68 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			68 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import torch
 | |
| from . import model_base
 | |
| from . import utils
 | |
| from . import latent_formats
 | |
| 
 | |
| class ClipTarget:
 | |
|     def __init__(self, tokenizer, clip):
 | |
|         self.clip = clip
 | |
|         self.tokenizer = tokenizer
 | |
|         self.params = {}
 | |
| 
 | |
| class BASE:
 | |
|     unet_config = {}
 | |
|     unet_extra_config = {
 | |
|         "num_heads": -1,
 | |
|         "num_head_channels": 64,
 | |
|     }
 | |
| 
 | |
|     clip_prefix = []
 | |
|     clip_vision_prefix = None
 | |
|     noise_aug_config = None
 | |
|     beta_schedule = "linear"
 | |
|     latent_format = latent_formats.LatentFormat
 | |
| 
 | |
|     @classmethod
 | |
|     def matches(s, unet_config):
 | |
|         for k in s.unet_config:
 | |
|             if s.unet_config[k] != unet_config[k]:
 | |
|                 return False
 | |
|         return True
 | |
| 
 | |
|     def model_type(self, state_dict, prefix=""):
 | |
|         return model_base.ModelType.EPS
 | |
| 
 | |
|     def inpaint_model(self):
 | |
|         return self.unet_config["in_channels"] > 4
 | |
| 
 | |
|     def __init__(self, unet_config):
 | |
|         self.unet_config = unet_config
 | |
|         self.latent_format = self.latent_format()
 | |
|         for x in self.unet_extra_config:
 | |
|             self.unet_config[x] = self.unet_extra_config[x]
 | |
| 
 | |
|     def get_model(self, state_dict, prefix="", device=None):
 | |
|         if self.noise_aug_config is not None:
 | |
|             out = model_base.SD21UNCLIP(self, self.noise_aug_config, model_type=self.model_type(state_dict, prefix), device=device)
 | |
|         else:
 | |
|             out = model_base.BaseModel(self, model_type=self.model_type(state_dict, prefix), device=device)
 | |
|         if self.inpaint_model():
 | |
|             out.set_inpaint()
 | |
|         return out
 | |
| 
 | |
|     def process_clip_state_dict(self, state_dict):
 | |
|         return state_dict
 | |
| 
 | |
|     def process_clip_state_dict_for_saving(self, state_dict):
 | |
|         replace_prefix = {"": "cond_stage_model."}
 | |
|         return utils.state_dict_prefix_replace(state_dict, replace_prefix)
 | |
| 
 | |
|     def process_unet_state_dict_for_saving(self, state_dict):
 | |
|         replace_prefix = {"": "model.diffusion_model."}
 | |
|         return utils.state_dict_prefix_replace(state_dict, replace_prefix)
 | |
| 
 | |
|     def process_vae_state_dict_for_saving(self, state_dict):
 | |
|         replace_prefix = {"": "first_stage_model."}
 | |
|         return utils.state_dict_prefix_replace(state_dict, replace_prefix)
 | |
| 
 |