108 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			108 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import torch
 | 
						|
 | 
						|
class LatentRebatch:
 | 
						|
    @classmethod
 | 
						|
    def INPUT_TYPES(s):
 | 
						|
        return {"required": { "latents": ("LATENT",),
 | 
						|
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 64}),
 | 
						|
                              }}
 | 
						|
    RETURN_TYPES = ("LATENT",)
 | 
						|
    INPUT_IS_LIST = True
 | 
						|
    OUTPUT_IS_LIST = (True, )
 | 
						|
 | 
						|
    FUNCTION = "rebatch"
 | 
						|
 | 
						|
    CATEGORY = "latent/batch"
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def get_batch(latents, list_ind, offset):
 | 
						|
        '''prepare a batch out of the list of latents'''
 | 
						|
        samples = latents[list_ind]['samples']
 | 
						|
        shape = samples.shape
 | 
						|
        mask = latents[list_ind]['noise_mask'] if 'noise_mask' in latents[list_ind] else torch.ones((shape[0], 1, shape[2]*8, shape[3]*8), device='cpu')
 | 
						|
        if mask.shape[-1] != shape[-1] * 8 or mask.shape[-2] != shape[-2]:
 | 
						|
            torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(shape[-2]*8, shape[-1]*8), mode="bilinear")
 | 
						|
        if mask.shape[0] < samples.shape[0]:
 | 
						|
            mask = mask.repeat((shape[0] - 1) // mask.shape[0] + 1, 1, 1, 1)[:shape[0]]
 | 
						|
        if 'batch_index' in latents[list_ind]:
 | 
						|
            batch_inds = latents[list_ind]['batch_index']
 | 
						|
        else:
 | 
						|
            batch_inds = [x+offset for x in range(shape[0])]
 | 
						|
        return samples, mask, batch_inds
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def get_slices(indexable, num, batch_size):
 | 
						|
        '''divides an indexable object into num slices of length batch_size, and a remainder'''
 | 
						|
        slices = []
 | 
						|
        for i in range(num):
 | 
						|
            slices.append(indexable[i*batch_size:(i+1)*batch_size])
 | 
						|
        if num * batch_size < len(indexable):
 | 
						|
            return slices, indexable[num * batch_size:]
 | 
						|
        else:
 | 
						|
            return slices, None
 | 
						|
    
 | 
						|
    @staticmethod
 | 
						|
    def slice_batch(batch, num, batch_size):
 | 
						|
        result = [LatentRebatch.get_slices(x, num, batch_size) for x in batch]
 | 
						|
        return list(zip(*result))
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def cat_batch(batch1, batch2):
 | 
						|
        if batch1[0] is None:
 | 
						|
            return batch2
 | 
						|
        result = [torch.cat((b1, b2)) if torch.is_tensor(b1) else b1 + b2 for b1, b2 in zip(batch1, batch2)]
 | 
						|
        return result
 | 
						|
 | 
						|
    def rebatch(self, latents, batch_size):
 | 
						|
        batch_size = batch_size[0]
 | 
						|
 | 
						|
        output_list = []
 | 
						|
        current_batch = (None, None, None)
 | 
						|
        processed = 0
 | 
						|
 | 
						|
        for i in range(len(latents)):
 | 
						|
            # fetch new entry of list
 | 
						|
            #samples, masks, indices = self.get_batch(latents, i)
 | 
						|
            next_batch = self.get_batch(latents, i, processed)
 | 
						|
            processed += len(next_batch[2])
 | 
						|
            # set to current if current is None
 | 
						|
            if current_batch[0] is None:
 | 
						|
                current_batch = next_batch
 | 
						|
            # add previous to list if dimensions do not match
 | 
						|
            elif next_batch[0].shape[-1] != current_batch[0].shape[-1] or next_batch[0].shape[-2] != current_batch[0].shape[-2]:
 | 
						|
                sliced, _ = self.slice_batch(current_batch, 1, batch_size)
 | 
						|
                output_list.append({'samples': sliced[0][0], 'noise_mask': sliced[1][0], 'batch_index': sliced[2][0]})
 | 
						|
                current_batch = next_batch
 | 
						|
            # cat if everything checks out
 | 
						|
            else:
 | 
						|
                current_batch = self.cat_batch(current_batch, next_batch)
 | 
						|
 | 
						|
            # add to list if dimensions gone above target batch size
 | 
						|
            if current_batch[0].shape[0] > batch_size:
 | 
						|
                num = current_batch[0].shape[0] // batch_size
 | 
						|
                sliced, remainder = self.slice_batch(current_batch, num, batch_size)
 | 
						|
                
 | 
						|
                for i in range(num):
 | 
						|
                    output_list.append({'samples': sliced[0][i], 'noise_mask': sliced[1][i], 'batch_index': sliced[2][i]})
 | 
						|
 | 
						|
                current_batch = remainder
 | 
						|
 | 
						|
        #add remainder
 | 
						|
        if current_batch[0] is not None:
 | 
						|
            sliced, _ = self.slice_batch(current_batch, 1, batch_size)
 | 
						|
            output_list.append({'samples': sliced[0][0], 'noise_mask': sliced[1][0], 'batch_index': sliced[2][0]})
 | 
						|
 | 
						|
        #get rid of empty masks
 | 
						|
        for s in output_list:
 | 
						|
            if s['noise_mask'].mean() == 1.0:
 | 
						|
                del s['noise_mask']
 | 
						|
 | 
						|
        return (output_list,)
 | 
						|
 | 
						|
NODE_CLASS_MAPPINGS = {
 | 
						|
    "RebatchLatents": LatentRebatch,
 | 
						|
}
 | 
						|
 | 
						|
NODE_DISPLAY_NAME_MAPPINGS = {
 | 
						|
    "RebatchLatents": "Rebatch Latents",
 | 
						|
} |