sync (#658)
This commit is contained in:
parent
4c867c1b8b
commit
e61aac34ca
@ -1,15 +1,15 @@
|
||||
from comfy.options import enable_args_parsing
|
||||
from fcbh.options import enable_args_parsing
|
||||
enable_args_parsing(False)
|
||||
import comfy.cli_args as comfy_cli
|
||||
import fcbh.cli_args as fcbh_cli
|
||||
|
||||
|
||||
comfy_cli.parser.add_argument("--share", action='store_true', help="Set whether to share on Gradio.")
|
||||
fcbh_cli.parser.add_argument("--share", action='store_true', help="Set whether to share on Gradio.")
|
||||
|
||||
comfy_cli.args = comfy_cli.parser.parse_args()
|
||||
comfy_cli.args.disable_cuda_malloc = True
|
||||
comfy_cli.args.auto_launch = True
|
||||
fcbh_cli.args = fcbh_cli.parser.parse_args()
|
||||
fcbh_cli.args.disable_cuda_malloc = True
|
||||
fcbh_cli.args.auto_launch = True
|
||||
|
||||
if getattr(comfy_cli.args, 'port', 8188) == 8188:
|
||||
comfy_cli.args.port = None
|
||||
if getattr(fcbh_cli.args, 'port', 8188) == 8188:
|
||||
fcbh_cli.args.port = None
|
||||
|
||||
args = comfy_cli.args
|
||||
args = fcbh_cli.args
|
||||
|
@ -1,102 +0,0 @@
|
||||
class Example:
|
||||
"""
|
||||
A example node
|
||||
|
||||
Class methods
|
||||
-------------
|
||||
INPUT_TYPES (dict):
|
||||
Tell the main program input parameters of nodes.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
RETURN_TYPES (`tuple`):
|
||||
The type of each element in the output tulple.
|
||||
RETURN_NAMES (`tuple`):
|
||||
Optional: The name of each output in the output tulple.
|
||||
FUNCTION (`str`):
|
||||
The name of the entry-point method. For example, if `FUNCTION = "execute"` then it will run Example().execute()
|
||||
OUTPUT_NODE ([`bool`]):
|
||||
If this node is an output node that outputs a result/image from the graph. The SaveImage node is an example.
|
||||
The backend iterates on these output nodes and tries to execute all their parents if their parent graph is properly connected.
|
||||
Assumed to be False if not present.
|
||||
CATEGORY (`str`):
|
||||
The category the node should appear in the UI.
|
||||
execute(s) -> tuple || None:
|
||||
The entry point method. The name of this method must be the same as the value of property `FUNCTION`.
|
||||
For example, if `FUNCTION = "execute"` then this method's name must be `execute`, if `FUNCTION = "foo"` then it must be `foo`.
|
||||
"""
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
"""
|
||||
Return a dictionary which contains config for all input fields.
|
||||
Some types (string): "MODEL", "VAE", "CLIP", "CONDITIONING", "LATENT", "IMAGE", "INT", "STRING", "FLOAT".
|
||||
Input types "INT", "STRING" or "FLOAT" are special values for fields on the node.
|
||||
The type can be a list for selection.
|
||||
|
||||
Returns: `dict`:
|
||||
- Key input_fields_group (`string`): Can be either required, hidden or optional. A node class must have property `required`
|
||||
- Value input_fields (`dict`): Contains input fields config:
|
||||
* Key field_name (`string`): Name of a entry-point method's argument
|
||||
* Value field_config (`tuple`):
|
||||
+ First value is a string indicate the type of field or a list for selection.
|
||||
+ Secound value is a config for type "INT", "STRING" or "FLOAT".
|
||||
"""
|
||||
return {
|
||||
"required": {
|
||||
"image": ("IMAGE",),
|
||||
"int_field": ("INT", {
|
||||
"default": 0,
|
||||
"min": 0, #Minimum value
|
||||
"max": 4096, #Maximum value
|
||||
"step": 64, #Slider's step
|
||||
"display": "number" # Cosmetic only: display as "number" or "slider"
|
||||
}),
|
||||
"float_field": ("FLOAT", {
|
||||
"default": 1.0,
|
||||
"min": 0.0,
|
||||
"max": 10.0,
|
||||
"step": 0.01,
|
||||
"round": 0.001, #The value represeting the precision to round to, will be set to the step value by default. Can be set to False to disable rounding.
|
||||
"display": "number"}),
|
||||
"print_to_screen": (["enable", "disable"],),
|
||||
"string_field": ("STRING", {
|
||||
"multiline": False, #True if you want the field to look like the one on the ClipTextEncode node
|
||||
"default": "Hello World!"
|
||||
}),
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("IMAGE",)
|
||||
#RETURN_NAMES = ("image_output_name",)
|
||||
|
||||
FUNCTION = "test"
|
||||
|
||||
#OUTPUT_NODE = False
|
||||
|
||||
CATEGORY = "Example"
|
||||
|
||||
def test(self, image, string_field, int_field, float_field, print_to_screen):
|
||||
if print_to_screen == "enable":
|
||||
print(f"""Your input contains:
|
||||
string_field aka input text: {string_field}
|
||||
int_field: {int_field}
|
||||
float_field: {float_field}
|
||||
""")
|
||||
#do some processing on the image, in this example I just invert it
|
||||
image = 1.0 - image
|
||||
return (image,)
|
||||
|
||||
|
||||
# A dictionary that contains all nodes you want to export with their names
|
||||
# NOTE: names should be globally unique
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"Example": Example
|
||||
}
|
||||
|
||||
# A dictionary that contains the friendly/humanly readable titles for the nodes
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"Example": "Example Node"
|
||||
}
|
@ -13,7 +13,7 @@ from ..ldm.modules.diffusionmodules.util import (
|
||||
from ..ldm.modules.attention import SpatialTransformer
|
||||
from ..ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample
|
||||
from ..ldm.util import exists
|
||||
import comfy.ops
|
||||
import fcbh.ops
|
||||
|
||||
class ControlledUnetModel(UNetModel):
|
||||
#implemented in the ldm unet
|
||||
@ -54,7 +54,7 @@ class ControlNet(nn.Module):
|
||||
adm_in_channels=None,
|
||||
transformer_depth_middle=None,
|
||||
device=None,
|
||||
operations=comfy.ops,
|
||||
operations=fcbh.ops,
|
||||
):
|
||||
super().__init__()
|
||||
assert use_spatial_transformer == True, "use_spatial_transformer has to be true"
|
@ -1,6 +1,6 @@
|
||||
import argparse
|
||||
import enum
|
||||
import comfy.options
|
||||
import fcbh.options
|
||||
|
||||
class EnumAction(argparse.Action):
|
||||
"""
|
||||
@ -37,10 +37,10 @@ parser.add_argument("--listen", type=str, default="127.0.0.1", metavar="IP", nar
|
||||
parser.add_argument("--port", type=int, default=8188, help="Set the listen port.")
|
||||
parser.add_argument("--enable-cors-header", type=str, default=None, metavar="ORIGIN", nargs="?", const="*", help="Enable CORS (Cross-Origin Resource Sharing) with optional origin or allow all with default '*'.")
|
||||
parser.add_argument("--extra-model-paths-config", type=str, default=None, metavar="PATH", nargs='+', action='append', help="Load one or more extra_model_paths.yaml files.")
|
||||
parser.add_argument("--output-directory", type=str, default=None, help="Set the ComfyUI output directory.")
|
||||
parser.add_argument("--temp-directory", type=str, default=None, help="Set the ComfyUI temp directory (default is in the ComfyUI directory).")
|
||||
parser.add_argument("--input-directory", type=str, default=None, help="Set the ComfyUI input directory.")
|
||||
parser.add_argument("--auto-launch", action="store_true", help="Automatically launch ComfyUI in the default browser.")
|
||||
parser.add_argument("--output-directory", type=str, default=None, help="Set the fcbh_backend output directory.")
|
||||
parser.add_argument("--temp-directory", type=str, default=None, help="Set the fcbh_backend temp directory (default is in the fcbh_backend directory).")
|
||||
parser.add_argument("--input-directory", type=str, default=None, help="Set the fcbh_backend input directory.")
|
||||
parser.add_argument("--auto-launch", action="store_true", help="Automatically launch fcbh_backend in the default browser.")
|
||||
parser.add_argument("--disable-auto-launch", action="store_true", help="Disable auto launching the browser.")
|
||||
parser.add_argument("--cuda-device", type=int, default=None, metavar="DEVICE_ID", help="Set the id of the cuda device this instance will use.")
|
||||
cm_group = parser.add_mutually_exclusive_group()
|
||||
@ -86,7 +86,7 @@ vram_group.add_argument("--novram", action="store_true", help="When lowvram isn'
|
||||
vram_group.add_argument("--cpu", action="store_true", help="To use the CPU for everything (slow).")
|
||||
|
||||
|
||||
parser.add_argument("--disable-smart-memory", action="store_true", help="Force ComfyUI to agressively offload to regular ram instead of keeping models in vram when it can.")
|
||||
parser.add_argument("--disable-smart-memory", action="store_true", help="Force fcbh_backend to agressively offload to regular ram instead of keeping models in vram when it can.")
|
||||
|
||||
|
||||
parser.add_argument("--dont-print-server", action="store_true", help="Don't print server output.")
|
||||
@ -95,7 +95,7 @@ parser.add_argument("--windows-standalone-build", action="store_true", help="Win
|
||||
|
||||
parser.add_argument("--disable-metadata", action="store_true", help="Disable saving prompt metadata in files.")
|
||||
|
||||
if comfy.options.args_parsing:
|
||||
if fcbh.options.args_parsing:
|
||||
args = parser.parse_args()
|
||||
else:
|
||||
args = parser.parse_args([])
|
@ -4,25 +4,25 @@ import os
|
||||
import torch
|
||||
import contextlib
|
||||
|
||||
import comfy.ops
|
||||
import comfy.model_patcher
|
||||
import comfy.model_management
|
||||
import fcbh.ops
|
||||
import fcbh.model_patcher
|
||||
import fcbh.model_management
|
||||
|
||||
class ClipVisionModel():
|
||||
def __init__(self, json_config):
|
||||
config = CLIPVisionConfig.from_json_file(json_config)
|
||||
self.load_device = comfy.model_management.text_encoder_device()
|
||||
offload_device = comfy.model_management.text_encoder_offload_device()
|
||||
self.load_device = fcbh.model_management.text_encoder_device()
|
||||
offload_device = fcbh.model_management.text_encoder_offload_device()
|
||||
self.dtype = torch.float32
|
||||
if comfy.model_management.should_use_fp16(self.load_device, prioritize_performance=False):
|
||||
if fcbh.model_management.should_use_fp16(self.load_device, prioritize_performance=False):
|
||||
self.dtype = torch.float16
|
||||
|
||||
with comfy.ops.use_comfy_ops(offload_device, self.dtype):
|
||||
with fcbh.ops.use_fcbh_ops(offload_device, self.dtype):
|
||||
with modeling_utils.no_init_weights():
|
||||
self.model = CLIPVisionModelWithProjection(config)
|
||||
self.model.to(self.dtype)
|
||||
|
||||
self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
|
||||
self.patcher = fcbh.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
|
||||
self.processor = CLIPImageProcessor(crop_size=224,
|
||||
do_center_crop=True,
|
||||
do_convert_rgb=True,
|
||||
@ -40,7 +40,7 @@ class ClipVisionModel():
|
||||
img = torch.clip((255. * image), 0, 255).round().int()
|
||||
img = list(map(lambda a: a, img))
|
||||
inputs = self.processor(images=img, return_tensors="pt")
|
||||
comfy.model_management.load_model_gpu(self.patcher)
|
||||
fcbh.model_management.load_model_gpu(self.patcher)
|
||||
pixel_values = inputs['pixel_values'].to(self.load_device)
|
||||
|
||||
if self.dtype != torch.float32:
|
||||
@ -48,7 +48,7 @@ class ClipVisionModel():
|
||||
else:
|
||||
precision_scope = lambda a, b: contextlib.nullcontext(a)
|
||||
|
||||
with precision_scope(comfy.model_management.get_autocast_device(self.load_device), torch.float32):
|
||||
with precision_scope(fcbh.model_management.get_autocast_device(self.load_device), torch.float32):
|
||||
outputs = self.model(pixel_values=pixel_values, output_hidden_states=True)
|
||||
|
||||
for k in outputs:
|
@ -1,13 +1,13 @@
|
||||
import torch
|
||||
import math
|
||||
import os
|
||||
import comfy.utils
|
||||
import comfy.model_management
|
||||
import comfy.model_detection
|
||||
import comfy.model_patcher
|
||||
import fcbh.utils
|
||||
import fcbh.model_management
|
||||
import fcbh.model_detection
|
||||
import fcbh.model_patcher
|
||||
|
||||
import comfy.cldm.cldm
|
||||
import comfy.t2i_adapter.adapter
|
||||
import fcbh.cldm.cldm
|
||||
import fcbh.t2i_adapter.adapter
|
||||
|
||||
|
||||
def broadcast_image_to(tensor, target_batch_size, batched_number):
|
||||
@ -37,7 +37,7 @@ class ControlBase:
|
||||
self.timestep_range = None
|
||||
|
||||
if device is None:
|
||||
device = comfy.model_management.get_torch_device()
|
||||
device = fcbh.model_management.get_torch_device()
|
||||
self.device = device
|
||||
self.previous_controlnet = None
|
||||
self.global_average_pooling = False
|
||||
@ -130,7 +130,7 @@ class ControlNet(ControlBase):
|
||||
def __init__(self, control_model, global_average_pooling=False, device=None):
|
||||
super().__init__(device)
|
||||
self.control_model = control_model
|
||||
self.control_model_wrapped = comfy.model_patcher.ModelPatcher(self.control_model, load_device=comfy.model_management.get_torch_device(), offload_device=comfy.model_management.unet_offload_device())
|
||||
self.control_model_wrapped = fcbh.model_patcher.ModelPatcher(self.control_model, load_device=fcbh.model_management.get_torch_device(), offload_device=fcbh.model_management.unet_offload_device())
|
||||
self.global_average_pooling = global_average_pooling
|
||||
|
||||
def get_control(self, x_noisy, t, cond, batched_number):
|
||||
@ -150,7 +150,7 @@ class ControlNet(ControlBase):
|
||||
if self.cond_hint is not None:
|
||||
del self.cond_hint
|
||||
self.cond_hint = None
|
||||
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(self.control_model.dtype).to(self.device)
|
||||
self.cond_hint = fcbh.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(self.control_model.dtype).to(self.device)
|
||||
if x_noisy.shape[0] != self.cond_hint.shape[0]:
|
||||
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
|
||||
|
||||
@ -249,24 +249,24 @@ class ControlLora(ControlNet):
|
||||
controlnet_config.pop("out_channels")
|
||||
controlnet_config["hint_channels"] = self.control_weights["input_hint_block.0.weight"].shape[1]
|
||||
controlnet_config["operations"] = ControlLoraOps()
|
||||
self.control_model = comfy.cldm.cldm.ControlNet(**controlnet_config)
|
||||
self.control_model = fcbh.cldm.cldm.ControlNet(**controlnet_config)
|
||||
dtype = model.get_dtype()
|
||||
self.control_model.to(dtype)
|
||||
self.control_model.to(comfy.model_management.get_torch_device())
|
||||
self.control_model.to(fcbh.model_management.get_torch_device())
|
||||
diffusion_model = model.diffusion_model
|
||||
sd = diffusion_model.state_dict()
|
||||
cm = self.control_model.state_dict()
|
||||
|
||||
for k in sd:
|
||||
weight = comfy.model_management.resolve_lowvram_weight(sd[k], diffusion_model, k)
|
||||
weight = fcbh.model_management.resolve_lowvram_weight(sd[k], diffusion_model, k)
|
||||
try:
|
||||
comfy.utils.set_attr(self.control_model, k, weight)
|
||||
fcbh.utils.set_attr(self.control_model, k, weight)
|
||||
except:
|
||||
pass
|
||||
|
||||
for k in self.control_weights:
|
||||
if k not in {"lora_controlnet"}:
|
||||
comfy.utils.set_attr(self.control_model, k, self.control_weights[k].to(dtype).to(comfy.model_management.get_torch_device()))
|
||||
fcbh.utils.set_attr(self.control_model, k, self.control_weights[k].to(dtype).to(fcbh.model_management.get_torch_device()))
|
||||
|
||||
def copy(self):
|
||||
c = ControlLora(self.control_weights, global_average_pooling=self.global_average_pooling)
|
||||
@ -283,18 +283,18 @@ class ControlLora(ControlNet):
|
||||
return out
|
||||
|
||||
def inference_memory_requirements(self, dtype):
|
||||
return comfy.utils.calculate_parameters(self.control_weights) * comfy.model_management.dtype_size(dtype) + ControlBase.inference_memory_requirements(self, dtype)
|
||||
return fcbh.utils.calculate_parameters(self.control_weights) * fcbh.model_management.dtype_size(dtype) + ControlBase.inference_memory_requirements(self, dtype)
|
||||
|
||||
def load_controlnet(ckpt_path, model=None):
|
||||
controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
|
||||
controlnet_data = fcbh.utils.load_torch_file(ckpt_path, safe_load=True)
|
||||
if "lora_controlnet" in controlnet_data:
|
||||
return ControlLora(controlnet_data)
|
||||
|
||||
controlnet_config = None
|
||||
if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: #diffusers format
|
||||
use_fp16 = comfy.model_management.should_use_fp16()
|
||||
controlnet_config = comfy.model_detection.unet_config_from_diffusers_unet(controlnet_data, use_fp16)
|
||||
diffusers_keys = comfy.utils.unet_to_diffusers(controlnet_config)
|
||||
use_fp16 = fcbh.model_management.should_use_fp16()
|
||||
controlnet_config = fcbh.model_detection.unet_config_from_diffusers_unet(controlnet_data, use_fp16)
|
||||
diffusers_keys = fcbh.utils.unet_to_diffusers(controlnet_config)
|
||||
diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight"
|
||||
diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias"
|
||||
|
||||
@ -353,16 +353,16 @@ def load_controlnet(ckpt_path, model=None):
|
||||
return net
|
||||
|
||||
if controlnet_config is None:
|
||||
use_fp16 = comfy.model_management.should_use_fp16()
|
||||
controlnet_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, use_fp16, True).unet_config
|
||||
use_fp16 = fcbh.model_management.should_use_fp16()
|
||||
controlnet_config = fcbh.model_detection.model_config_from_unet(controlnet_data, prefix, use_fp16, True).unet_config
|
||||
controlnet_config.pop("out_channels")
|
||||
controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
|
||||
control_model = comfy.cldm.cldm.ControlNet(**controlnet_config)
|
||||
control_model = fcbh.cldm.cldm.ControlNet(**controlnet_config)
|
||||
|
||||
if pth:
|
||||
if 'difference' in controlnet_data:
|
||||
if model is not None:
|
||||
comfy.model_management.load_models_gpu([model])
|
||||
fcbh.model_management.load_models_gpu([model])
|
||||
model_sd = model.model_state_dict()
|
||||
for x in controlnet_data:
|
||||
c_m = "control_model."
|
||||
@ -425,7 +425,7 @@ class T2IAdapter(ControlBase):
|
||||
self.control_input = None
|
||||
self.cond_hint = None
|
||||
width, height = self.scale_image_to(x_noisy.shape[3] * 8, x_noisy.shape[2] * 8)
|
||||
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, width, height, 'nearest-exact', "center").float().to(self.device)
|
||||
self.cond_hint = fcbh.utils.common_upscale(self.cond_hint_original, width, height, 'nearest-exact', "center").float().to(self.device)
|
||||
if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
|
||||
self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
|
||||
if x_noisy.shape[0] != self.cond_hint.shape[0]:
|
||||
@ -458,12 +458,12 @@ def load_t2i_adapter(t2i_data):
|
||||
prefix_replace["adapter.body.{}.resnets.{}.".format(i, j)] = "body.{}.".format(i * 2 + j)
|
||||
prefix_replace["adapter.body.{}.".format(i, j)] = "body.{}.".format(i * 2)
|
||||
prefix_replace["adapter."] = ""
|
||||
t2i_data = comfy.utils.state_dict_prefix_replace(t2i_data, prefix_replace)
|
||||
t2i_data = fcbh.utils.state_dict_prefix_replace(t2i_data, prefix_replace)
|
||||
keys = t2i_data.keys()
|
||||
|
||||
if "body.0.in_conv.weight" in keys:
|
||||
cin = t2i_data['body.0.in_conv.weight'].shape[1]
|
||||
model_ad = comfy.t2i_adapter.adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
|
||||
model_ad = fcbh.t2i_adapter.adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
|
||||
elif 'conv_in.weight' in keys:
|
||||
cin = t2i_data['conv_in.weight'].shape[1]
|
||||
channel = t2i_data['conv_in.weight'].shape[0]
|
||||
@ -475,7 +475,7 @@ def load_t2i_adapter(t2i_data):
|
||||
xl = False
|
||||
if cin == 256 or cin == 768:
|
||||
xl = True
|
||||
model_ad = comfy.t2i_adapter.adapter.Adapter(cin=cin, channels=[channel, channel*2, channel*4, channel*4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv, xl=xl)
|
||||
model_ad = fcbh.t2i_adapter.adapter.Adapter(cin=cin, channels=[channel, channel*2, channel*4, channel*4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv, xl=xl)
|
||||
else:
|
||||
return None
|
||||
missing, unexpected = model_ad.load_state_dict(t2i_data)
|
@ -1,7 +1,7 @@
|
||||
import json
|
||||
import os
|
||||
|
||||
import comfy.sd
|
||||
import fcbh.sd
|
||||
|
||||
def first_file(path, filenames):
|
||||
for f in filenames:
|
||||
@ -23,14 +23,14 @@ def load_diffusers(model_path, output_vae=True, output_clip=True, embedding_dire
|
||||
if text_encoder2_path is not None:
|
||||
text_encoder_paths.append(text_encoder2_path)
|
||||
|
||||
unet = comfy.sd.load_unet(unet_path)
|
||||
unet = fcbh.sd.load_unet(unet_path)
|
||||
|
||||
clip = None
|
||||
if output_clip:
|
||||
clip = comfy.sd.load_clip(text_encoder_paths, embedding_directory=embedding_directory)
|
||||
clip = fcbh.sd.load_clip(text_encoder_paths, embedding_directory=embedding_directory)
|
||||
|
||||
vae = None
|
||||
if output_vae:
|
||||
vae = comfy.sd.VAE(ckpt_path=vae_path)
|
||||
vae = fcbh.sd.VAE(ckpt_path=vae_path)
|
||||
|
||||
return (unet, clip, vae)
|
@ -3,11 +3,11 @@ import torch
|
||||
import torch.nn.functional as F
|
||||
from contextlib import contextmanager
|
||||
|
||||
from comfy.ldm.modules.diffusionmodules.model import Encoder, Decoder
|
||||
from comfy.ldm.modules.distributions.distributions import DiagonalGaussianDistribution
|
||||
from fcbh.ldm.modules.diffusionmodules.model import Encoder, Decoder
|
||||
from fcbh.ldm.modules.distributions.distributions import DiagonalGaussianDistribution
|
||||
|
||||
from comfy.ldm.util import instantiate_from_config
|
||||
from comfy.ldm.modules.ema import LitEma
|
||||
from fcbh.ldm.util import instantiate_from_config
|
||||
from fcbh.ldm.modules.ema import LitEma
|
||||
|
||||
# class AutoencoderKL(pl.LightningModule):
|
||||
class AutoencoderKL(torch.nn.Module):
|
@ -4,7 +4,7 @@ import torch
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
|
||||
from comfy.ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
|
||||
from fcbh.ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
|
||||
|
||||
|
||||
class DDIMSampler(object):
|
@ -9,14 +9,14 @@ from typing import Optional, Any
|
||||
from .diffusionmodules.util import checkpoint
|
||||
from .sub_quadratic_attention import efficient_dot_product_attention
|
||||
|
||||
from comfy import model_management
|
||||
from fcbh import model_management
|
||||
|
||||
if model_management.xformers_enabled():
|
||||
import xformers
|
||||
import xformers.ops
|
||||
|
||||
from comfy.cli_args import args
|
||||
import comfy.ops
|
||||
from fcbh.cli_args import args
|
||||
import fcbh.ops
|
||||
|
||||
# CrossAttn precision handling
|
||||
if args.dont_upcast_attention:
|
||||
@ -53,7 +53,7 @@ def init_(tensor):
|
||||
|
||||
# feedforward
|
||||
class GEGLU(nn.Module):
|
||||
def __init__(self, dim_in, dim_out, dtype=None, device=None, operations=comfy.ops):
|
||||
def __init__(self, dim_in, dim_out, dtype=None, device=None, operations=fcbh.ops):
|
||||
super().__init__()
|
||||
self.proj = operations.Linear(dim_in, dim_out * 2, dtype=dtype, device=device)
|
||||
|
||||
@ -63,7 +63,7 @@ class GEGLU(nn.Module):
|
||||
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0., dtype=None, device=None, operations=comfy.ops):
|
||||
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0., dtype=None, device=None, operations=fcbh.ops):
|
||||
super().__init__()
|
||||
inner_dim = int(dim * mult)
|
||||
dim_out = default(dim_out, dim)
|
||||
@ -310,7 +310,7 @@ else:
|
||||
optimized_attention = attention_sub_quad
|
||||
|
||||
class CrossAttention(nn.Module):
|
||||
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None, operations=comfy.ops):
|
||||
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None, operations=fcbh.ops):
|
||||
super().__init__()
|
||||
inner_dim = dim_head * heads
|
||||
context_dim = default(context_dim, query_dim)
|
||||
@ -340,7 +340,7 @@ class CrossAttention(nn.Module):
|
||||
|
||||
class BasicTransformerBlock(nn.Module):
|
||||
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
|
||||
disable_self_attn=False, dtype=None, device=None, operations=comfy.ops):
|
||||
disable_self_attn=False, dtype=None, device=None, operations=fcbh.ops):
|
||||
super().__init__()
|
||||
self.disable_self_attn = disable_self_attn
|
||||
self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
|
||||
@ -482,7 +482,7 @@ class SpatialTransformer(nn.Module):
|
||||
def __init__(self, in_channels, n_heads, d_head,
|
||||
depth=1, dropout=0., context_dim=None,
|
||||
disable_self_attn=False, use_linear=False,
|
||||
use_checkpoint=True, dtype=None, device=None, operations=comfy.ops):
|
||||
use_checkpoint=True, dtype=None, device=None, operations=fcbh.ops):
|
||||
super().__init__()
|
||||
if exists(context_dim) and not isinstance(context_dim, list):
|
||||
context_dim = [context_dim] * depth
|
@ -6,8 +6,8 @@ import numpy as np
|
||||
from einops import rearrange
|
||||
from typing import Optional, Any
|
||||
|
||||
from comfy import model_management
|
||||
import comfy.ops
|
||||
from fcbh import model_management
|
||||
import fcbh.ops
|
||||
|
||||
if model_management.xformers_enabled_vae():
|
||||
import xformers
|
||||
@ -48,7 +48,7 @@ class Upsample(nn.Module):
|
||||
super().__init__()
|
||||
self.with_conv = with_conv
|
||||
if self.with_conv:
|
||||
self.conv = comfy.ops.Conv2d(in_channels,
|
||||
self.conv = fcbh.ops.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
@ -78,7 +78,7 @@ class Downsample(nn.Module):
|
||||
self.with_conv = with_conv
|
||||
if self.with_conv:
|
||||
# no asymmetric padding in torch conv, must do it ourselves
|
||||
self.conv = comfy.ops.Conv2d(in_channels,
|
||||
self.conv = fcbh.ops.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=3,
|
||||
stride=2,
|
||||
@ -105,30 +105,30 @@ class ResnetBlock(nn.Module):
|
||||
|
||||
self.swish = torch.nn.SiLU(inplace=True)
|
||||
self.norm1 = Normalize(in_channels)
|
||||
self.conv1 = comfy.ops.Conv2d(in_channels,
|
||||
self.conv1 = fcbh.ops.Conv2d(in_channels,
|
||||
out_channels,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1)
|
||||
if temb_channels > 0:
|
||||
self.temb_proj = comfy.ops.Linear(temb_channels,
|
||||
self.temb_proj = fcbh.ops.Linear(temb_channels,
|
||||
out_channels)
|
||||
self.norm2 = Normalize(out_channels)
|
||||
self.dropout = torch.nn.Dropout(dropout, inplace=True)
|
||||
self.conv2 = comfy.ops.Conv2d(out_channels,
|
||||
self.conv2 = fcbh.ops.Conv2d(out_channels,
|
||||
out_channels,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1)
|
||||
if self.in_channels != self.out_channels:
|
||||
if self.use_conv_shortcut:
|
||||
self.conv_shortcut = comfy.ops.Conv2d(in_channels,
|
||||
self.conv_shortcut = fcbh.ops.Conv2d(in_channels,
|
||||
out_channels,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1)
|
||||
else:
|
||||
self.nin_shortcut = comfy.ops.Conv2d(in_channels,
|
||||
self.nin_shortcut = fcbh.ops.Conv2d(in_channels,
|
||||
out_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
@ -199,22 +199,22 @@ class AttnBlock(nn.Module):
|
||||
self.in_channels = in_channels
|
||||
|
||||
self.norm = Normalize(in_channels)
|
||||
self.q = comfy.ops.Conv2d(in_channels,
|
||||
self.q = fcbh.ops.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
self.k = comfy.ops.Conv2d(in_channels,
|
||||
self.k = fcbh.ops.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
self.v = comfy.ops.Conv2d(in_channels,
|
||||
self.v = fcbh.ops.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
self.proj_out = comfy.ops.Conv2d(in_channels,
|
||||
self.proj_out = fcbh.ops.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
@ -254,22 +254,22 @@ class MemoryEfficientAttnBlock(nn.Module):
|
||||
self.in_channels = in_channels
|
||||
|
||||
self.norm = Normalize(in_channels)
|
||||
self.q = comfy.ops.Conv2d(in_channels,
|
||||
self.q = fcbh.ops.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
self.k = comfy.ops.Conv2d(in_channels,
|
||||
self.k = fcbh.ops.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
self.v = comfy.ops.Conv2d(in_channels,
|
||||
self.v = fcbh.ops.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
self.proj_out = comfy.ops.Conv2d(in_channels,
|
||||
self.proj_out = fcbh.ops.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
@ -305,22 +305,22 @@ class MemoryEfficientAttnBlockPytorch(nn.Module):
|
||||
self.in_channels = in_channels
|
||||
|
||||
self.norm = Normalize(in_channels)
|
||||
self.q = comfy.ops.Conv2d(in_channels,
|
||||
self.q = fcbh.ops.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
self.k = comfy.ops.Conv2d(in_channels,
|
||||
self.k = fcbh.ops.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
self.v = comfy.ops.Conv2d(in_channels,
|
||||
self.v = fcbh.ops.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
self.proj_out = comfy.ops.Conv2d(in_channels,
|
||||
self.proj_out = fcbh.ops.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
@ -390,14 +390,14 @@ class Model(nn.Module):
|
||||
# timestep embedding
|
||||
self.temb = nn.Module()
|
||||
self.temb.dense = nn.ModuleList([
|
||||
comfy.ops.Linear(self.ch,
|
||||
fcbh.ops.Linear(self.ch,
|
||||
self.temb_ch),
|
||||
comfy.ops.Linear(self.temb_ch,
|
||||
fcbh.ops.Linear(self.temb_ch,
|
||||
self.temb_ch),
|
||||
])
|
||||
|
||||
# downsampling
|
||||
self.conv_in = comfy.ops.Conv2d(in_channels,
|
||||
self.conv_in = fcbh.ops.Conv2d(in_channels,
|
||||
self.ch,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
@ -466,7 +466,7 @@ class Model(nn.Module):
|
||||
|
||||
# end
|
||||
self.norm_out = Normalize(block_in)
|
||||
self.conv_out = comfy.ops.Conv2d(block_in,
|
||||
self.conv_out = fcbh.ops.Conv2d(block_in,
|
||||
out_ch,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
@ -539,7 +539,7 @@ class Encoder(nn.Module):
|
||||
self.in_channels = in_channels
|
||||
|
||||
# downsampling
|
||||
self.conv_in = comfy.ops.Conv2d(in_channels,
|
||||
self.conv_in = fcbh.ops.Conv2d(in_channels,
|
||||
self.ch,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
@ -584,7 +584,7 @@ class Encoder(nn.Module):
|
||||
|
||||
# end
|
||||
self.norm_out = Normalize(block_in)
|
||||
self.conv_out = comfy.ops.Conv2d(block_in,
|
||||
self.conv_out = fcbh.ops.Conv2d(block_in,
|
||||
2*z_channels if double_z else z_channels,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
@ -640,7 +640,7 @@ class Decoder(nn.Module):
|
||||
self.z_shape, np.prod(self.z_shape)))
|
||||
|
||||
# z to block_in
|
||||
self.conv_in = comfy.ops.Conv2d(z_channels,
|
||||
self.conv_in = fcbh.ops.Conv2d(z_channels,
|
||||
block_in,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
@ -682,7 +682,7 @@ class Decoder(nn.Module):
|
||||
|
||||
# end
|
||||
self.norm_out = Normalize(block_in)
|
||||
self.conv_out = comfy.ops.Conv2d(block_in,
|
||||
self.conv_out = fcbh.ops.Conv2d(block_in,
|
||||
out_ch,
|
||||
kernel_size=3,
|
||||
stride=1,
|
@ -14,8 +14,8 @@ from .util import (
|
||||
timestep_embedding,
|
||||
)
|
||||
from ..attention import SpatialTransformer
|
||||
from comfy.ldm.util import exists
|
||||
import comfy.ops
|
||||
from fcbh.ldm.util import exists
|
||||
import fcbh.ops
|
||||
|
||||
class TimestepBlock(nn.Module):
|
||||
"""
|
||||
@ -70,7 +70,7 @@ class Upsample(nn.Module):
|
||||
upsampling occurs in the inner-two dimensions.
|
||||
"""
|
||||
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=comfy.ops):
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=fcbh.ops):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels or channels
|
||||
@ -106,7 +106,7 @@ class Downsample(nn.Module):
|
||||
downsampling occurs in the inner-two dimensions.
|
||||
"""
|
||||
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=comfy.ops):
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=fcbh.ops):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels or channels
|
||||
@ -156,7 +156,7 @@ class ResBlock(TimestepBlock):
|
||||
down=False,
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=comfy.ops
|
||||
operations=fcbh.ops
|
||||
):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
@ -316,7 +316,7 @@ class UNetModel(nn.Module):
|
||||
adm_in_channels=None,
|
||||
transformer_depth_middle=None,
|
||||
device=None,
|
||||
operations=comfy.ops,
|
||||
operations=fcbh.ops,
|
||||
):
|
||||
super().__init__()
|
||||
assert use_spatial_transformer == True, "use_spatial_transformer has to be true"
|
@ -4,7 +4,7 @@ import numpy as np
|
||||
from functools import partial
|
||||
|
||||
from .util import extract_into_tensor, make_beta_schedule
|
||||
from comfy.ldm.util import default
|
||||
from fcbh.ldm.util import default
|
||||
|
||||
|
||||
class AbstractLowScaleModel(nn.Module):
|
@ -15,8 +15,8 @@ import torch.nn as nn
|
||||
import numpy as np
|
||||
from einops import repeat
|
||||
|
||||
from comfy.ldm.util import instantiate_from_config
|
||||
import comfy.ops
|
||||
from fcbh.ldm.util import instantiate_from_config
|
||||
import fcbh.ops
|
||||
|
||||
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
||||
if schedule == "linear":
|
||||
@ -233,7 +233,7 @@ def conv_nd(dims, *args, **kwargs):
|
||||
if dims == 1:
|
||||
return nn.Conv1d(*args, **kwargs)
|
||||
elif dims == 2:
|
||||
return comfy.ops.Conv2d(*args, **kwargs)
|
||||
return fcbh.ops.Conv2d(*args, **kwargs)
|
||||
elif dims == 3:
|
||||
return nn.Conv3d(*args, **kwargs)
|
||||
raise ValueError(f"unsupported dimensions: {dims}")
|
||||
@ -243,7 +243,7 @@ def linear(*args, **kwargs):
|
||||
"""
|
||||
Create a linear module.
|
||||
"""
|
||||
return comfy.ops.Linear(*args, **kwargs)
|
||||
return fcbh.ops.Linear(*args, **kwargs)
|
||||
|
||||
|
||||
def avg_pool_nd(dims, *args, **kwargs):
|
@ -24,7 +24,7 @@ except ImportError:
|
||||
from torch import Tensor
|
||||
from typing import List
|
||||
|
||||
from comfy import model_management
|
||||
from fcbh import model_management
|
||||
|
||||
def dynamic_slice(
|
||||
x: Tensor,
|
@ -1,4 +1,4 @@
|
||||
import comfy.utils
|
||||
import fcbh.utils
|
||||
|
||||
LORA_CLIP_MAP = {
|
||||
"mlp.fc1": "mlp_fc1",
|
||||
@ -183,7 +183,7 @@ def model_lora_keys_unet(model, key_map={}):
|
||||
key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_")
|
||||
key_map["lora_unet_{}".format(key_lora)] = k
|
||||
|
||||
diffusers_keys = comfy.utils.unet_to_diffusers(model.model_config.unet_config)
|
||||
diffusers_keys = fcbh.utils.unet_to_diffusers(model.model_config.unet_config)
|
||||
for k in diffusers_keys:
|
||||
if k.endswith(".weight"):
|
||||
unet_key = "diffusion_model.{}".format(diffusers_keys[k])
|
@ -1,9 +1,9 @@
|
||||
import torch
|
||||
from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel
|
||||
from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation
|
||||
from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule
|
||||
from comfy.ldm.modules.diffusionmodules.openaimodel import Timestep
|
||||
import comfy.model_management
|
||||
from fcbh.ldm.modules.diffusionmodules.openaimodel import UNetModel
|
||||
from fcbh.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation
|
||||
from fcbh.ldm.modules.diffusionmodules.util import make_beta_schedule
|
||||
from fcbh.ldm.modules.diffusionmodules.openaimodel import Timestep
|
||||
import fcbh.model_management
|
||||
import numpy as np
|
||||
from enum import Enum
|
||||
from . import utils
|
||||
@ -98,7 +98,7 @@ class BaseModel(torch.nn.Module):
|
||||
unet_sd = self.diffusion_model.state_dict()
|
||||
unet_state_dict = {}
|
||||
for k in unet_sd:
|
||||
unet_state_dict[k] = comfy.model_management.resolve_lowvram_weight(unet_sd[k], self.diffusion_model, k)
|
||||
unet_state_dict[k] = fcbh.model_management.resolve_lowvram_weight(unet_sd[k], self.diffusion_model, k)
|
||||
|
||||
unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict)
|
||||
vae_state_dict = self.model_config.process_vae_state_dict_for_saving(vae_state_dict)
|
@ -1,5 +1,5 @@
|
||||
import comfy.supported_models
|
||||
import comfy.supported_models_base
|
||||
import fcbh.supported_models
|
||||
import fcbh.supported_models_base
|
||||
|
||||
def count_blocks(state_dict_keys, prefix_string):
|
||||
count = 0
|
||||
@ -109,7 +109,7 @@ def detect_unet_config(state_dict, key_prefix, use_fp16):
|
||||
return unet_config
|
||||
|
||||
def model_config_from_unet_config(unet_config):
|
||||
for model_config in comfy.supported_models.models:
|
||||
for model_config in fcbh.supported_models.models:
|
||||
if model_config.matches(unet_config):
|
||||
return model_config(unet_config)
|
||||
|
||||
@ -120,7 +120,7 @@ def model_config_from_unet(state_dict, unet_key_prefix, use_fp16, use_base_if_no
|
||||
unet_config = detect_unet_config(state_dict, unet_key_prefix, use_fp16)
|
||||
model_config = model_config_from_unet_config(unet_config)
|
||||
if model_config is None and use_base_if_no_match:
|
||||
return comfy.supported_models_base.BASE(unet_config)
|
||||
return fcbh.supported_models_base.BASE(unet_config)
|
||||
else:
|
||||
return model_config
|
||||
|
@ -1,7 +1,7 @@
|
||||
import psutil
|
||||
from enum import Enum
|
||||
from comfy.cli_args import args
|
||||
import comfy.utils
|
||||
from fcbh.cli_args import args
|
||||
import fcbh.utils
|
||||
import torch
|
||||
import sys
|
||||
|
||||
@ -681,7 +681,7 @@ def soft_empty_cache(force=False):
|
||||
def resolve_lowvram_weight(weight, model, key):
|
||||
if weight.device == torch.device("meta"): #lowvram NOTE: this depends on the inner working of the accelerate library so it might break.
|
||||
key_split = key.split('.') # I have no idea why they don't just leave the weight there instead of using the meta device.
|
||||
op = comfy.utils.get_attr(model, '.'.join(key_split[:-1]))
|
||||
op = fcbh.utils.get_attr(model, '.'.join(key_split[:-1]))
|
||||
weight = op._hf_hook.weights_map[key_split[-1]]
|
||||
return weight
|
||||
|
@ -2,8 +2,8 @@ import torch
|
||||
import copy
|
||||
import inspect
|
||||
|
||||
import comfy.utils
|
||||
import comfy.model_management
|
||||
import fcbh.utils
|
||||
import fcbh.model_management
|
||||
|
||||
class ModelPatcher:
|
||||
def __init__(self, model, load_device, offload_device, size=0, current_device=None):
|
||||
@ -162,11 +162,11 @@ class ModelPatcher:
|
||||
self.backup[key] = weight.to(self.offload_device)
|
||||
|
||||
if device_to is not None:
|
||||
temp_weight = comfy.model_management.cast_to_device(weight, device_to, torch.float32, copy=True)
|
||||
temp_weight = fcbh.model_management.cast_to_device(weight, device_to, torch.float32, copy=True)
|
||||
else:
|
||||
temp_weight = weight.to(torch.float32, copy=True)
|
||||
out_weight = self.calculate_weight(self.patches[key], temp_weight, key).to(weight.dtype)
|
||||
comfy.utils.set_attr(self.model, key, out_weight)
|
||||
fcbh.utils.set_attr(self.model, key, out_weight)
|
||||
del temp_weight
|
||||
|
||||
if device_to is not None:
|
||||
@ -193,15 +193,15 @@ class ModelPatcher:
|
||||
if w1.shape != weight.shape:
|
||||
print("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
|
||||
else:
|
||||
weight += alpha * comfy.model_management.cast_to_device(w1, weight.device, weight.dtype)
|
||||
weight += alpha * fcbh.model_management.cast_to_device(w1, weight.device, weight.dtype)
|
||||
elif len(v) == 4: #lora/locon
|
||||
mat1 = comfy.model_management.cast_to_device(v[0], weight.device, torch.float32)
|
||||
mat2 = comfy.model_management.cast_to_device(v[1], weight.device, torch.float32)
|
||||
mat1 = fcbh.model_management.cast_to_device(v[0], weight.device, torch.float32)
|
||||
mat2 = fcbh.model_management.cast_to_device(v[1], weight.device, torch.float32)
|
||||
if v[2] is not None:
|
||||
alpha *= v[2] / mat2.shape[0]
|
||||
if v[3] is not None:
|
||||
#locon mid weights, hopefully the math is fine because I didn't properly test it
|
||||
mat3 = comfy.model_management.cast_to_device(v[3], weight.device, torch.float32)
|
||||
mat3 = fcbh.model_management.cast_to_device(v[3], weight.device, torch.float32)
|
||||
final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]]
|
||||
mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1)
|
||||
try:
|
||||
@ -220,23 +220,23 @@ class ModelPatcher:
|
||||
|
||||
if w1 is None:
|
||||
dim = w1_b.shape[0]
|
||||
w1 = torch.mm(comfy.model_management.cast_to_device(w1_a, weight.device, torch.float32),
|
||||
comfy.model_management.cast_to_device(w1_b, weight.device, torch.float32))
|
||||
w1 = torch.mm(fcbh.model_management.cast_to_device(w1_a, weight.device, torch.float32),
|
||||
fcbh.model_management.cast_to_device(w1_b, weight.device, torch.float32))
|
||||
else:
|
||||
w1 = comfy.model_management.cast_to_device(w1, weight.device, torch.float32)
|
||||
w1 = fcbh.model_management.cast_to_device(w1, weight.device, torch.float32)
|
||||
|
||||
if w2 is None:
|
||||
dim = w2_b.shape[0]
|
||||
if t2 is None:
|
||||
w2 = torch.mm(comfy.model_management.cast_to_device(w2_a, weight.device, torch.float32),
|
||||
comfy.model_management.cast_to_device(w2_b, weight.device, torch.float32))
|
||||
w2 = torch.mm(fcbh.model_management.cast_to_device(w2_a, weight.device, torch.float32),
|
||||
fcbh.model_management.cast_to_device(w2_b, weight.device, torch.float32))
|
||||
else:
|
||||
w2 = torch.einsum('i j k l, j r, i p -> p r k l',
|
||||
comfy.model_management.cast_to_device(t2, weight.device, torch.float32),
|
||||
comfy.model_management.cast_to_device(w2_b, weight.device, torch.float32),
|
||||
comfy.model_management.cast_to_device(w2_a, weight.device, torch.float32))
|
||||
fcbh.model_management.cast_to_device(t2, weight.device, torch.float32),
|
||||
fcbh.model_management.cast_to_device(w2_b, weight.device, torch.float32),
|
||||
fcbh.model_management.cast_to_device(w2_a, weight.device, torch.float32))
|
||||
else:
|
||||
w2 = comfy.model_management.cast_to_device(w2, weight.device, torch.float32)
|
||||
w2 = fcbh.model_management.cast_to_device(w2, weight.device, torch.float32)
|
||||
|
||||
if len(w2.shape) == 4:
|
||||
w1 = w1.unsqueeze(2).unsqueeze(2)
|
||||
@ -258,19 +258,19 @@ class ModelPatcher:
|
||||
t1 = v[5]
|
||||
t2 = v[6]
|
||||
m1 = torch.einsum('i j k l, j r, i p -> p r k l',
|
||||
comfy.model_management.cast_to_device(t1, weight.device, torch.float32),
|
||||
comfy.model_management.cast_to_device(w1b, weight.device, torch.float32),
|
||||
comfy.model_management.cast_to_device(w1a, weight.device, torch.float32))
|
||||
fcbh.model_management.cast_to_device(t1, weight.device, torch.float32),
|
||||
fcbh.model_management.cast_to_device(w1b, weight.device, torch.float32),
|
||||
fcbh.model_management.cast_to_device(w1a, weight.device, torch.float32))
|
||||
|
||||
m2 = torch.einsum('i j k l, j r, i p -> p r k l',
|
||||
comfy.model_management.cast_to_device(t2, weight.device, torch.float32),
|
||||
comfy.model_management.cast_to_device(w2b, weight.device, torch.float32),
|
||||
comfy.model_management.cast_to_device(w2a, weight.device, torch.float32))
|
||||
fcbh.model_management.cast_to_device(t2, weight.device, torch.float32),
|
||||
fcbh.model_management.cast_to_device(w2b, weight.device, torch.float32),
|
||||
fcbh.model_management.cast_to_device(w2a, weight.device, torch.float32))
|
||||
else:
|
||||
m1 = torch.mm(comfy.model_management.cast_to_device(w1a, weight.device, torch.float32),
|
||||
comfy.model_management.cast_to_device(w1b, weight.device, torch.float32))
|
||||
m2 = torch.mm(comfy.model_management.cast_to_device(w2a, weight.device, torch.float32),
|
||||
comfy.model_management.cast_to_device(w2b, weight.device, torch.float32))
|
||||
m1 = torch.mm(fcbh.model_management.cast_to_device(w1a, weight.device, torch.float32),
|
||||
fcbh.model_management.cast_to_device(w1b, weight.device, torch.float32))
|
||||
m2 = torch.mm(fcbh.model_management.cast_to_device(w2a, weight.device, torch.float32),
|
||||
fcbh.model_management.cast_to_device(w2b, weight.device, torch.float32))
|
||||
|
||||
try:
|
||||
weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype)
|
||||
@ -283,7 +283,7 @@ class ModelPatcher:
|
||||
keys = list(self.backup.keys())
|
||||
|
||||
for k in keys:
|
||||
comfy.utils.set_attr(self.model, k, self.backup[k])
|
||||
fcbh.utils.set_attr(self.model, k, self.backup[k])
|
||||
|
||||
self.backup = {}
|
||||
|
@ -28,7 +28,7 @@ def conv_nd(dims, *args, **kwargs):
|
||||
raise ValueError(f"unsupported dimensions: {dims}")
|
||||
|
||||
@contextmanager
|
||||
def use_comfy_ops(device=None, dtype=None): # Kind of an ugly hack but I can't think of a better way
|
||||
def use_fcbh_ops(device=None, dtype=None): # Kind of an ugly hack but I can't think of a better way
|
||||
old_torch_nn_linear = torch.nn.Linear
|
||||
force_device = device
|
||||
force_dtype = dtype
|
@ -1,7 +1,7 @@
|
||||
import torch
|
||||
import comfy.model_management
|
||||
import comfy.samplers
|
||||
import comfy.utils
|
||||
import fcbh.model_management
|
||||
import fcbh.samplers
|
||||
import fcbh.utils
|
||||
import math
|
||||
import numpy as np
|
||||
|
||||
@ -29,7 +29,7 @@ def prepare_mask(noise_mask, shape, device):
|
||||
noise_mask = torch.nn.functional.interpolate(noise_mask.reshape((-1, 1, noise_mask.shape[-2], noise_mask.shape[-1])), size=(shape[2], shape[3]), mode="bilinear")
|
||||
noise_mask = noise_mask.round()
|
||||
noise_mask = torch.cat([noise_mask] * shape[1], dim=1)
|
||||
noise_mask = comfy.utils.repeat_to_batch_size(noise_mask, shape[0])
|
||||
noise_mask = fcbh.utils.repeat_to_batch_size(noise_mask, shape[0])
|
||||
noise_mask = noise_mask.to(device)
|
||||
return noise_mask
|
||||
|
||||
@ -37,7 +37,7 @@ def broadcast_cond(cond, batch, device):
|
||||
"""broadcasts conditioning to the batch size"""
|
||||
copy = []
|
||||
for p in cond:
|
||||
t = comfy.utils.repeat_to_batch_size(p[0], batch)
|
||||
t = fcbh.utils.repeat_to_batch_size(p[0], batch)
|
||||
t = t.to(device)
|
||||
copy += [[t] + p[1:]]
|
||||
return copy
|
||||
@ -78,7 +78,7 @@ def prepare_sampling(model, noise_shape, positive, negative, noise_mask):
|
||||
|
||||
real_model = None
|
||||
models, inference_memory = get_additional_models(positive, negative, model.model_dtype())
|
||||
comfy.model_management.load_models_gpu([model] + models, comfy.model_management.batch_area_memory(noise_shape[0] * noise_shape[2] * noise_shape[3]) + inference_memory)
|
||||
fcbh.model_management.load_models_gpu([model] + models, fcbh.model_management.batch_area_memory(noise_shape[0] * noise_shape[2] * noise_shape[3]) + inference_memory)
|
||||
real_model = model.model
|
||||
|
||||
positive_copy = broadcast_cond(positive, noise_shape[0], device)
|
||||
@ -92,7 +92,7 @@ def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative
|
||||
noise = noise.to(model.load_device)
|
||||
latent_image = latent_image.to(model.load_device)
|
||||
|
||||
sampler = comfy.samplers.KSampler(real_model, steps=steps, device=model.load_device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options)
|
||||
sampler = fcbh.samplers.KSampler(real_model, steps=steps, device=model.load_device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options)
|
||||
|
||||
samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask, sigmas=sigmas, callback=callback, disable_pbar=disable_pbar, seed=seed)
|
||||
samples = samples.cpu()
|
||||
@ -106,7 +106,7 @@ def sample_custom(model, noise, cfg, sampler, sigmas, positive, negative, latent
|
||||
latent_image = latent_image.to(model.load_device)
|
||||
sigmas = sigmas.to(model.load_device)
|
||||
|
||||
samples = comfy.samplers.sample(real_model, noise, positive_copy, negative_copy, cfg, model.load_device, sampler, sigmas, model_options=model.model_options, latent_image=latent_image, denoise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)
|
||||
samples = fcbh.samplers.sample(real_model, noise, positive_copy, negative_copy, cfg, model.load_device, sampler, sigmas, model_options=model.model_options, latent_image=latent_image, denoise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)
|
||||
samples = samples.cpu()
|
||||
cleanup_additional_models(models)
|
||||
return samples
|
@ -2,12 +2,12 @@ from .k_diffusion import sampling as k_diffusion_sampling
|
||||
from .k_diffusion import external as k_diffusion_external
|
||||
from .extra_samplers import uni_pc
|
||||
import torch
|
||||
from comfy import model_management
|
||||
from fcbh import model_management
|
||||
from .ldm.models.diffusion.ddim import DDIMSampler
|
||||
from .ldm.modules.diffusionmodules.util import make_ddim_timesteps
|
||||
import math
|
||||
from comfy import model_base
|
||||
import comfy.utils
|
||||
from fcbh import model_base
|
||||
import fcbh.utils
|
||||
|
||||
def lcm(a, b): #TODO: eventually replace by math.lcm (added in python3.9)
|
||||
return abs(a*b) // math.gcd(a, b)
|
||||
@ -539,7 +539,7 @@ def encode_adm(model, conds, batch_size, width, height, device, prompt_type):
|
||||
|
||||
if adm_out is not None:
|
||||
x[1] = x[1].copy()
|
||||
x[1]["adm_encoded"] = comfy.utils.repeat_to_batch_size(adm_out, batch_size).to(device)
|
||||
x[1]["adm_encoded"] = fcbh.utils.repeat_to_batch_size(adm_out, batch_size).to(device)
|
||||
|
||||
return conds
|
||||
|
@ -2,12 +2,12 @@ import torch
|
||||
import contextlib
|
||||
import math
|
||||
|
||||
from comfy import model_management
|
||||
from fcbh import model_management
|
||||
from .ldm.util import instantiate_from_config
|
||||
from .ldm.models.autoencoder import AutoencoderKL
|
||||
import yaml
|
||||
|
||||
import comfy.utils
|
||||
import fcbh.utils
|
||||
|
||||
from . import clip_vision
|
||||
from . import gligen
|
||||
@ -19,10 +19,10 @@ from . import sd1_clip
|
||||
from . import sd2_clip
|
||||
from . import sdxl_clip
|
||||
|
||||
import comfy.model_patcher
|
||||
import comfy.lora
|
||||
import comfy.t2i_adapter.adapter
|
||||
import comfy.supported_models_base
|
||||
import fcbh.model_patcher
|
||||
import fcbh.lora
|
||||
import fcbh.t2i_adapter.adapter
|
||||
import fcbh.supported_models_base
|
||||
|
||||
def load_model_weights(model, sd):
|
||||
m, u = model.load_state_dict(sd, strict=False)
|
||||
@ -50,14 +50,14 @@ def load_clip_weights(model, sd):
|
||||
if ids.dtype == torch.float32:
|
||||
sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()
|
||||
|
||||
sd = comfy.utils.transformers_convert(sd, "cond_stage_model.model.", "cond_stage_model.transformer.text_model.", 24)
|
||||
sd = fcbh.utils.transformers_convert(sd, "cond_stage_model.model.", "cond_stage_model.transformer.text_model.", 24)
|
||||
return load_model_weights(model, sd)
|
||||
|
||||
|
||||
def load_lora_for_models(model, clip, lora, strength_model, strength_clip):
|
||||
key_map = comfy.lora.model_lora_keys_unet(model.model)
|
||||
key_map = comfy.lora.model_lora_keys_clip(clip.cond_stage_model, key_map)
|
||||
loaded = comfy.lora.load_lora(lora, key_map)
|
||||
key_map = fcbh.lora.model_lora_keys_unet(model.model)
|
||||
key_map = fcbh.lora.model_lora_keys_clip(clip.cond_stage_model, key_map)
|
||||
loaded = fcbh.lora.load_lora(lora, key_map)
|
||||
new_modelpatcher = model.clone()
|
||||
k = new_modelpatcher.add_patches(loaded, strength_model)
|
||||
new_clip = clip.clone()
|
||||
@ -90,7 +90,7 @@ class CLIP:
|
||||
self.cond_stage_model = clip(**(params))
|
||||
|
||||
self.tokenizer = tokenizer(embedding_directory=embedding_directory)
|
||||
self.patcher = comfy.model_patcher.ModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device)
|
||||
self.patcher = fcbh.model_patcher.ModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device)
|
||||
self.layer_idx = None
|
||||
|
||||
def clone(self):
|
||||
@ -149,7 +149,7 @@ class VAE:
|
||||
self.first_stage_model = AutoencoderKL(**(config['params']))
|
||||
self.first_stage_model = self.first_stage_model.eval()
|
||||
if ckpt_path is not None:
|
||||
sd = comfy.utils.load_torch_file(ckpt_path)
|
||||
sd = fcbh.utils.load_torch_file(ckpt_path)
|
||||
if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format
|
||||
sd = diffusers_convert.convert_vae_state_dict(sd)
|
||||
m, u = self.first_stage_model.load_state_dict(sd, strict=False)
|
||||
@ -164,29 +164,29 @@ class VAE:
|
||||
self.first_stage_model.to(self.vae_dtype)
|
||||
|
||||
def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16):
|
||||
steps = samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
|
||||
steps += samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap)
|
||||
steps += samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap)
|
||||
pbar = comfy.utils.ProgressBar(steps)
|
||||
steps = samples.shape[0] * fcbh.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
|
||||
steps += samples.shape[0] * fcbh.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap)
|
||||
steps += samples.shape[0] * fcbh.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap)
|
||||
pbar = fcbh.utils.ProgressBar(steps)
|
||||
|
||||
decode_fn = lambda a: (self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)) + 1.0).float()
|
||||
output = torch.clamp((
|
||||
(comfy.utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = 8, pbar = pbar) +
|
||||
comfy.utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = 8, pbar = pbar) +
|
||||
comfy.utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = 8, pbar = pbar))
|
||||
(fcbh.utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = 8, pbar = pbar) +
|
||||
fcbh.utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = 8, pbar = pbar) +
|
||||
fcbh.utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = 8, pbar = pbar))
|
||||
/ 3.0) / 2.0, min=0.0, max=1.0)
|
||||
return output
|
||||
|
||||
def encode_tiled_(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
|
||||
steps = pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
|
||||
steps += pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
|
||||
steps += pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
|
||||
pbar = comfy.utils.ProgressBar(steps)
|
||||
steps = pixel_samples.shape[0] * fcbh.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
|
||||
steps += pixel_samples.shape[0] * fcbh.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
|
||||
steps += pixel_samples.shape[0] * fcbh.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
|
||||
pbar = fcbh.utils.ProgressBar(steps)
|
||||
|
||||
encode_fn = lambda a: self.first_stage_model.encode((2. * a - 1.).to(self.vae_dtype).to(self.device)).sample().float()
|
||||
samples = comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
||||
samples += comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
||||
samples += comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
||||
samples = fcbh.utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
||||
samples += fcbh.utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
||||
samples += fcbh.utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
||||
samples /= 3.0
|
||||
return samples
|
||||
|
||||
@ -257,10 +257,10 @@ class StyleModel:
|
||||
|
||||
|
||||
def load_style_model(ckpt_path):
|
||||
model_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
|
||||
model_data = fcbh.utils.load_torch_file(ckpt_path, safe_load=True)
|
||||
keys = model_data.keys()
|
||||
if "style_embedding" in keys:
|
||||
model = comfy.t2i_adapter.adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8)
|
||||
model = fcbh.t2i_adapter.adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8)
|
||||
else:
|
||||
raise Exception("invalid style model {}".format(ckpt_path))
|
||||
model.load_state_dict(model_data)
|
||||
@ -270,14 +270,14 @@ def load_style_model(ckpt_path):
|
||||
def load_clip(ckpt_paths, embedding_directory=None):
|
||||
clip_data = []
|
||||
for p in ckpt_paths:
|
||||
clip_data.append(comfy.utils.load_torch_file(p, safe_load=True))
|
||||
clip_data.append(fcbh.utils.load_torch_file(p, safe_load=True))
|
||||
|
||||
class EmptyClass:
|
||||
pass
|
||||
|
||||
for i in range(len(clip_data)):
|
||||
if "transformer.resblocks.0.ln_1.weight" in clip_data[i]:
|
||||
clip_data[i] = comfy.utils.transformers_convert(clip_data[i], "", "text_model.", 32)
|
||||
clip_data[i] = fcbh.utils.transformers_convert(clip_data[i], "", "text_model.", 32)
|
||||
|
||||
clip_target = EmptyClass()
|
||||
clip_target.params = {}
|
||||
@ -306,11 +306,11 @@ def load_clip(ckpt_paths, embedding_directory=None):
|
||||
return clip
|
||||
|
||||
def load_gligen(ckpt_path):
|
||||
data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
|
||||
data = fcbh.utils.load_torch_file(ckpt_path, safe_load=True)
|
||||
model = gligen.load_gligen(data)
|
||||
if model_management.should_use_fp16():
|
||||
model = model.half()
|
||||
return comfy.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device())
|
||||
return fcbh.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device())
|
||||
|
||||
def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_clip=True, embedding_directory=None, state_dict=None, config=None):
|
||||
#TODO: this function is a mess and should be removed eventually
|
||||
@ -346,12 +346,12 @@ def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_cl
|
||||
pass
|
||||
|
||||
if state_dict is None:
|
||||
state_dict = comfy.utils.load_torch_file(ckpt_path)
|
||||
state_dict = fcbh.utils.load_torch_file(ckpt_path)
|
||||
|
||||
class EmptyClass:
|
||||
pass
|
||||
|
||||
model_config = comfy.supported_models_base.BASE({})
|
||||
model_config = fcbh.supported_models_base.BASE({})
|
||||
|
||||
from . import latent_formats
|
||||
model_config.latent_format = latent_formats.SD15(scale_factor=scale_factor)
|
||||
@ -392,10 +392,10 @@ def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_cl
|
||||
w.cond_stage_model = clip.cond_stage_model
|
||||
load_clip_weights(w, state_dict)
|
||||
|
||||
return (comfy.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device), clip, vae)
|
||||
return (fcbh.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device), clip, vae)
|
||||
|
||||
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True):
|
||||
sd = comfy.utils.load_torch_file(ckpt_path)
|
||||
sd = fcbh.utils.load_torch_file(ckpt_path)
|
||||
sd_keys = sd.keys()
|
||||
clip = None
|
||||
clipvision = None
|
||||
@ -404,7 +404,7 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
|
||||
model_patcher = None
|
||||
clip_target = None
|
||||
|
||||
parameters = comfy.utils.calculate_parameters(sd, "model.diffusion_model.")
|
||||
parameters = fcbh.utils.calculate_parameters(sd, "model.diffusion_model.")
|
||||
fp16 = model_management.should_use_fp16(model_params=parameters)
|
||||
|
||||
class WeightsLoader(torch.nn.Module):
|
||||
@ -447,7 +447,7 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
|
||||
print("left over keys:", left_over)
|
||||
|
||||
if output_model:
|
||||
model_patcher = comfy.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device(), current_device=inital_load_device)
|
||||
model_patcher = fcbh.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device(), current_device=inital_load_device)
|
||||
if inital_load_device != torch.device("cpu"):
|
||||
print("loaded straight to GPU")
|
||||
model_management.load_model_gpu(model_patcher)
|
||||
@ -456,8 +456,8 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
|
||||
|
||||
|
||||
def load_unet(unet_path): #load unet in diffusers format
|
||||
sd = comfy.utils.load_torch_file(unet_path)
|
||||
parameters = comfy.utils.calculate_parameters(sd)
|
||||
sd = fcbh.utils.load_torch_file(unet_path)
|
||||
parameters = fcbh.utils.calculate_parameters(sd)
|
||||
fp16 = model_management.should_use_fp16(model_params=parameters)
|
||||
if "input_blocks.0.0.weight" in sd: #ldm
|
||||
model_config = model_detection.model_config_from_unet(sd, "", fp16)
|
||||
@ -471,7 +471,7 @@ def load_unet(unet_path): #load unet in diffusers format
|
||||
print("ERROR UNSUPPORTED UNET", unet_path)
|
||||
return None
|
||||
|
||||
diffusers_keys = comfy.utils.unet_to_diffusers(model_config.unet_config)
|
||||
diffusers_keys = fcbh.utils.unet_to_diffusers(model_config.unet_config)
|
||||
|
||||
new_sd = {}
|
||||
for k in diffusers_keys:
|
||||
@ -483,9 +483,9 @@ def load_unet(unet_path): #load unet in diffusers format
|
||||
model = model_config.get_model(new_sd, "")
|
||||
model = model.to(offload_device)
|
||||
model.load_model_weights(new_sd, "")
|
||||
return comfy.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device)
|
||||
return fcbh.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device)
|
||||
|
||||
def save_checkpoint(output_path, model, clip, vae, metadata=None):
|
||||
model_management.load_models_gpu([model, clip.load_model()])
|
||||
sd = model.model.state_dict_for_saving(clip.get_sd(), vae.get_sd())
|
||||
comfy.utils.save_torch_file(sd, output_path, metadata=metadata)
|
||||
fcbh.utils.save_torch_file(sd, output_path, metadata=metadata)
|
@ -1,7 +1,7 @@
|
||||
import os
|
||||
|
||||
from transformers import CLIPTokenizer, CLIPTextModel, CLIPTextConfig, modeling_utils
|
||||
import comfy.ops
|
||||
import fcbh.ops
|
||||
import torch
|
||||
import traceback
|
||||
import zipfile
|
||||
@ -54,7 +54,7 @@ class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json")
|
||||
config = CLIPTextConfig.from_json_file(textmodel_json_config)
|
||||
self.num_layers = config.num_hidden_layers
|
||||
with comfy.ops.use_comfy_ops(device, dtype):
|
||||
with fcbh.ops.use_fcbh_ops(device, dtype):
|
||||
with modeling_utils.no_init_weights():
|
||||
self.transformer = CLIPTextModel(config)
|
||||
|
@ -1,4 +1,4 @@
|
||||
from comfy import sd1_clip
|
||||
from fcbh import sd1_clip
|
||||
import torch
|
||||
import os
|
||||
|
@ -1,4 +1,4 @@
|
||||
from comfy import sd1_clip
|
||||
from fcbh import sd1_clip
|
||||
import torch
|
||||
import os
|
||||
|
@ -6,7 +6,7 @@ Tiny AutoEncoder for Stable Diffusion
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
import comfy.utils
|
||||
import fcbh.utils
|
||||
|
||||
def conv(n_in, n_out, **kwargs):
|
||||
return nn.Conv2d(n_in, n_out, 3, padding=1, **kwargs)
|
||||
@ -52,9 +52,9 @@ class TAESD(nn.Module):
|
||||
self.encoder = Encoder()
|
||||
self.decoder = Decoder()
|
||||
if encoder_path is not None:
|
||||
self.encoder.load_state_dict(comfy.utils.load_torch_file(encoder_path, safe_load=True))
|
||||
self.encoder.load_state_dict(fcbh.utils.load_torch_file(encoder_path, safe_load=True))
|
||||
if decoder_path is not None:
|
||||
self.decoder.load_state_dict(comfy.utils.load_torch_file(decoder_path, safe_load=True))
|
||||
self.decoder.load_state_dict(fcbh.utils.load_torch_file(decoder_path, safe_load=True))
|
||||
|
||||
@staticmethod
|
||||
def scale_latents(x):
|
@ -1,7 +1,7 @@
|
||||
import torch
|
||||
import math
|
||||
import struct
|
||||
import comfy.checkpoint_pickle
|
||||
import fcbh.checkpoint_pickle
|
||||
import safetensors.torch
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
@ -19,7 +19,7 @@ def load_torch_file(ckpt, safe_load=False, device=None):
|
||||
if safe_load:
|
||||
pl_sd = torch.load(ckpt, map_location=device, weights_only=True)
|
||||
else:
|
||||
pl_sd = torch.load(ckpt, map_location=device, pickle_module=comfy.checkpoint_pickle)
|
||||
pl_sd = torch.load(ckpt, map_location=device, pickle_module=fcbh.checkpoint_pickle)
|
||||
if "global_step" in pl_sd:
|
||||
print(f"Global Step: {pl_sd['global_step']}")
|
||||
if "state_dict" in pl_sd:
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user