289 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			289 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from modules.patch import patch_all
 | 
						|
 | 
						|
patch_all()
 | 
						|
 | 
						|
 | 
						|
import os
 | 
						|
import einops
 | 
						|
import torch
 | 
						|
import numpy as np
 | 
						|
 | 
						|
import fcbh.model_management
 | 
						|
import fcbh.model_detection
 | 
						|
import fcbh.model_patcher
 | 
						|
import fcbh.utils
 | 
						|
import fcbh.controlnet
 | 
						|
import modules.sample_hijack
 | 
						|
import fcbh.samplers
 | 
						|
import fcbh.latent_formats
 | 
						|
 | 
						|
from fcbh.sd import load_checkpoint_guess_config
 | 
						|
from nodes import VAEDecode, EmptyLatentImage, VAEEncode, VAEEncodeTiled, VAEDecodeTiled, \
 | 
						|
    ControlNetApplyAdvanced
 | 
						|
from fcbh_extras.nodes_freelunch import FreeU_V2
 | 
						|
from fcbh.sample import prepare_mask
 | 
						|
from modules.patch import patched_sampler_cfg_function, patched_model_function_wrapper
 | 
						|
from fcbh.lora import model_lora_keys_unet, model_lora_keys_clip, load_lora
 | 
						|
from modules.path import embeddings_path
 | 
						|
 | 
						|
 | 
						|
opEmptyLatentImage = EmptyLatentImage()
 | 
						|
opVAEDecode = VAEDecode()
 | 
						|
opVAEEncode = VAEEncode()
 | 
						|
opVAEDecodeTiled = VAEDecodeTiled()
 | 
						|
opVAEEncodeTiled = VAEEncodeTiled()
 | 
						|
opControlNetApplyAdvanced = ControlNetApplyAdvanced()
 | 
						|
opFreeU = FreeU_V2()
 | 
						|
 | 
						|
 | 
						|
class StableDiffusionModel:
 | 
						|
    def __init__(self, unet, vae, clip, clip_vision):
 | 
						|
        self.unet = unet
 | 
						|
        self.vae = vae
 | 
						|
        self.clip = clip
 | 
						|
        self.clip_vision = clip_vision
 | 
						|
 | 
						|
 | 
						|
@torch.no_grad()
 | 
						|
@torch.inference_mode()
 | 
						|
def apply_freeu(model, b1, b2, s1, s2):
 | 
						|
    return opFreeU.patch(model=model, b1=b1, b2=b2, s1=s1, s2=s2)[0]
 | 
						|
 | 
						|
 | 
						|
@torch.no_grad()
 | 
						|
@torch.inference_mode()
 | 
						|
def load_controlnet(ckpt_filename):
 | 
						|
    return fcbh.controlnet.load_controlnet(ckpt_filename)
 | 
						|
 | 
						|
 | 
						|
@torch.no_grad()
 | 
						|
@torch.inference_mode()
 | 
						|
def apply_controlnet(positive, negative, control_net, image, strength, start_percent, end_percent):
 | 
						|
    return opControlNetApplyAdvanced.apply_controlnet(positive=positive, negative=negative, control_net=control_net,
 | 
						|
        image=image, strength=strength, start_percent=start_percent, end_percent=end_percent)
 | 
						|
 | 
						|
 | 
						|
@torch.no_grad()
 | 
						|
@torch.inference_mode()
 | 
						|
def load_model(ckpt_filename):
 | 
						|
    unet, clip, vae, clip_vision = load_checkpoint_guess_config(ckpt_filename, embedding_directory=embeddings_path)
 | 
						|
    unet.model_options['sampler_cfg_function'] = patched_sampler_cfg_function
 | 
						|
    unet.model_options['model_function_wrapper'] = patched_model_function_wrapper
 | 
						|
    return StableDiffusionModel(unet=unet, clip=clip, vae=vae, clip_vision=clip_vision)
 | 
						|
 | 
						|
 | 
						|
@torch.no_grad()
 | 
						|
@torch.inference_mode()
 | 
						|
def load_sd_lora(model, lora_filename, strength_model=1.0, strength_clip=1.0):
 | 
						|
    if strength_model == 0 and strength_clip == 0:
 | 
						|
        return model
 | 
						|
 | 
						|
    lora = fcbh.utils.load_torch_file(lora_filename, safe_load=False)
 | 
						|
 | 
						|
    if lora_filename.lower().endswith('.fooocus.patch'):
 | 
						|
        loaded = lora
 | 
						|
    else:
 | 
						|
        key_map = model_lora_keys_unet(model.unet.model)
 | 
						|
        key_map = model_lora_keys_clip(model.clip.cond_stage_model, key_map)
 | 
						|
        loaded = load_lora(lora, key_map)
 | 
						|
 | 
						|
    new_unet = model.unet.clone()
 | 
						|
    loaded_unet_keys = new_unet.add_patches(loaded, strength_model)
 | 
						|
 | 
						|
    new_clip = model.clip.clone()
 | 
						|
    loaded_clip_keys = new_clip.add_patches(loaded, strength_clip)
 | 
						|
 | 
						|
    loaded_keys = set(list(loaded_unet_keys) + list(loaded_clip_keys))
 | 
						|
 | 
						|
    for x in loaded:
 | 
						|
        if x not in loaded_keys:
 | 
						|
            print("Lora key not loaded: ", x)
 | 
						|
 | 
						|
    return StableDiffusionModel(unet=new_unet, clip=new_clip, vae=model.vae, clip_vision=model.clip_vision)
 | 
						|
 | 
						|
 | 
						|
@torch.no_grad()
 | 
						|
@torch.inference_mode()
 | 
						|
def generate_empty_latent(width=1024, height=1024, batch_size=1):
 | 
						|
    return opEmptyLatentImage.generate(width=width, height=height, batch_size=batch_size)[0]
 | 
						|
 | 
						|
 | 
						|
@torch.no_grad()
 | 
						|
@torch.inference_mode()
 | 
						|
def decode_vae(vae, latent_image, tiled=False):
 | 
						|
    if tiled:
 | 
						|
        return opVAEDecodeTiled.decode(samples=latent_image, vae=vae, tile_size=512)[0]
 | 
						|
    else:
 | 
						|
        return opVAEDecode.decode(samples=latent_image, vae=vae)[0]
 | 
						|
 | 
						|
 | 
						|
@torch.no_grad()
 | 
						|
@torch.inference_mode()
 | 
						|
def encode_vae(vae, pixels, tiled=False):
 | 
						|
    if tiled:
 | 
						|
        return opVAEEncodeTiled.encode(pixels=pixels, vae=vae, tile_size=512)[0]
 | 
						|
    else:
 | 
						|
        return opVAEEncode.encode(pixels=pixels, vae=vae)[0]
 | 
						|
 | 
						|
 | 
						|
@torch.no_grad()
 | 
						|
@torch.inference_mode()
 | 
						|
def encode_vae_inpaint(vae, pixels, mask):
 | 
						|
    assert mask.ndim == 3 and pixels.ndim == 4
 | 
						|
    assert mask.shape[-1] == pixels.shape[-2]
 | 
						|
    assert mask.shape[-2] == pixels.shape[-3]
 | 
						|
 | 
						|
    w = mask.round()[..., None]
 | 
						|
    pixels = pixels * (1 - w) + 0.5 * w
 | 
						|
 | 
						|
    latent = vae.encode(pixels)
 | 
						|
    B, C, H, W = latent.shape
 | 
						|
 | 
						|
    latent_mask = mask[:, None, :, :]
 | 
						|
    latent_mask = torch.nn.functional.interpolate(latent_mask, size=(H * 8, W * 8), mode="bilinear").round()
 | 
						|
    latent_mask = torch.nn.functional.max_pool2d(latent_mask, (8, 8)).round()
 | 
						|
 | 
						|
    return latent, latent_mask
 | 
						|
 | 
						|
 | 
						|
class VAEApprox(torch.nn.Module):
 | 
						|
    def __init__(self):
 | 
						|
        super(VAEApprox, self).__init__()
 | 
						|
        self.conv1 = torch.nn.Conv2d(4, 8, (7, 7))
 | 
						|
        self.conv2 = torch.nn.Conv2d(8, 16, (5, 5))
 | 
						|
        self.conv3 = torch.nn.Conv2d(16, 32, (3, 3))
 | 
						|
        self.conv4 = torch.nn.Conv2d(32, 64, (3, 3))
 | 
						|
        self.conv5 = torch.nn.Conv2d(64, 32, (3, 3))
 | 
						|
        self.conv6 = torch.nn.Conv2d(32, 16, (3, 3))
 | 
						|
        self.conv7 = torch.nn.Conv2d(16, 8, (3, 3))
 | 
						|
        self.conv8 = torch.nn.Conv2d(8, 3, (3, 3))
 | 
						|
        self.current_type = None
 | 
						|
 | 
						|
    def forward(self, x):
 | 
						|
        extra = 11
 | 
						|
        x = torch.nn.functional.interpolate(x, (x.shape[2] * 2, x.shape[3] * 2))
 | 
						|
        x = torch.nn.functional.pad(x, (extra, extra, extra, extra))
 | 
						|
        for layer in [self.conv1, self.conv2, self.conv3, self.conv4, self.conv5, self.conv6, self.conv7, self.conv8]:
 | 
						|
            x = layer(x)
 | 
						|
            x = torch.nn.functional.leaky_relu(x, 0.1)
 | 
						|
        return x
 | 
						|
 | 
						|
 | 
						|
VAE_approx_models = {}
 | 
						|
 | 
						|
 | 
						|
@torch.no_grad()
 | 
						|
@torch.inference_mode()
 | 
						|
def get_previewer(model):
 | 
						|
    global VAE_approx_models
 | 
						|
 | 
						|
    from modules.path import vae_approx_path
 | 
						|
    is_sdxl = isinstance(model.model.latent_format, fcbh.latent_formats.SDXL)
 | 
						|
    vae_approx_filename = os.path.join(vae_approx_path, 'xlvaeapp.pth' if is_sdxl else 'vaeapp_sd15.pth')
 | 
						|
 | 
						|
    if vae_approx_filename in VAE_approx_models:
 | 
						|
        VAE_approx_model = VAE_approx_models[vae_approx_filename]
 | 
						|
    else:
 | 
						|
        sd = torch.load(vae_approx_filename, map_location='cpu')
 | 
						|
        VAE_approx_model = VAEApprox()
 | 
						|
        VAE_approx_model.load_state_dict(sd)
 | 
						|
        del sd
 | 
						|
        VAE_approx_model.eval()
 | 
						|
 | 
						|
        if fcbh.model_management.should_use_fp16():
 | 
						|
            VAE_approx_model.half()
 | 
						|
            VAE_approx_model.current_type = torch.float16
 | 
						|
        else:
 | 
						|
            VAE_approx_model.float()
 | 
						|
            VAE_approx_model.current_type = torch.float32
 | 
						|
 | 
						|
        VAE_approx_model.to(fcbh.model_management.get_torch_device())
 | 
						|
        VAE_approx_models[vae_approx_filename] = VAE_approx_model
 | 
						|
 | 
						|
    @torch.no_grad()
 | 
						|
    @torch.inference_mode()
 | 
						|
    def preview_function(x0, step, total_steps):
 | 
						|
        with torch.no_grad():
 | 
						|
            x_sample = x0.to(VAE_approx_model.current_type)
 | 
						|
            x_sample = VAE_approx_model(x_sample) * 127.5 + 127.5
 | 
						|
            x_sample = einops.rearrange(x_sample, 'b c h w -> b h w c')[0]
 | 
						|
            x_sample = x_sample.cpu().numpy().clip(0, 255).astype(np.uint8)
 | 
						|
            return x_sample
 | 
						|
 | 
						|
    return preview_function
 | 
						|
 | 
						|
 | 
						|
@torch.no_grad()
 | 
						|
@torch.inference_mode()
 | 
						|
def ksampler(model, positive, negative, latent, seed=None, steps=30, cfg=7.0, sampler_name='dpmpp_2m_sde_gpu',
 | 
						|
             scheduler='karras', denoise=1.0, disable_noise=False, start_step=None, last_step=None,
 | 
						|
             force_full_denoise=False, callback_function=None, refiner=None, refiner_switch=-1,
 | 
						|
             previewer_start=None, previewer_end=None, sigmas=None, noise=None):
 | 
						|
 | 
						|
    if sigmas is not None:
 | 
						|
        sigmas = sigmas.clone().to(fcbh.model_management.get_torch_device())
 | 
						|
 | 
						|
    latent_image = latent["samples"]
 | 
						|
 | 
						|
    if noise is None:
 | 
						|
        if disable_noise:
 | 
						|
            noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
 | 
						|
        else:
 | 
						|
            batch_inds = latent["batch_index"] if "batch_index" in latent else None
 | 
						|
            noise = fcbh.sample.prepare_noise(latent_image, seed, batch_inds)
 | 
						|
 | 
						|
    noise_mask = None
 | 
						|
    if "noise_mask" in latent:
 | 
						|
        noise_mask = latent["noise_mask"]
 | 
						|
 | 
						|
    previewer = get_previewer(model)
 | 
						|
 | 
						|
    if previewer_start is None:
 | 
						|
        previewer_start = 0
 | 
						|
 | 
						|
    if previewer_end is None:
 | 
						|
        previewer_end = steps
 | 
						|
 | 
						|
    def callback(step, x0, x, total_steps):
 | 
						|
        fcbh.model_management.throw_exception_if_processing_interrupted()
 | 
						|
        y = None
 | 
						|
        if previewer is not None:
 | 
						|
            y = previewer(x0, previewer_start + step, previewer_end)
 | 
						|
        if callback_function is not None:
 | 
						|
            callback_function(previewer_start + step, x0, x, previewer_end, y)
 | 
						|
 | 
						|
    disable_pbar = False
 | 
						|
    modules.sample_hijack.current_refiner = refiner
 | 
						|
    modules.sample_hijack.refiner_switch_step = refiner_switch
 | 
						|
    fcbh.samplers.sample = modules.sample_hijack.sample_hacked
 | 
						|
 | 
						|
    try:
 | 
						|
        samples = fcbh.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
 | 
						|
                                      denoise=denoise, disable_noise=disable_noise, start_step=start_step,
 | 
						|
                                      last_step=last_step,
 | 
						|
                                      force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback,
 | 
						|
                                      disable_pbar=disable_pbar, seed=seed, sigmas=sigmas)
 | 
						|
 | 
						|
        out = latent.copy()
 | 
						|
        out["samples"] = samples
 | 
						|
    finally:
 | 
						|
        modules.sample_hijack.current_refiner = None
 | 
						|
 | 
						|
    return out
 | 
						|
 | 
						|
 | 
						|
@torch.no_grad()
 | 
						|
@torch.inference_mode()
 | 
						|
def pytorch_to_numpy(x):
 | 
						|
    return [np.clip(255. * y.cpu().numpy(), 0, 255).astype(np.uint8) for y in x]
 | 
						|
 | 
						|
 | 
						|
@torch.no_grad()
 | 
						|
@torch.inference_mode()
 | 
						|
def numpy_to_pytorch(x):
 | 
						|
    y = x.astype(np.float32) / 255.0
 | 
						|
    y = y[None]
 | 
						|
    y = np.ascontiguousarray(y.copy())
 | 
						|
    y = torch.from_numpy(y).float()
 | 
						|
    return y
 |