262 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			262 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import re
 | |
| import torch
 | |
| 
 | |
| # conversion code from https://github.com/huggingface/diffusers/blob/main/scripts/convert_diffusers_to_original_stable_diffusion.py
 | |
| 
 | |
| # =================#
 | |
| # UNet Conversion #
 | |
| # =================#
 | |
| 
 | |
| unet_conversion_map = [
 | |
|     # (stable-diffusion, HF Diffusers)
 | |
|     ("time_embed.0.weight", "time_embedding.linear_1.weight"),
 | |
|     ("time_embed.0.bias", "time_embedding.linear_1.bias"),
 | |
|     ("time_embed.2.weight", "time_embedding.linear_2.weight"),
 | |
|     ("time_embed.2.bias", "time_embedding.linear_2.bias"),
 | |
|     ("input_blocks.0.0.weight", "conv_in.weight"),
 | |
|     ("input_blocks.0.0.bias", "conv_in.bias"),
 | |
|     ("out.0.weight", "conv_norm_out.weight"),
 | |
|     ("out.0.bias", "conv_norm_out.bias"),
 | |
|     ("out.2.weight", "conv_out.weight"),
 | |
|     ("out.2.bias", "conv_out.bias"),
 | |
| ]
 | |
| 
 | |
| unet_conversion_map_resnet = [
 | |
|     # (stable-diffusion, HF Diffusers)
 | |
|     ("in_layers.0", "norm1"),
 | |
|     ("in_layers.2", "conv1"),
 | |
|     ("out_layers.0", "norm2"),
 | |
|     ("out_layers.3", "conv2"),
 | |
|     ("emb_layers.1", "time_emb_proj"),
 | |
|     ("skip_connection", "conv_shortcut"),
 | |
| ]
 | |
| 
 | |
| unet_conversion_map_layer = []
 | |
| # hardcoded number of downblocks and resnets/attentions...
 | |
| # would need smarter logic for other networks.
 | |
| for i in range(4):
 | |
|     # loop over downblocks/upblocks
 | |
| 
 | |
|     for j in range(2):
 | |
|         # loop over resnets/attentions for downblocks
 | |
|         hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
 | |
|         sd_down_res_prefix = f"input_blocks.{3 * i + j + 1}.0."
 | |
|         unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
 | |
| 
 | |
|         if i < 3:
 | |
|             # no attention layers in down_blocks.3
 | |
|             hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
 | |
|             sd_down_atn_prefix = f"input_blocks.{3 * i + j + 1}.1."
 | |
|             unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
 | |
| 
 | |
|     for j in range(3):
 | |
|         # loop over resnets/attentions for upblocks
 | |
|         hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
 | |
|         sd_up_res_prefix = f"output_blocks.{3 * i + j}.0."
 | |
|         unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
 | |
| 
 | |
|         if i > 0:
 | |
|             # no attention layers in up_blocks.0
 | |
|             hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
 | |
|             sd_up_atn_prefix = f"output_blocks.{3 * i + j}.1."
 | |
|             unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
 | |
| 
 | |
|     if i < 3:
 | |
|         # no downsample in down_blocks.3
 | |
|         hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
 | |
|         sd_downsample_prefix = f"input_blocks.{3 * (i + 1)}.0.op."
 | |
|         unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
 | |
| 
 | |
|         # no upsample in up_blocks.3
 | |
|         hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
 | |
|         sd_upsample_prefix = f"output_blocks.{3 * i + 2}.{1 if i == 0 else 2}."
 | |
|         unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
 | |
| 
 | |
| hf_mid_atn_prefix = "mid_block.attentions.0."
 | |
| sd_mid_atn_prefix = "middle_block.1."
 | |
| unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
 | |
| 
 | |
| for j in range(2):
 | |
|     hf_mid_res_prefix = f"mid_block.resnets.{j}."
 | |
|     sd_mid_res_prefix = f"middle_block.{2 * j}."
 | |
|     unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
 | |
| 
 | |
| 
 | |
| def convert_unet_state_dict(unet_state_dict):
 | |
|     # buyer beware: this is a *brittle* function,
 | |
|     # and correct output requires that all of these pieces interact in
 | |
|     # the exact order in which I have arranged them.
 | |
|     mapping = {k: k for k in unet_state_dict.keys()}
 | |
|     for sd_name, hf_name in unet_conversion_map:
 | |
|         mapping[hf_name] = sd_name
 | |
|     for k, v in mapping.items():
 | |
|         if "resnets" in k:
 | |
|             for sd_part, hf_part in unet_conversion_map_resnet:
 | |
|                 v = v.replace(hf_part, sd_part)
 | |
|             mapping[k] = v
 | |
|     for k, v in mapping.items():
 | |
|         for sd_part, hf_part in unet_conversion_map_layer:
 | |
|             v = v.replace(hf_part, sd_part)
 | |
|         mapping[k] = v
 | |
|     new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()}
 | |
|     return new_state_dict
 | |
| 
 | |
| 
 | |
| # ================#
 | |
| # VAE Conversion #
 | |
| # ================#
 | |
| 
 | |
| vae_conversion_map = [
 | |
|     # (stable-diffusion, HF Diffusers)
 | |
|     ("nin_shortcut", "conv_shortcut"),
 | |
|     ("norm_out", "conv_norm_out"),
 | |
|     ("mid.attn_1.", "mid_block.attentions.0."),
 | |
| ]
 | |
| 
 | |
| for i in range(4):
 | |
|     # down_blocks have two resnets
 | |
|     for j in range(2):
 | |
|         hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}."
 | |
|         sd_down_prefix = f"encoder.down.{i}.block.{j}."
 | |
|         vae_conversion_map.append((sd_down_prefix, hf_down_prefix))
 | |
| 
 | |
|     if i < 3:
 | |
|         hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0."
 | |
|         sd_downsample_prefix = f"down.{i}.downsample."
 | |
|         vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))
 | |
| 
 | |
|         hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
 | |
|         sd_upsample_prefix = f"up.{3 - i}.upsample."
 | |
|         vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))
 | |
| 
 | |
|     # up_blocks have three resnets
 | |
|     # also, up blocks in hf are numbered in reverse from sd
 | |
|     for j in range(3):
 | |
|         hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}."
 | |
|         sd_up_prefix = f"decoder.up.{3 - i}.block.{j}."
 | |
|         vae_conversion_map.append((sd_up_prefix, hf_up_prefix))
 | |
| 
 | |
| # this part accounts for mid blocks in both the encoder and the decoder
 | |
| for i in range(2):
 | |
|     hf_mid_res_prefix = f"mid_block.resnets.{i}."
 | |
|     sd_mid_res_prefix = f"mid.block_{i + 1}."
 | |
|     vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))
 | |
| 
 | |
| vae_conversion_map_attn = [
 | |
|     # (stable-diffusion, HF Diffusers)
 | |
|     ("norm.", "group_norm."),
 | |
|     ("q.", "query."),
 | |
|     ("k.", "key."),
 | |
|     ("v.", "value."),
 | |
|     ("q.", "to_q."),
 | |
|     ("k.", "to_k."),
 | |
|     ("v.", "to_v."),
 | |
|     ("proj_out.", "to_out.0."),
 | |
|     ("proj_out.", "proj_attn."),
 | |
| ]
 | |
| 
 | |
| 
 | |
| def reshape_weight_for_sd(w):
 | |
|     # convert HF linear weights to SD conv2d weights
 | |
|     return w.reshape(*w.shape, 1, 1)
 | |
| 
 | |
| 
 | |
| def convert_vae_state_dict(vae_state_dict):
 | |
|     mapping = {k: k for k in vae_state_dict.keys()}
 | |
|     for k, v in mapping.items():
 | |
|         for sd_part, hf_part in vae_conversion_map:
 | |
|             v = v.replace(hf_part, sd_part)
 | |
|         mapping[k] = v
 | |
|     for k, v in mapping.items():
 | |
|         if "attentions" in k:
 | |
|             for sd_part, hf_part in vae_conversion_map_attn:
 | |
|                 v = v.replace(hf_part, sd_part)
 | |
|             mapping[k] = v
 | |
|     new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
 | |
|     weights_to_convert = ["q", "k", "v", "proj_out"]
 | |
|     for k, v in new_state_dict.items():
 | |
|         for weight_name in weights_to_convert:
 | |
|             if f"mid.attn_1.{weight_name}.weight" in k:
 | |
|                 print(f"Reshaping {k} for SD format")
 | |
|                 new_state_dict[k] = reshape_weight_for_sd(v)
 | |
|     return new_state_dict
 | |
| 
 | |
| 
 | |
| # =========================#
 | |
| # Text Encoder Conversion #
 | |
| # =========================#
 | |
| 
 | |
| 
 | |
| textenc_conversion_lst = [
 | |
|     # (stable-diffusion, HF Diffusers)
 | |
|     ("resblocks.", "text_model.encoder.layers."),
 | |
|     ("ln_1", "layer_norm1"),
 | |
|     ("ln_2", "layer_norm2"),
 | |
|     (".c_fc.", ".fc1."),
 | |
|     (".c_proj.", ".fc2."),
 | |
|     (".attn", ".self_attn"),
 | |
|     ("ln_final.", "transformer.text_model.final_layer_norm."),
 | |
|     ("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"),
 | |
|     ("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"),
 | |
| ]
 | |
| protected = {re.escape(x[1]): x[0] for x in textenc_conversion_lst}
 | |
| textenc_pattern = re.compile("|".join(protected.keys()))
 | |
| 
 | |
| # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp
 | |
| code2idx = {"q": 0, "k": 1, "v": 2}
 | |
| 
 | |
| 
 | |
| def convert_text_enc_state_dict_v20(text_enc_dict, prefix=""):
 | |
|     new_state_dict = {}
 | |
|     capture_qkv_weight = {}
 | |
|     capture_qkv_bias = {}
 | |
|     for k, v in text_enc_dict.items():
 | |
|         if not k.startswith(prefix):
 | |
|             continue
 | |
|         if (
 | |
|                 k.endswith(".self_attn.q_proj.weight")
 | |
|                 or k.endswith(".self_attn.k_proj.weight")
 | |
|                 or k.endswith(".self_attn.v_proj.weight")
 | |
|         ):
 | |
|             k_pre = k[: -len(".q_proj.weight")]
 | |
|             k_code = k[-len("q_proj.weight")]
 | |
|             if k_pre not in capture_qkv_weight:
 | |
|                 capture_qkv_weight[k_pre] = [None, None, None]
 | |
|             capture_qkv_weight[k_pre][code2idx[k_code]] = v
 | |
|             continue
 | |
| 
 | |
|         if (
 | |
|                 k.endswith(".self_attn.q_proj.bias")
 | |
|                 or k.endswith(".self_attn.k_proj.bias")
 | |
|                 or k.endswith(".self_attn.v_proj.bias")
 | |
|         ):
 | |
|             k_pre = k[: -len(".q_proj.bias")]
 | |
|             k_code = k[-len("q_proj.bias")]
 | |
|             if k_pre not in capture_qkv_bias:
 | |
|                 capture_qkv_bias[k_pre] = [None, None, None]
 | |
|             capture_qkv_bias[k_pre][code2idx[k_code]] = v
 | |
|             continue
 | |
| 
 | |
|         relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k)
 | |
|         new_state_dict[relabelled_key] = v
 | |
| 
 | |
|     for k_pre, tensors in capture_qkv_weight.items():
 | |
|         if None in tensors:
 | |
|             raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
 | |
|         relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
 | |
|         new_state_dict[relabelled_key + ".in_proj_weight"] = torch.cat(tensors)
 | |
| 
 | |
|     for k_pre, tensors in capture_qkv_bias.items():
 | |
|         if None in tensors:
 | |
|             raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
 | |
|         relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
 | |
|         new_state_dict[relabelled_key + ".in_proj_bias"] = torch.cat(tensors)
 | |
| 
 | |
|     return new_state_dict
 | |
| 
 | |
| 
 | |
| def convert_text_enc_state_dict(text_enc_dict):
 | |
|     return text_enc_dict
 | |
| 
 | |
| 
 |