279 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			279 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # adopted from
 | |
| # https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
 | |
| # and
 | |
| # https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
 | |
| # and
 | |
| # https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
 | |
| #
 | |
| # thanks!
 | |
| 
 | |
| 
 | |
| import os
 | |
| import math
 | |
| import torch
 | |
| import torch.nn as nn
 | |
| import numpy as np
 | |
| from einops import repeat
 | |
| 
 | |
| from fcbh.ldm.util import instantiate_from_config
 | |
| import fcbh.ops
 | |
| 
 | |
| def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
 | |
|     if schedule == "linear":
 | |
|         betas = (
 | |
|                 torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
 | |
|         )
 | |
| 
 | |
|     elif schedule == "cosine":
 | |
|         timesteps = (
 | |
|                 torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
 | |
|         )
 | |
|         alphas = timesteps / (1 + cosine_s) * np.pi / 2
 | |
|         alphas = torch.cos(alphas).pow(2)
 | |
|         alphas = alphas / alphas[0]
 | |
|         betas = 1 - alphas[1:] / alphas[:-1]
 | |
|         betas = np.clip(betas, a_min=0, a_max=0.999)
 | |
| 
 | |
|     elif schedule == "squaredcos_cap_v2":  # used for karlo prior
 | |
|         # return early
 | |
|         return betas_for_alpha_bar(
 | |
|             n_timestep,
 | |
|             lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
 | |
|         )
 | |
| 
 | |
|     elif schedule == "sqrt_linear":
 | |
|         betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
 | |
|     elif schedule == "sqrt":
 | |
|         betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
 | |
|     else:
 | |
|         raise ValueError(f"schedule '{schedule}' unknown.")
 | |
|     return betas.numpy()
 | |
| 
 | |
| 
 | |
| def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
 | |
|     if ddim_discr_method == 'uniform':
 | |
|         c = num_ddpm_timesteps // num_ddim_timesteps
 | |
|         ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
 | |
|     elif ddim_discr_method == 'quad':
 | |
|         ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
 | |
|     else:
 | |
|         raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
 | |
| 
 | |
|     # assert ddim_timesteps.shape[0] == num_ddim_timesteps
 | |
|     # add one to get the final alpha values right (the ones from first scale to data during sampling)
 | |
|     steps_out = ddim_timesteps + 1
 | |
|     if verbose:
 | |
|         print(f'Selected timesteps for ddim sampler: {steps_out}')
 | |
|     return steps_out
 | |
| 
 | |
| 
 | |
| def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
 | |
|     # select alphas for computing the variance schedule
 | |
|     alphas = alphacums[ddim_timesteps]
 | |
|     alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
 | |
| 
 | |
|     # according the the formula provided in https://arxiv.org/abs/2010.02502
 | |
|     sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
 | |
|     if verbose:
 | |
|         print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
 | |
|         print(f'For the chosen value of eta, which is {eta}, '
 | |
|               f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
 | |
|     return sigmas, alphas, alphas_prev
 | |
| 
 | |
| 
 | |
| def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
 | |
|     """
 | |
|     Create a beta schedule that discretizes the given alpha_t_bar function,
 | |
|     which defines the cumulative product of (1-beta) over time from t = [0,1].
 | |
|     :param num_diffusion_timesteps: the number of betas to produce.
 | |
|     :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
 | |
|                       produces the cumulative product of (1-beta) up to that
 | |
|                       part of the diffusion process.
 | |
|     :param max_beta: the maximum beta to use; use values lower than 1 to
 | |
|                      prevent singularities.
 | |
|     """
 | |
|     betas = []
 | |
|     for i in range(num_diffusion_timesteps):
 | |
|         t1 = i / num_diffusion_timesteps
 | |
|         t2 = (i + 1) / num_diffusion_timesteps
 | |
|         betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
 | |
|     return np.array(betas)
 | |
| 
 | |
| 
 | |
| def extract_into_tensor(a, t, x_shape):
 | |
|     b, *_ = t.shape
 | |
|     out = a.gather(-1, t)
 | |
|     return out.reshape(b, *((1,) * (len(x_shape) - 1)))
 | |
| 
 | |
| 
 | |
| def checkpoint(func, inputs, params, flag):
 | |
|     """
 | |
|     Evaluate a function without caching intermediate activations, allowing for
 | |
|     reduced memory at the expense of extra compute in the backward pass.
 | |
|     :param func: the function to evaluate.
 | |
|     :param inputs: the argument sequence to pass to `func`.
 | |
|     :param params: a sequence of parameters `func` depends on but does not
 | |
|                    explicitly take as arguments.
 | |
|     :param flag: if False, disable gradient checkpointing.
 | |
|     """
 | |
|     if flag:
 | |
|         args = tuple(inputs) + tuple(params)
 | |
|         return CheckpointFunction.apply(func, len(inputs), *args)
 | |
|     else:
 | |
|         return func(*inputs)
 | |
| 
 | |
| 
 | |
| class CheckpointFunction(torch.autograd.Function):
 | |
|     @staticmethod
 | |
|     def forward(ctx, run_function, length, *args):
 | |
|         ctx.run_function = run_function
 | |
|         ctx.input_tensors = list(args[:length])
 | |
|         ctx.input_params = list(args[length:])
 | |
|         ctx.gpu_autocast_kwargs = {"enabled": torch.is_autocast_enabled(),
 | |
|                                    "dtype": torch.get_autocast_gpu_dtype(),
 | |
|                                    "cache_enabled": torch.is_autocast_cache_enabled()}
 | |
|         with torch.no_grad():
 | |
|             output_tensors = ctx.run_function(*ctx.input_tensors)
 | |
|         return output_tensors
 | |
| 
 | |
|     @staticmethod
 | |
|     def backward(ctx, *output_grads):
 | |
|         ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
 | |
|         with torch.enable_grad(), \
 | |
|                 torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs):
 | |
|             # Fixes a bug where the first op in run_function modifies the
 | |
|             # Tensor storage in place, which is not allowed for detach()'d
 | |
|             # Tensors.
 | |
|             shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
 | |
|             output_tensors = ctx.run_function(*shallow_copies)
 | |
|         input_grads = torch.autograd.grad(
 | |
|             output_tensors,
 | |
|             ctx.input_tensors + ctx.input_params,
 | |
|             output_grads,
 | |
|             allow_unused=True,
 | |
|         )
 | |
|         del ctx.input_tensors
 | |
|         del ctx.input_params
 | |
|         del output_tensors
 | |
|         return (None, None) + input_grads
 | |
| 
 | |
| 
 | |
| def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
 | |
|     """
 | |
|     Create sinusoidal timestep embeddings.
 | |
|     :param timesteps: a 1-D Tensor of N indices, one per batch element.
 | |
|                       These may be fractional.
 | |
|     :param dim: the dimension of the output.
 | |
|     :param max_period: controls the minimum frequency of the embeddings.
 | |
|     :return: an [N x dim] Tensor of positional embeddings.
 | |
|     """
 | |
|     if not repeat_only:
 | |
|         half = dim // 2
 | |
|         freqs = torch.exp(
 | |
|             -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
 | |
|         ).to(device=timesteps.device)
 | |
|         args = timesteps[:, None].float() * freqs[None]
 | |
|         embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
 | |
|         if dim % 2:
 | |
|             embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
 | |
|     else:
 | |
|         embedding = repeat(timesteps, 'b -> b d', d=dim)
 | |
|     return embedding
 | |
| 
 | |
| 
 | |
| def zero_module(module):
 | |
|     """
 | |
|     Zero out the parameters of a module and return it.
 | |
|     """
 | |
|     for p in module.parameters():
 | |
|         p.detach().zero_()
 | |
|     return module
 | |
| 
 | |
| 
 | |
| def scale_module(module, scale):
 | |
|     """
 | |
|     Scale the parameters of a module and return it.
 | |
|     """
 | |
|     for p in module.parameters():
 | |
|         p.detach().mul_(scale)
 | |
|     return module
 | |
| 
 | |
| 
 | |
| def mean_flat(tensor):
 | |
|     """
 | |
|     Take the mean over all non-batch dimensions.
 | |
|     """
 | |
|     return tensor.mean(dim=list(range(1, len(tensor.shape))))
 | |
| 
 | |
| 
 | |
| def normalization(channels, dtype=None):
 | |
|     """
 | |
|     Make a standard normalization layer.
 | |
|     :param channels: number of input channels.
 | |
|     :return: an nn.Module for normalization.
 | |
|     """
 | |
|     return GroupNorm32(32, channels, dtype=dtype)
 | |
| 
 | |
| 
 | |
| # PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
 | |
| class SiLU(nn.Module):
 | |
|     def forward(self, x):
 | |
|         return x * torch.sigmoid(x)
 | |
| 
 | |
| 
 | |
| class GroupNorm32(nn.GroupNorm):
 | |
|     def forward(self, x):
 | |
|         return super().forward(x.float()).type(x.dtype)
 | |
| 
 | |
| 
 | |
| def conv_nd(dims, *args, **kwargs):
 | |
|     """
 | |
|     Create a 1D, 2D, or 3D convolution module.
 | |
|     """
 | |
|     if dims == 1:
 | |
|         return nn.Conv1d(*args, **kwargs)
 | |
|     elif dims == 2:
 | |
|         return fcbh.ops.Conv2d(*args, **kwargs)
 | |
|     elif dims == 3:
 | |
|         return nn.Conv3d(*args, **kwargs)
 | |
|     raise ValueError(f"unsupported dimensions: {dims}")
 | |
| 
 | |
| 
 | |
| def linear(*args, **kwargs):
 | |
|     """
 | |
|     Create a linear module.
 | |
|     """
 | |
|     return fcbh.ops.Linear(*args, **kwargs)
 | |
| 
 | |
| 
 | |
| def avg_pool_nd(dims, *args, **kwargs):
 | |
|     """
 | |
|     Create a 1D, 2D, or 3D average pooling module.
 | |
|     """
 | |
|     if dims == 1:
 | |
|         return nn.AvgPool1d(*args, **kwargs)
 | |
|     elif dims == 2:
 | |
|         return nn.AvgPool2d(*args, **kwargs)
 | |
|     elif dims == 3:
 | |
|         return nn.AvgPool3d(*args, **kwargs)
 | |
|     raise ValueError(f"unsupported dimensions: {dims}")
 | |
| 
 | |
| 
 | |
| class HybridConditioner(nn.Module):
 | |
| 
 | |
|     def __init__(self, c_concat_config, c_crossattn_config):
 | |
|         super().__init__()
 | |
|         self.concat_conditioner = instantiate_from_config(c_concat_config)
 | |
|         self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
 | |
| 
 | |
|     def forward(self, c_concat, c_crossattn):
 | |
|         c_concat = self.concat_conditioner(c_concat)
 | |
|         c_crossattn = self.crossattn_conditioner(c_crossattn)
 | |
|         return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
 | |
| 
 | |
| 
 | |
| def noise_like(shape, device, repeat=False):
 | |
|     repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
 | |
|     noise = lambda: torch.randn(shape, device=device)
 | |
|     return repeat_noise() if repeat else noise()
 |