547 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			547 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#!/usr/bin/env python3
 | 
						|
# -*- coding: utf-8 -*-
 | 
						|
 | 
						|
from __future__ import annotations
 | 
						|
 | 
						|
from collections import OrderedDict
 | 
						|
try:
 | 
						|
    from typing import Literal
 | 
						|
except ImportError:
 | 
						|
    from typing_extensions import Literal
 | 
						|
 | 
						|
import torch
 | 
						|
import torch.nn as nn
 | 
						|
 | 
						|
####################
 | 
						|
# Basic blocks
 | 
						|
####################
 | 
						|
 | 
						|
 | 
						|
def act(act_type: str, inplace=True, neg_slope=0.2, n_prelu=1):
 | 
						|
    # helper selecting activation
 | 
						|
    # neg_slope: for leakyrelu and init of prelu
 | 
						|
    # n_prelu: for p_relu num_parameters
 | 
						|
    act_type = act_type.lower()
 | 
						|
    if act_type == "relu":
 | 
						|
        layer = nn.ReLU(inplace)
 | 
						|
    elif act_type == "leakyrelu":
 | 
						|
        layer = nn.LeakyReLU(neg_slope, inplace)
 | 
						|
    elif act_type == "prelu":
 | 
						|
        layer = nn.PReLU(num_parameters=n_prelu, init=neg_slope)
 | 
						|
    else:
 | 
						|
        raise NotImplementedError(
 | 
						|
            "activation layer [{:s}] is not found".format(act_type)
 | 
						|
        )
 | 
						|
    return layer
 | 
						|
 | 
						|
 | 
						|
def norm(norm_type: str, nc: int):
 | 
						|
    # helper selecting normalization layer
 | 
						|
    norm_type = norm_type.lower()
 | 
						|
    if norm_type == "batch":
 | 
						|
        layer = nn.BatchNorm2d(nc, affine=True)
 | 
						|
    elif norm_type == "instance":
 | 
						|
        layer = nn.InstanceNorm2d(nc, affine=False)
 | 
						|
    else:
 | 
						|
        raise NotImplementedError(
 | 
						|
            "normalization layer [{:s}] is not found".format(norm_type)
 | 
						|
        )
 | 
						|
    return layer
 | 
						|
 | 
						|
 | 
						|
def pad(pad_type: str, padding):
 | 
						|
    # helper selecting padding layer
 | 
						|
    # if padding is 'zero', do by conv layers
 | 
						|
    pad_type = pad_type.lower()
 | 
						|
    if padding == 0:
 | 
						|
        return None
 | 
						|
    if pad_type == "reflect":
 | 
						|
        layer = nn.ReflectionPad2d(padding)
 | 
						|
    elif pad_type == "replicate":
 | 
						|
        layer = nn.ReplicationPad2d(padding)
 | 
						|
    else:
 | 
						|
        raise NotImplementedError(
 | 
						|
            "padding layer [{:s}] is not implemented".format(pad_type)
 | 
						|
        )
 | 
						|
    return layer
 | 
						|
 | 
						|
 | 
						|
def get_valid_padding(kernel_size, dilation):
 | 
						|
    kernel_size = kernel_size + (kernel_size - 1) * (dilation - 1)
 | 
						|
    padding = (kernel_size - 1) // 2
 | 
						|
    return padding
 | 
						|
 | 
						|
 | 
						|
class ConcatBlock(nn.Module):
 | 
						|
    # Concat the output of a submodule to its input
 | 
						|
    def __init__(self, submodule):
 | 
						|
        super(ConcatBlock, self).__init__()
 | 
						|
        self.sub = submodule
 | 
						|
 | 
						|
    def forward(self, x):
 | 
						|
        output = torch.cat((x, self.sub(x)), dim=1)
 | 
						|
        return output
 | 
						|
 | 
						|
    def __repr__(self):
 | 
						|
        tmpstr = "Identity .. \n|"
 | 
						|
        modstr = self.sub.__repr__().replace("\n", "\n|")
 | 
						|
        tmpstr = tmpstr + modstr
 | 
						|
        return tmpstr
 | 
						|
 | 
						|
 | 
						|
class ShortcutBlock(nn.Module):
 | 
						|
    # Elementwise sum the output of a submodule to its input
 | 
						|
    def __init__(self, submodule):
 | 
						|
        super(ShortcutBlock, self).__init__()
 | 
						|
        self.sub = submodule
 | 
						|
 | 
						|
    def forward(self, x):
 | 
						|
        output = x + self.sub(x)
 | 
						|
        return output
 | 
						|
 | 
						|
    def __repr__(self):
 | 
						|
        tmpstr = "Identity + \n|"
 | 
						|
        modstr = self.sub.__repr__().replace("\n", "\n|")
 | 
						|
        tmpstr = tmpstr + modstr
 | 
						|
        return tmpstr
 | 
						|
 | 
						|
 | 
						|
class ShortcutBlockSPSR(nn.Module):
 | 
						|
    # Elementwise sum the output of a submodule to its input
 | 
						|
    def __init__(self, submodule):
 | 
						|
        super(ShortcutBlockSPSR, self).__init__()
 | 
						|
        self.sub = submodule
 | 
						|
 | 
						|
    def forward(self, x):
 | 
						|
        return x, self.sub
 | 
						|
 | 
						|
    def __repr__(self):
 | 
						|
        tmpstr = "Identity + \n|"
 | 
						|
        modstr = self.sub.__repr__().replace("\n", "\n|")
 | 
						|
        tmpstr = tmpstr + modstr
 | 
						|
        return tmpstr
 | 
						|
 | 
						|
 | 
						|
def sequential(*args):
 | 
						|
    # Flatten Sequential. It unwraps nn.Sequential.
 | 
						|
    if len(args) == 1:
 | 
						|
        if isinstance(args[0], OrderedDict):
 | 
						|
            raise NotImplementedError("sequential does not support OrderedDict input.")
 | 
						|
        return args[0]  # No sequential is needed.
 | 
						|
    modules = []
 | 
						|
    for module in args:
 | 
						|
        if isinstance(module, nn.Sequential):
 | 
						|
            for submodule in module.children():
 | 
						|
                modules.append(submodule)
 | 
						|
        elif isinstance(module, nn.Module):
 | 
						|
            modules.append(module)
 | 
						|
    return nn.Sequential(*modules)
 | 
						|
 | 
						|
 | 
						|
ConvMode = Literal["CNA", "NAC", "CNAC"]
 | 
						|
 | 
						|
 | 
						|
# 2x2x2 Conv Block
 | 
						|
def conv_block_2c2(
 | 
						|
    in_nc,
 | 
						|
    out_nc,
 | 
						|
    act_type="relu",
 | 
						|
):
 | 
						|
    return sequential(
 | 
						|
        nn.Conv2d(in_nc, out_nc, kernel_size=2, padding=1),
 | 
						|
        nn.Conv2d(out_nc, out_nc, kernel_size=2, padding=0),
 | 
						|
        act(act_type) if act_type else None,
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
def conv_block(
 | 
						|
    in_nc: int,
 | 
						|
    out_nc: int,
 | 
						|
    kernel_size,
 | 
						|
    stride=1,
 | 
						|
    dilation=1,
 | 
						|
    groups=1,
 | 
						|
    bias=True,
 | 
						|
    pad_type="zero",
 | 
						|
    norm_type: str | None = None,
 | 
						|
    act_type: str | None = "relu",
 | 
						|
    mode: ConvMode = "CNA",
 | 
						|
    c2x2=False,
 | 
						|
):
 | 
						|
    """
 | 
						|
    Conv layer with padding, normalization, activation
 | 
						|
    mode: CNA --> Conv -> Norm -> Act
 | 
						|
        NAC --> Norm -> Act --> Conv (Identity Mappings in Deep Residual Networks, ECCV16)
 | 
						|
    """
 | 
						|
 | 
						|
    if c2x2:
 | 
						|
        return conv_block_2c2(in_nc, out_nc, act_type=act_type)
 | 
						|
 | 
						|
    assert mode in ("CNA", "NAC", "CNAC"), "Wrong conv mode [{:s}]".format(mode)
 | 
						|
    padding = get_valid_padding(kernel_size, dilation)
 | 
						|
    p = pad(pad_type, padding) if pad_type and pad_type != "zero" else None
 | 
						|
    padding = padding if pad_type == "zero" else 0
 | 
						|
 | 
						|
    c = nn.Conv2d(
 | 
						|
        in_nc,
 | 
						|
        out_nc,
 | 
						|
        kernel_size=kernel_size,
 | 
						|
        stride=stride,
 | 
						|
        padding=padding,
 | 
						|
        dilation=dilation,
 | 
						|
        bias=bias,
 | 
						|
        groups=groups,
 | 
						|
    )
 | 
						|
    a = act(act_type) if act_type else None
 | 
						|
    if mode in ("CNA", "CNAC"):
 | 
						|
        n = norm(norm_type, out_nc) if norm_type else None
 | 
						|
        return sequential(p, c, n, a)
 | 
						|
    elif mode == "NAC":
 | 
						|
        if norm_type is None and act_type is not None:
 | 
						|
            a = act(act_type, inplace=False)
 | 
						|
            # Important!
 | 
						|
            # input----ReLU(inplace)----Conv--+----output
 | 
						|
            #        |________________________|
 | 
						|
            # inplace ReLU will modify the input, therefore wrong output
 | 
						|
        n = norm(norm_type, in_nc) if norm_type else None
 | 
						|
        return sequential(n, a, p, c)
 | 
						|
    else:
 | 
						|
        assert False, f"Invalid conv mode {mode}"
 | 
						|
 | 
						|
 | 
						|
####################
 | 
						|
# Useful blocks
 | 
						|
####################
 | 
						|
 | 
						|
 | 
						|
class ResNetBlock(nn.Module):
 | 
						|
    """
 | 
						|
    ResNet Block, 3-3 style
 | 
						|
    with extra residual scaling used in EDSR
 | 
						|
    (Enhanced Deep Residual Networks for Single Image Super-Resolution, CVPRW 17)
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        in_nc,
 | 
						|
        mid_nc,
 | 
						|
        out_nc,
 | 
						|
        kernel_size=3,
 | 
						|
        stride=1,
 | 
						|
        dilation=1,
 | 
						|
        groups=1,
 | 
						|
        bias=True,
 | 
						|
        pad_type="zero",
 | 
						|
        norm_type=None,
 | 
						|
        act_type="relu",
 | 
						|
        mode: ConvMode = "CNA",
 | 
						|
        res_scale=1,
 | 
						|
    ):
 | 
						|
        super(ResNetBlock, self).__init__()
 | 
						|
        conv0 = conv_block(
 | 
						|
            in_nc,
 | 
						|
            mid_nc,
 | 
						|
            kernel_size,
 | 
						|
            stride,
 | 
						|
            dilation,
 | 
						|
            groups,
 | 
						|
            bias,
 | 
						|
            pad_type,
 | 
						|
            norm_type,
 | 
						|
            act_type,
 | 
						|
            mode,
 | 
						|
        )
 | 
						|
        if mode == "CNA":
 | 
						|
            act_type = None
 | 
						|
        if mode == "CNAC":  # Residual path: |-CNAC-|
 | 
						|
            act_type = None
 | 
						|
            norm_type = None
 | 
						|
        conv1 = conv_block(
 | 
						|
            mid_nc,
 | 
						|
            out_nc,
 | 
						|
            kernel_size,
 | 
						|
            stride,
 | 
						|
            dilation,
 | 
						|
            groups,
 | 
						|
            bias,
 | 
						|
            pad_type,
 | 
						|
            norm_type,
 | 
						|
            act_type,
 | 
						|
            mode,
 | 
						|
        )
 | 
						|
        # if in_nc != out_nc:
 | 
						|
        #     self.project = conv_block(in_nc, out_nc, 1, stride, dilation, 1, bias, pad_type, \
 | 
						|
        #         None, None)
 | 
						|
        #     print('Need a projecter in ResNetBlock.')
 | 
						|
        # else:
 | 
						|
        #     self.project = lambda x:x
 | 
						|
        self.res = sequential(conv0, conv1)
 | 
						|
        self.res_scale = res_scale
 | 
						|
 | 
						|
    def forward(self, x):
 | 
						|
        res = self.res(x).mul(self.res_scale)
 | 
						|
        return x + res
 | 
						|
 | 
						|
 | 
						|
class RRDB(nn.Module):
 | 
						|
    """
 | 
						|
    Residual in Residual Dense Block
 | 
						|
    (ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks)
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        nf,
 | 
						|
        kernel_size=3,
 | 
						|
        gc=32,
 | 
						|
        stride=1,
 | 
						|
        bias: bool = True,
 | 
						|
        pad_type="zero",
 | 
						|
        norm_type=None,
 | 
						|
        act_type="leakyrelu",
 | 
						|
        mode: ConvMode = "CNA",
 | 
						|
        _convtype="Conv2D",
 | 
						|
        _spectral_norm=False,
 | 
						|
        plus=False,
 | 
						|
        c2x2=False,
 | 
						|
    ):
 | 
						|
        super(RRDB, self).__init__()
 | 
						|
        self.RDB1 = ResidualDenseBlock_5C(
 | 
						|
            nf,
 | 
						|
            kernel_size,
 | 
						|
            gc,
 | 
						|
            stride,
 | 
						|
            bias,
 | 
						|
            pad_type,
 | 
						|
            norm_type,
 | 
						|
            act_type,
 | 
						|
            mode,
 | 
						|
            plus=plus,
 | 
						|
            c2x2=c2x2,
 | 
						|
        )
 | 
						|
        self.RDB2 = ResidualDenseBlock_5C(
 | 
						|
            nf,
 | 
						|
            kernel_size,
 | 
						|
            gc,
 | 
						|
            stride,
 | 
						|
            bias,
 | 
						|
            pad_type,
 | 
						|
            norm_type,
 | 
						|
            act_type,
 | 
						|
            mode,
 | 
						|
            plus=plus,
 | 
						|
            c2x2=c2x2,
 | 
						|
        )
 | 
						|
        self.RDB3 = ResidualDenseBlock_5C(
 | 
						|
            nf,
 | 
						|
            kernel_size,
 | 
						|
            gc,
 | 
						|
            stride,
 | 
						|
            bias,
 | 
						|
            pad_type,
 | 
						|
            norm_type,
 | 
						|
            act_type,
 | 
						|
            mode,
 | 
						|
            plus=plus,
 | 
						|
            c2x2=c2x2,
 | 
						|
        )
 | 
						|
 | 
						|
    def forward(self, x):
 | 
						|
        out = self.RDB1(x)
 | 
						|
        out = self.RDB2(out)
 | 
						|
        out = self.RDB3(out)
 | 
						|
        return out * 0.2 + x
 | 
						|
 | 
						|
 | 
						|
class ResidualDenseBlock_5C(nn.Module):
 | 
						|
    """
 | 
						|
    Residual Dense Block
 | 
						|
    style: 5 convs
 | 
						|
    The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18)
 | 
						|
    Modified options that can be used:
 | 
						|
        - "Partial Convolution based Padding" arXiv:1811.11718
 | 
						|
        - "Spectral normalization" arXiv:1802.05957
 | 
						|
        - "ICASSP 2020 - ESRGAN+ : Further Improving ESRGAN" N. C.
 | 
						|
            {Rakotonirina} and A. {Rasoanaivo}
 | 
						|
 | 
						|
    Args:
 | 
						|
        nf (int): Channel number of intermediate features (num_feat).
 | 
						|
        gc (int): Channels for each growth (num_grow_ch: growth channel,
 | 
						|
            i.e. intermediate channels).
 | 
						|
        convtype (str): the type of convolution to use. Default: 'Conv2D'
 | 
						|
        gaussian_noise (bool): enable the ESRGAN+ gaussian noise (no new
 | 
						|
            trainable parameters)
 | 
						|
        plus (bool): enable the additional residual paths from ESRGAN+
 | 
						|
            (adds trainable parameters)
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        nf=64,
 | 
						|
        kernel_size=3,
 | 
						|
        gc=32,
 | 
						|
        stride=1,
 | 
						|
        bias: bool = True,
 | 
						|
        pad_type="zero",
 | 
						|
        norm_type=None,
 | 
						|
        act_type="leakyrelu",
 | 
						|
        mode: ConvMode = "CNA",
 | 
						|
        plus=False,
 | 
						|
        c2x2=False,
 | 
						|
    ):
 | 
						|
        super(ResidualDenseBlock_5C, self).__init__()
 | 
						|
 | 
						|
        ## +
 | 
						|
        self.conv1x1 = conv1x1(nf, gc) if plus else None
 | 
						|
        ## +
 | 
						|
 | 
						|
        self.conv1 = conv_block(
 | 
						|
            nf,
 | 
						|
            gc,
 | 
						|
            kernel_size,
 | 
						|
            stride,
 | 
						|
            bias=bias,
 | 
						|
            pad_type=pad_type,
 | 
						|
            norm_type=norm_type,
 | 
						|
            act_type=act_type,
 | 
						|
            mode=mode,
 | 
						|
            c2x2=c2x2,
 | 
						|
        )
 | 
						|
        self.conv2 = conv_block(
 | 
						|
            nf + gc,
 | 
						|
            gc,
 | 
						|
            kernel_size,
 | 
						|
            stride,
 | 
						|
            bias=bias,
 | 
						|
            pad_type=pad_type,
 | 
						|
            norm_type=norm_type,
 | 
						|
            act_type=act_type,
 | 
						|
            mode=mode,
 | 
						|
            c2x2=c2x2,
 | 
						|
        )
 | 
						|
        self.conv3 = conv_block(
 | 
						|
            nf + 2 * gc,
 | 
						|
            gc,
 | 
						|
            kernel_size,
 | 
						|
            stride,
 | 
						|
            bias=bias,
 | 
						|
            pad_type=pad_type,
 | 
						|
            norm_type=norm_type,
 | 
						|
            act_type=act_type,
 | 
						|
            mode=mode,
 | 
						|
            c2x2=c2x2,
 | 
						|
        )
 | 
						|
        self.conv4 = conv_block(
 | 
						|
            nf + 3 * gc,
 | 
						|
            gc,
 | 
						|
            kernel_size,
 | 
						|
            stride,
 | 
						|
            bias=bias,
 | 
						|
            pad_type=pad_type,
 | 
						|
            norm_type=norm_type,
 | 
						|
            act_type=act_type,
 | 
						|
            mode=mode,
 | 
						|
            c2x2=c2x2,
 | 
						|
        )
 | 
						|
        if mode == "CNA":
 | 
						|
            last_act = None
 | 
						|
        else:
 | 
						|
            last_act = act_type
 | 
						|
        self.conv5 = conv_block(
 | 
						|
            nf + 4 * gc,
 | 
						|
            nf,
 | 
						|
            3,
 | 
						|
            stride,
 | 
						|
            bias=bias,
 | 
						|
            pad_type=pad_type,
 | 
						|
            norm_type=norm_type,
 | 
						|
            act_type=last_act,
 | 
						|
            mode=mode,
 | 
						|
            c2x2=c2x2,
 | 
						|
        )
 | 
						|
 | 
						|
    def forward(self, x):
 | 
						|
        x1 = self.conv1(x)
 | 
						|
        x2 = self.conv2(torch.cat((x, x1), 1))
 | 
						|
        if self.conv1x1:
 | 
						|
            # pylint: disable=not-callable
 | 
						|
            x2 = x2 + self.conv1x1(x)  # +
 | 
						|
        x3 = self.conv3(torch.cat((x, x1, x2), 1))
 | 
						|
        x4 = self.conv4(torch.cat((x, x1, x2, x3), 1))
 | 
						|
        if self.conv1x1:
 | 
						|
            x4 = x4 + x2  # +
 | 
						|
        x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
 | 
						|
        return x5 * 0.2 + x
 | 
						|
 | 
						|
 | 
						|
def conv1x1(in_planes, out_planes, stride=1):
 | 
						|
    return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
 | 
						|
 | 
						|
 | 
						|
####################
 | 
						|
# Upsampler
 | 
						|
####################
 | 
						|
 | 
						|
 | 
						|
def pixelshuffle_block(
 | 
						|
    in_nc: int,
 | 
						|
    out_nc: int,
 | 
						|
    upscale_factor=2,
 | 
						|
    kernel_size=3,
 | 
						|
    stride=1,
 | 
						|
    bias=True,
 | 
						|
    pad_type="zero",
 | 
						|
    norm_type: str | None = None,
 | 
						|
    act_type="relu",
 | 
						|
):
 | 
						|
    """
 | 
						|
    Pixel shuffle layer
 | 
						|
    (Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional
 | 
						|
    Neural Network, CVPR17)
 | 
						|
    """
 | 
						|
    conv = conv_block(
 | 
						|
        in_nc,
 | 
						|
        out_nc * (upscale_factor**2),
 | 
						|
        kernel_size,
 | 
						|
        stride,
 | 
						|
        bias=bias,
 | 
						|
        pad_type=pad_type,
 | 
						|
        norm_type=None,
 | 
						|
        act_type=None,
 | 
						|
    )
 | 
						|
    pixel_shuffle = nn.PixelShuffle(upscale_factor)
 | 
						|
 | 
						|
    n = norm(norm_type, out_nc) if norm_type else None
 | 
						|
    a = act(act_type) if act_type else None
 | 
						|
    return sequential(conv, pixel_shuffle, n, a)
 | 
						|
 | 
						|
 | 
						|
def upconv_block(
 | 
						|
    in_nc: int,
 | 
						|
    out_nc: int,
 | 
						|
    upscale_factor=2,
 | 
						|
    kernel_size=3,
 | 
						|
    stride=1,
 | 
						|
    bias=True,
 | 
						|
    pad_type="zero",
 | 
						|
    norm_type: str | None = None,
 | 
						|
    act_type="relu",
 | 
						|
    mode="nearest",
 | 
						|
    c2x2=False,
 | 
						|
):
 | 
						|
    # Up conv
 | 
						|
    # described in https://distill.pub/2016/deconv-checkerboard/
 | 
						|
    upsample = nn.Upsample(scale_factor=upscale_factor, mode=mode)
 | 
						|
    conv = conv_block(
 | 
						|
        in_nc,
 | 
						|
        out_nc,
 | 
						|
        kernel_size,
 | 
						|
        stride,
 | 
						|
        bias=bias,
 | 
						|
        pad_type=pad_type,
 | 
						|
        norm_type=norm_type,
 | 
						|
        act_type=act_type,
 | 
						|
        c2x2=c2x2,
 | 
						|
    )
 | 
						|
    return sequential(upsample, conv)
 |