68 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			68 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #!/usr/bin/env python3
 | |
| """
 | |
| Tiny AutoEncoder for Stable Diffusion
 | |
| (DNN for encoding / decoding SD's latent space)
 | |
| """
 | |
| import torch
 | |
| import torch.nn as nn
 | |
| 
 | |
| import fcbh.utils
 | |
| 
 | |
| def conv(n_in, n_out, **kwargs):
 | |
|     return nn.Conv2d(n_in, n_out, 3, padding=1, **kwargs)
 | |
| 
 | |
| class Clamp(nn.Module):
 | |
|     def forward(self, x):
 | |
|         return torch.tanh(x / 3) * 3
 | |
| 
 | |
| class Block(nn.Module):
 | |
|     def __init__(self, n_in, n_out):
 | |
|         super().__init__()
 | |
|         self.conv = nn.Sequential(conv(n_in, n_out), nn.ReLU(), conv(n_out, n_out), nn.ReLU(), conv(n_out, n_out))
 | |
|         self.skip = nn.Conv2d(n_in, n_out, 1, bias=False) if n_in != n_out else nn.Identity()
 | |
|         self.fuse = nn.ReLU()
 | |
|     def forward(self, x):
 | |
|         return self.fuse(self.conv(x) + self.skip(x))
 | |
| 
 | |
| def Encoder():
 | |
|     return nn.Sequential(
 | |
|         conv(3, 64), Block(64, 64),
 | |
|         conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
 | |
|         conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
 | |
|         conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
 | |
|         conv(64, 4),
 | |
|     )
 | |
| 
 | |
| def Decoder():
 | |
|     return nn.Sequential(
 | |
|         Clamp(), conv(4, 64), nn.ReLU(),
 | |
|         Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
 | |
|         Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
 | |
|         Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
 | |
|         Block(64, 64), conv(64, 3),
 | |
|     )
 | |
| 
 | |
| class TAESD(nn.Module):
 | |
|     latent_magnitude = 3
 | |
|     latent_shift = 0.5
 | |
| 
 | |
|     def __init__(self, encoder_path="taesd_encoder.pth", decoder_path="taesd_decoder.pth"):
 | |
|         """Initialize pretrained TAESD on the given device from the given checkpoints."""
 | |
|         super().__init__()
 | |
|         self.encoder = Encoder()
 | |
|         self.decoder = Decoder()
 | |
|         if encoder_path is not None:
 | |
|             self.encoder.load_state_dict(fcbh.utils.load_torch_file(encoder_path, safe_load=True))
 | |
|         if decoder_path is not None:
 | |
|             self.decoder.load_state_dict(fcbh.utils.load_torch_file(decoder_path, safe_load=True))
 | |
| 
 | |
|     @staticmethod
 | |
|     def scale_latents(x):
 | |
|         """raw latents -> [0, 1]"""
 | |
|         return x.div(2 * TAESD.latent_magnitude).add(TAESD.latent_shift).clamp(0, 1)
 | |
| 
 | |
|     @staticmethod
 | |
|     def unscale_latents(x):
 | |
|         """[0, 1] -> raw latents"""
 | |
|         return x.sub(TAESD.latent_shift).mul(2 * TAESD.latent_magnitude)
 |