parent
d2c8f16082
commit
9660daff94
@ -1 +1 @@
|
||||
version = '2.1.702'
|
||||
version = '2.1.703'
|
||||
|
||||
@ -400,43 +400,42 @@ def worker():
|
||||
|
||||
pipeline.final_unet.model.diffusion_model.in_inpaint = True
|
||||
|
||||
# print(f'Inpaint task: {str((height, width))}')
|
||||
# outputs.append(['results', inpaint_worker.current_task.visualize_mask_processing()])
|
||||
# return
|
||||
|
||||
progressbar(13, 'VAE encoding ...')
|
||||
inpaint_pixels = core.numpy_to_pytorch(inpaint_worker.current_task.image_ready)
|
||||
initial_latent = core.encode_vae(vae=pipeline.final_vae, pixels=inpaint_pixels)
|
||||
inpaint_latent = initial_latent['samples']
|
||||
B, C, H, W = inpaint_latent.shape
|
||||
inpaint_mask = core.numpy_to_pytorch(inpaint_worker.current_task.mask_ready[None])
|
||||
inpaint_mask = torch.nn.functional.avg_pool2d(inpaint_mask, (8, 8))
|
||||
inpaint_mask = torch.nn.functional.interpolate(inpaint_mask, (H, W), mode='bilinear')
|
||||
progressbar(13, 'VAE Inpaint encoding ...')
|
||||
|
||||
latent_after_swap = None
|
||||
inpaint_pixel_fill = core.numpy_to_pytorch(inpaint_worker.current_task.interested_fill)
|
||||
inpaint_pixel_image = core.numpy_to_pytorch(inpaint_worker.current_task.interested_image)
|
||||
inpaint_pixel_mask = core.numpy_to_pytorch(inpaint_worker.current_task.interested_mask)
|
||||
|
||||
latent_inpaint, latent_mask = core.encode_vae_inpaint(
|
||||
mask=inpaint_pixel_mask,
|
||||
vae=pipeline.final_vae,
|
||||
pixels=inpaint_pixel_image)
|
||||
|
||||
latent_swap = None
|
||||
if pipeline.final_refiner_vae is not None:
|
||||
progressbar(13, 'VAE SD15 encoding ...')
|
||||
latent_after_swap = core.encode_vae(vae=pipeline.final_refiner_vae, pixels=inpaint_pixels)['samples']
|
||||
progressbar(13, 'VAE Inpaint SD15 encoding ...')
|
||||
latent_swap = core.encode_vae(
|
||||
vae=pipeline.final_refiner_vae,
|
||||
pixels=inpaint_pixel_fill)['samples']
|
||||
|
||||
inpaint_worker.current_task.load_latent(latent=inpaint_latent, mask=inpaint_mask,
|
||||
latent_after_swap=latent_after_swap)
|
||||
progressbar(13, 'VAE encoding ...')
|
||||
latent_fill = core.encode_vae(
|
||||
vae=pipeline.final_vae,
|
||||
pixels=inpaint_pixel_fill)['samples']
|
||||
|
||||
progressbar(13, 'VAE inpaint encoding ...')
|
||||
inpaint_worker.current_task.load_latent(latent_fill=latent_fill,
|
||||
latent_inpaint=latent_inpaint,
|
||||
latent_mask=latent_mask,
|
||||
latent_swap=latent_swap,
|
||||
inpaint_head_model_path=inpaint_head_model_path)
|
||||
|
||||
inpaint_mask = (inpaint_worker.current_task.mask_ready > 0).astype(np.float32)
|
||||
inpaint_mask = torch.tensor(inpaint_mask).float()
|
||||
|
||||
vae_dict = core.encode_vae_inpaint(
|
||||
mask=inpaint_mask, vae=pipeline.final_vae, pixels=inpaint_pixels)
|
||||
|
||||
inpaint_latent = vae_dict['samples']
|
||||
inpaint_mask = vae_dict['noise_mask']
|
||||
inpaint_worker.current_task.load_inpaint_guidance(latent=inpaint_latent, mask=inpaint_mask,
|
||||
model_path=inpaint_head_model_path)
|
||||
|
||||
B, C, H, W = inpaint_latent.shape
|
||||
final_height, final_width = inpaint_worker.current_task.image_raw.shape[:2]
|
||||
B, C, H, W = latent_fill.shape
|
||||
height, width = H * 8, W * 8
|
||||
final_height, final_width = inpaint_worker.current_task.image.shape[:2]
|
||||
initial_latent = {'samples': latent_fill}
|
||||
print(f'Final resolution is {str((final_height, final_width))}, latent is {str((height, width))}.')
|
||||
|
||||
if 'cn' in goals:
|
||||
|
||||
@ -18,7 +18,7 @@ import fcbh.samplers
|
||||
import fcbh.latent_formats
|
||||
|
||||
from fcbh.sd import load_checkpoint_guess_config
|
||||
from nodes import VAEDecode, EmptyLatentImage, VAEEncode, VAEEncodeTiled, VAEDecodeTiled, VAEEncodeForInpaint, \
|
||||
from nodes import VAEDecode, EmptyLatentImage, VAEEncode, VAEEncodeTiled, VAEDecodeTiled, \
|
||||
ControlNetApplyAdvanced
|
||||
from fcbh_extras.nodes_freelunch import FreeU_V2
|
||||
from fcbh.sample import prepare_mask
|
||||
@ -32,7 +32,6 @@ opVAEDecode = VAEDecode()
|
||||
opVAEEncode = VAEEncode()
|
||||
opVAEDecodeTiled = VAEDecodeTiled()
|
||||
opVAEEncodeTiled = VAEEncodeTiled()
|
||||
opVAEEncodeForInpaint = VAEEncodeForInpaint()
|
||||
opControlNetApplyAdvanced = ControlNetApplyAdvanced()
|
||||
opFreeU = FreeU_V2()
|
||||
|
||||
@ -130,7 +129,21 @@ def encode_vae(vae, pixels, tiled=False):
|
||||
@torch.no_grad()
|
||||
@torch.inference_mode()
|
||||
def encode_vae_inpaint(vae, pixels, mask):
|
||||
return opVAEEncodeForInpaint.encode(pixels=pixels, vae=vae, mask=mask)[0]
|
||||
assert mask.ndim == 3 and pixels.ndim == 4
|
||||
assert mask.shape[-1] == pixels.shape[-2]
|
||||
assert mask.shape[-2] == pixels.shape[-3]
|
||||
|
||||
w = mask.round()[..., None]
|
||||
pixels = pixels * (1 - w) + 0.5 * w
|
||||
|
||||
latent = vae.encode(pixels)
|
||||
B, C, H, W = latent.shape
|
||||
|
||||
latent_mask = mask[:, None, :, :]
|
||||
latent_mask = torch.nn.functional.interpolate(latent_mask, size=(H * 8, W * 8), mode="bilinear").round()
|
||||
latent_mask = torch.nn.functional.max_pool2d(latent_mask, (8, 8)).round()
|
||||
|
||||
return latent, latent_mask
|
||||
|
||||
|
||||
class VAEApprox(torch.nn.Module):
|
||||
|
||||
@ -445,6 +445,9 @@ def process_diffusion(positive_cond, negative_cond, steps, switch, width, height
|
||||
decoded_latent = core.decode_vae(vae=target_model, latent_image=sampled_latent, tiled=tiled)
|
||||
|
||||
if refiner_swap_method == 'vae':
|
||||
if modules.inpaint_worker.current_task is not None:
|
||||
modules.inpaint_worker.current_task.unswap()
|
||||
|
||||
sample_hijack.history_record = []
|
||||
core.ksampler(
|
||||
model=final_unet,
|
||||
@ -517,9 +520,6 @@ def process_diffusion(positive_cond, negative_cond, steps, switch, width, height
|
||||
noise=refiner_noise
|
||||
)
|
||||
|
||||
if modules.inpaint_worker.current_task is not None:
|
||||
modules.inpaint_worker.current_task.swap()
|
||||
|
||||
target_model = final_refiner_vae
|
||||
if target_model is None:
|
||||
target_model = final_vae
|
||||
|
||||
@ -43,6 +43,12 @@ def morphological_open(x):
|
||||
return x_int32.clip(0, 255).astype(np.uint8)
|
||||
|
||||
|
||||
def up255(x, t=0):
|
||||
y = np.zeros_like(x).astype(np.uint8)
|
||||
y[x > t] = 255
|
||||
return y
|
||||
|
||||
|
||||
def imsave(x, path):
|
||||
x = Image.fromarray(x)
|
||||
x.save(path)
|
||||
@ -75,21 +81,25 @@ def compute_initial_abcd(x):
|
||||
b = np.max(indices[0]) + 65
|
||||
c = np.min(indices[1]) - 64
|
||||
d = np.max(indices[1]) + 65
|
||||
abp = (b + a) // 2
|
||||
abm = (b - a) // 2
|
||||
cdp = (d + c) // 2
|
||||
cdm = (d - c) // 2
|
||||
l = max(abm, cdm)
|
||||
a = abp - l
|
||||
b = abp + l
|
||||
c = cdp - l
|
||||
d = cdp + l
|
||||
a, b, c, d = regulate_abcd(x, a, b, c, d)
|
||||
return a, b, c, d
|
||||
|
||||
|
||||
def area_abcd(a, b, c, d):
|
||||
return (b - a) * (d - c)
|
||||
|
||||
|
||||
def solve_abcd(x, a, b, c, d, outpaint):
|
||||
H, W = x.shape[:2]
|
||||
if outpaint:
|
||||
return 0, H, 0, W
|
||||
min_area = (min(H, W) ** 2) * 0.5
|
||||
while True:
|
||||
if area_abcd(a, b, c, d) >= min_area:
|
||||
if b - a > H * 0.618 and d - c > W * 0.618:
|
||||
break
|
||||
|
||||
add_h = (b - a) < (d - c)
|
||||
@ -119,7 +129,7 @@ def fooocus_fill(image, mask):
|
||||
area = np.where(mask < 127)
|
||||
store = raw_image[area]
|
||||
|
||||
for k, repeats in [(64, 4), (32, 4), (16, 4), (4, 4), (2, 4)]:
|
||||
for k, repeats in [(512, 2), (256, 2), (128, 4), (64, 4), (33, 8), (15, 8), (5, 16), (3, 16)]:
|
||||
for _ in range(repeats):
|
||||
current_image = box_blur(current_image, k)
|
||||
current_image[area] = store
|
||||
@ -129,98 +139,107 @@ def fooocus_fill(image, mask):
|
||||
|
||||
class InpaintWorker:
|
||||
def __init__(self, image, mask, is_outpaint):
|
||||
# mask processing
|
||||
self.mask_raw_soft = morphological_open(mask)
|
||||
self.mask_raw_fg = (self.mask_raw_soft == 255).astype(np.uint8) * 255
|
||||
self.mask_raw_bg = (self.mask_raw_soft == 0).astype(np.uint8) * 255
|
||||
self.mask_raw_trim = 255 - np.maximum(self.mask_raw_fg, self.mask_raw_bg)
|
||||
|
||||
# image processing
|
||||
self.image_raw = fooocus_fill(image, self.mask_raw_fg)
|
||||
|
||||
# log all images
|
||||
# imsave(self.image_raw, 'image_raw.png')
|
||||
# imsave(self.mask_raw_soft, 'mask_raw_soft.png')
|
||||
# imsave(self.mask_raw_fg, 'mask_raw_fg.png')
|
||||
# imsave(self.mask_raw_bg, 'mask_raw_bg.png')
|
||||
# imsave(self.mask_raw_trim, 'mask_raw_trim.png')
|
||||
|
||||
# compute abcd
|
||||
a, b, c, d = compute_initial_abcd(self.mask_raw_bg < 127)
|
||||
a, b, c, d = solve_abcd(self.mask_raw_bg, a, b, c, d, outpaint=is_outpaint)
|
||||
a, b, c, d = compute_initial_abcd(mask > 0)
|
||||
a, b, c, d = solve_abcd(mask, a, b, c, d, outpaint=is_outpaint)
|
||||
|
||||
# interested area
|
||||
self.interested_area = (a, b, c, d)
|
||||
self.mask_interested_soft = self.mask_raw_soft[a:b, c:d]
|
||||
self.mask_interested_fg = self.mask_raw_fg[a:b, c:d]
|
||||
self.mask_interested_bg = self.mask_raw_bg[a:b, c:d]
|
||||
self.mask_interested_trim = self.mask_raw_trim[a:b, c:d]
|
||||
self.image_interested = self.image_raw[a:b, c:d]
|
||||
self.interested_mask = mask[a:b, c:d]
|
||||
self.interested_image = image[a:b, c:d]
|
||||
|
||||
# resize to make images ready for diffusion
|
||||
H, W, C = self.image_interested.shape
|
||||
k = (1024.0 ** 2.0 / float(H * W)) ** 0.5
|
||||
H, W, C = self.interested_image.shape
|
||||
k = ((1024.0 ** 2.0) / float(H * W)) ** 0.5
|
||||
H = int(np.ceil(float(H) * k / 16.0)) * 16
|
||||
W = int(np.ceil(float(W) * k / 16.0)) * 16
|
||||
self.image_ready = resample_image(self.image_interested, W, H)
|
||||
self.mask_ready = resample_image(self.mask_interested_soft, W, H)
|
||||
self.interested_mask = up255(resample_image(self.interested_mask, W, H), t=127)
|
||||
self.interested_image = resample_image(self.interested_image, W, H)
|
||||
self.interested_fill = fooocus_fill(self.interested_image, self.interested_mask)
|
||||
|
||||
# soft pixels
|
||||
self.mask = morphological_open(mask)
|
||||
self.image = image
|
||||
|
||||
# ending
|
||||
self.latent = None
|
||||
self.latent_after_swap = None
|
||||
self.swapped = False
|
||||
self.latent_mask = None
|
||||
self.inpaint_head_feature = None
|
||||
return
|
||||
|
||||
def load_inpaint_guidance(self, latent, mask, model_path):
|
||||
def load_latent(self,
|
||||
latent_fill,
|
||||
latent_inpaint,
|
||||
latent_mask,
|
||||
latent_swap=None,
|
||||
inpaint_head_model_path=None):
|
||||
|
||||
global inpaint_head
|
||||
assert inpaint_head_model_path is not None
|
||||
|
||||
self.latent = latent_fill
|
||||
self.latent_mask = latent_mask
|
||||
self.latent_after_swap = latent_swap
|
||||
|
||||
if inpaint_head is None:
|
||||
inpaint_head = InpaintHead()
|
||||
sd = torch.load(model_path, map_location='cpu')
|
||||
sd = torch.load(inpaint_head_model_path, map_location='cpu')
|
||||
inpaint_head.load_state_dict(sd)
|
||||
process_latent_in = pipeline.xl_base_patched.unet.model.process_latent_in
|
||||
|
||||
latent = process_latent_in(latent)
|
||||
B, C, H, W = latent.shape
|
||||
|
||||
mask = torch.nn.functional.interpolate(mask, size=(H, W), mode="bilinear")
|
||||
mask = mask.round()
|
||||
|
||||
feed = torch.cat([mask, latent], dim=1)
|
||||
feed = torch.cat([
|
||||
latent_mask,
|
||||
pipeline.xl_base_patched.unet.model.process_latent_in(latent_inpaint)
|
||||
], dim=1)
|
||||
|
||||
inpaint_head.to(device=feed.device, dtype=feed.dtype)
|
||||
self.inpaint_head_feature = inpaint_head(feed)
|
||||
|
||||
return
|
||||
|
||||
def load_latent(self, latent, mask, latent_after_swap=None):
|
||||
self.latent = latent
|
||||
self.latent_mask = mask
|
||||
self.latent_after_swap = latent_after_swap
|
||||
|
||||
def swap(self):
|
||||
if self.latent_after_swap is not None:
|
||||
self.latent, self.latent_after_swap = self.latent_after_swap, self.latent
|
||||
if self.swapped:
|
||||
return
|
||||
|
||||
if self.latent is None:
|
||||
return
|
||||
|
||||
if self.latent_after_swap is None:
|
||||
return
|
||||
|
||||
self.latent, self.latent_after_swap = self.latent_after_swap, self.latent
|
||||
self.swapped = True
|
||||
return
|
||||
|
||||
def unswap(self):
|
||||
if not self.swapped:
|
||||
return
|
||||
|
||||
if self.latent is None:
|
||||
return
|
||||
|
||||
if self.latent_after_swap is None:
|
||||
return
|
||||
|
||||
self.latent, self.latent_after_swap = self.latent_after_swap, self.latent
|
||||
self.swapped = False
|
||||
return
|
||||
|
||||
def color_correction(self, img):
|
||||
fg = img.astype(np.float32)
|
||||
bg = self.image_raw.copy().astype(np.float32)
|
||||
w = self.mask_raw_soft[:, :, None].astype(np.float32) / 255.0
|
||||
bg = self.image.copy().astype(np.float32)
|
||||
w = self.mask[:, :, None].astype(np.float32) / 255.0
|
||||
y = fg * w + bg * (1 - w)
|
||||
return y.clip(0, 255).astype(np.uint8)
|
||||
|
||||
def post_process(self, img):
|
||||
a, b, c, d = self.interested_area
|
||||
content = resample_image(img, d - c, b - a)
|
||||
result = self.image_raw.copy()
|
||||
result = self.image.copy()
|
||||
result[a:b, c:d] = content
|
||||
result = self.color_correction(result)
|
||||
return result
|
||||
|
||||
def visualize_mask_processing(self):
|
||||
result = self.image_raw // 4
|
||||
a, b, c, d = self.interested_area
|
||||
result[a:b, c:d] += 64
|
||||
result[self.mask_raw_trim > 127] += 64
|
||||
result[self.mask_raw_fg > 127] += 128
|
||||
return [result, self.mask_raw_soft, self.image_ready, self.mask_ready]
|
||||
return [self.interested_fill, self.interested_mask, self.image, self.mask]
|
||||
|
||||
|
||||
@ -1,3 +1,7 @@
|
||||
# 2.1.703
|
||||
|
||||
* Fixed many previous problems related to inpaint.
|
||||
|
||||
# 2.1.702
|
||||
|
||||
* Corrected reading empty negative prompt from config (it shouldn't turn into None).
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user