totally abnormal
to try to hash a null URL, as well as to process any kind of L7 hashing
when a full request was not seen.
This additional fix now ensures that layer7 hashing is not performed on
incomplete requests.
This is used to force access to down servers for some requests. This
is useful when validating that a change on a server correctly works
before enabling the server again.
Some message pointers were not usable once the message reached the
HTTP_MSG_DONE state. This is the case for ->som which points to the
body because it is needed to parse chunks. There is one case where
we need the beginning of the message : server redirect. We have to
call http_get_path() after the request has been parsed. So we rely
on ->sol without counting on ->som. In order to achieve this, we're
making ->rq.{u,v} relative to the beginning of the message instead
of the buffer. That simplifies the code and makes it cleaner.
Preliminary tests show this is OK.
Supported informations, available via "tr/td title":
- cap: capabilities (proxy)
- mode: one of tcp, http or health (proxy)
- id: SNMP ID (proxy, socket, server)
- IP (socket, server)
- cookie (backend, server)
The rq.u field is relative to buf->data, not to msg->sol. We have
to subtract msg->som everywhere this error was made. Maybe it will
be simpler to have a pointer to the buffer in the message and find
appropriate data there.
When parsing body for URL parameters, we must not consider that
data are available from buf->data but from buf->data + msg->som.
This is not a problem right now but may become with keep-alive.
Now that the HTTP analyser will already have parsed the beginning
of the request body, we don't have to check for transfer-encoding
anymore since we have the current chunk size in hdr_content_len.
These ACLs are used to check the number of active connections on the
frontend, backend or in a backend's queue. The avg_queue returns the
average number of queued connections per server, and for this, divides
the total number of queued connections by the number of alive servers.
The dst_conn ACL has been slightly changed to more reflect its name and
original usage, which is to return the number of connections on the
destination address/port (the socket) and not the whole frontend.
Consistent hashing provides some interesting advantages over common
hashing. It avoids full redistribution in case of a server failure,
or when expanding the farm. This has a cost however, the hashing is
far from being perfect, as we associate a server to a request by
searching the server with the closest key in a tree. Since servers
appear multiple times based on their weights, it is recommended to
use weights larger than approximately 10-20 in order to smoothen
the distribution a bit.
In some cases, playing with weights will be the only solution to
make a server appear more often and increase chances of being picked,
so stats are very important with consistent hashing.
In order to indicate the type of hashing, use :
hash-type map-based (default, old one)
hash-type consistent (new one)
Consistent hashing can make sense in a cache farm, in order not
to redistribute everyone when a cache changes state. It could also
probably be used for long sessions such as terminal sessions, though
that has not be attempted yet.
More details on this method of hashing here :
http://www.spiteful.com/2008/03/17/programmers-toolbox-part-3-consistent-hashing/
There are a few remaining max values that need to move to counters.
Also, the counters are more often used than some config information,
so get them closer to the other useful struct members for better cache
efficiency.
The "static-rr" is just the old round-robin algorithm. It is still
in use when a hash algorithm is used and the data to hash is not
present, but it was impossible to configure it explicitly. This one
is cheaper in terms of CPU and supports unlimited numbers of servers,
so it makes sense to be able to use it.
LB algo macros were composed of the LB algo by itself without any indication
of the method to use to look up a server (the lb function itself). This
method was implied by the LB algo, which was not very convenient to add
more algorithms. Now we have several fields in the LB macros, some to
describe what to look for in the requests, some to describe how to transform
that (kind of algo) and some to describe what lookup function to use.
The next patch will make it possible to factor out some code for all algos
which rely on a map.
We need to remove hash map accesses out of backend.c if we want to
later support new hash methods. This patch separates the hash computation
method from the server lookup. It leaves the lookup function to lb_map.c
and calls it with the result of the hash.
It was becoming painful to have all the LB algos in backend.c.
Let's move them to their own files. A few hashing functions still
need be broken in two parts, one for the contents and one for the
map position.
There is no reason to inline functions which are used to grab a server
depending on an LB algo. They are large and used at several places.
Uninlining them saves 400 bytes of code.