101 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			101 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import torch
 | |
| from PIL import Image
 | |
| import struct
 | |
| import numpy as np
 | |
| from fcbh.cli_args import args, LatentPreviewMethod
 | |
| from fcbh.taesd.taesd import TAESD
 | |
| import folder_paths
 | |
| import fcbh.utils
 | |
| 
 | |
| MAX_PREVIEW_RESOLUTION = 512
 | |
| 
 | |
| class LatentPreviewer:
 | |
|     def decode_latent_to_preview(self, x0):
 | |
|         pass
 | |
| 
 | |
|     def decode_latent_to_preview_image(self, preview_format, x0):
 | |
|         preview_image = self.decode_latent_to_preview(x0)
 | |
|         return ("JPEG", preview_image, MAX_PREVIEW_RESOLUTION)
 | |
| 
 | |
| class TAESDPreviewerImpl(LatentPreviewer):
 | |
|     def __init__(self, taesd):
 | |
|         self.taesd = taesd
 | |
| 
 | |
|     def decode_latent_to_preview(self, x0):
 | |
|         x_sample = self.taesd.decoder(x0)[0].detach()
 | |
|         # x_sample = self.taesd.unscale_latents(x_sample).div(4).add(0.5)  # returns value in [-2, 2]
 | |
|         x_sample = x_sample.sub(0.5).mul(2)
 | |
| 
 | |
|         x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
 | |
|         x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
 | |
|         x_sample = x_sample.astype(np.uint8)
 | |
| 
 | |
|         preview_image = Image.fromarray(x_sample)
 | |
|         return preview_image
 | |
| 
 | |
| 
 | |
| class Latent2RGBPreviewer(LatentPreviewer):
 | |
|     def __init__(self, latent_rgb_factors):
 | |
|         self.latent_rgb_factors = torch.tensor(latent_rgb_factors, device="cpu")
 | |
| 
 | |
|     def decode_latent_to_preview(self, x0):
 | |
|         latent_image = x0[0].permute(1, 2, 0).cpu() @ self.latent_rgb_factors
 | |
| 
 | |
|         latents_ubyte = (((latent_image + 1) / 2)
 | |
|                             .clamp(0, 1)  # change scale from -1..1 to 0..1
 | |
|                             .mul(0xFF)  # to 0..255
 | |
|                             .byte()).cpu()
 | |
| 
 | |
|         return Image.fromarray(latents_ubyte.numpy())
 | |
| 
 | |
| 
 | |
| def get_previewer(device, latent_format):
 | |
|     previewer = None
 | |
|     method = args.preview_method
 | |
|     if method != LatentPreviewMethod.NoPreviews:
 | |
|         # TODO previewer methods
 | |
|         taesd_decoder_path = None
 | |
|         if latent_format.taesd_decoder_name is not None:
 | |
|             taesd_decoder_path = next(
 | |
|                 (fn for fn in folder_paths.get_filename_list("vae_approx")
 | |
|                     if fn.startswith(latent_format.taesd_decoder_name)),
 | |
|                 ""
 | |
|             )
 | |
|             taesd_decoder_path = folder_paths.get_full_path("vae_approx", taesd_decoder_path)
 | |
| 
 | |
|         if method == LatentPreviewMethod.Auto:
 | |
|             method = LatentPreviewMethod.Latent2RGB
 | |
|             if taesd_decoder_path:
 | |
|                 method = LatentPreviewMethod.TAESD
 | |
| 
 | |
|         if method == LatentPreviewMethod.TAESD:
 | |
|             if taesd_decoder_path:
 | |
|                 taesd = TAESD(None, taesd_decoder_path).to(device)
 | |
|                 previewer = TAESDPreviewerImpl(taesd)
 | |
|             else:
 | |
|                 print("Warning: TAESD previews enabled, but could not find models/vae_approx/{}".format(latent_format.taesd_decoder_name))
 | |
| 
 | |
|         if previewer is None:
 | |
|             if latent_format.latent_rgb_factors is not None:
 | |
|                 previewer = Latent2RGBPreviewer(latent_format.latent_rgb_factors)
 | |
|     return previewer
 | |
| 
 | |
| def prepare_callback(model, steps, x0_output_dict=None):
 | |
|     preview_format = "JPEG"
 | |
|     if preview_format not in ["JPEG", "PNG"]:
 | |
|         preview_format = "JPEG"
 | |
| 
 | |
|     previewer = get_previewer(model.load_device, model.model.latent_format)
 | |
| 
 | |
|     pbar = fcbh.utils.ProgressBar(steps)
 | |
|     def callback(step, x0, x, total_steps):
 | |
|         if x0_output_dict is not None:
 | |
|             x0_output_dict["x0"] = x0
 | |
| 
 | |
|         preview_bytes = None
 | |
|         if previewer:
 | |
|             preview_bytes = previewer.decode_latent_to_preview_image(preview_format, x0)
 | |
|         pbar.update_absolute(step + 1, total_steps, preview_bytes)
 | |
|     return callback
 | |
| 
 |