246 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			246 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """SAMPLING ONLY."""
 | |
| 
 | |
| import torch
 | |
| import numpy as np
 | |
| from tqdm import tqdm
 | |
| from functools import partial
 | |
| 
 | |
| from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
 | |
| from ldm.models.diffusion.sampling_util import norm_thresholding
 | |
| 
 | |
| 
 | |
| class PLMSSampler(object):
 | |
|     def __init__(self, model, schedule="linear", device=torch.device("cuda"), **kwargs):
 | |
|         super().__init__()
 | |
|         self.model = model
 | |
|         self.ddpm_num_timesteps = model.num_timesteps
 | |
|         self.schedule = schedule
 | |
|         self.device = device
 | |
| 
 | |
|     def register_buffer(self, name, attr):
 | |
|         if type(attr) == torch.Tensor:
 | |
|             if attr.device != self.device:
 | |
|                 attr = attr.to(self.device)
 | |
|         setattr(self, name, attr)
 | |
| 
 | |
|     def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
 | |
|         if ddim_eta != 0:
 | |
|             raise ValueError('ddim_eta must be 0 for PLMS')
 | |
|         self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
 | |
|                                                   num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
 | |
|         alphas_cumprod = self.model.alphas_cumprod
 | |
|         assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
 | |
|         to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
 | |
| 
 | |
|         self.register_buffer('betas', to_torch(self.model.betas))
 | |
|         self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
 | |
|         self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
 | |
| 
 | |
|         # calculations for diffusion q(x_t | x_{t-1}) and others
 | |
|         self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
 | |
|         self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
 | |
|         self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
 | |
|         self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
 | |
|         self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
 | |
| 
 | |
|         # ddim sampling parameters
 | |
|         ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
 | |
|                                                                                    ddim_timesteps=self.ddim_timesteps,
 | |
|                                                                                    eta=ddim_eta,verbose=verbose)
 | |
|         self.register_buffer('ddim_sigmas', ddim_sigmas)
 | |
|         self.register_buffer('ddim_alphas', ddim_alphas)
 | |
|         self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
 | |
|         self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
 | |
|         sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
 | |
|             (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
 | |
|                         1 - self.alphas_cumprod / self.alphas_cumprod_prev))
 | |
|         self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
 | |
| 
 | |
|     @torch.no_grad()
 | |
|     def sample(self,
 | |
|                S,
 | |
|                batch_size,
 | |
|                shape,
 | |
|                conditioning=None,
 | |
|                callback=None,
 | |
|                normals_sequence=None,
 | |
|                img_callback=None,
 | |
|                quantize_x0=False,
 | |
|                eta=0.,
 | |
|                mask=None,
 | |
|                x0=None,
 | |
|                temperature=1.,
 | |
|                noise_dropout=0.,
 | |
|                score_corrector=None,
 | |
|                corrector_kwargs=None,
 | |
|                verbose=True,
 | |
|                x_T=None,
 | |
|                log_every_t=100,
 | |
|                unconditional_guidance_scale=1.,
 | |
|                unconditional_conditioning=None,
 | |
|                # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
 | |
|                dynamic_threshold=None,
 | |
|                **kwargs
 | |
|                ):
 | |
|         if conditioning is not None:
 | |
|             if isinstance(conditioning, dict):
 | |
|                 cbs = conditioning[list(conditioning.keys())[0]].shape[0]
 | |
|                 if cbs != batch_size:
 | |
|                     print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
 | |
|             else:
 | |
|                 if conditioning.shape[0] != batch_size:
 | |
|                     print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
 | |
| 
 | |
|         self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
 | |
|         # sampling
 | |
|         C, H, W = shape
 | |
|         size = (batch_size, C, H, W)
 | |
|         print(f'Data shape for PLMS sampling is {size}')
 | |
| 
 | |
|         samples, intermediates = self.plms_sampling(conditioning, size,
 | |
|                                                     callback=callback,
 | |
|                                                     img_callback=img_callback,
 | |
|                                                     quantize_denoised=quantize_x0,
 | |
|                                                     mask=mask, x0=x0,
 | |
|                                                     ddim_use_original_steps=False,
 | |
|                                                     noise_dropout=noise_dropout,
 | |
|                                                     temperature=temperature,
 | |
|                                                     score_corrector=score_corrector,
 | |
|                                                     corrector_kwargs=corrector_kwargs,
 | |
|                                                     x_T=x_T,
 | |
|                                                     log_every_t=log_every_t,
 | |
|                                                     unconditional_guidance_scale=unconditional_guidance_scale,
 | |
|                                                     unconditional_conditioning=unconditional_conditioning,
 | |
|                                                     dynamic_threshold=dynamic_threshold,
 | |
|                                                     )
 | |
|         return samples, intermediates
 | |
| 
 | |
|     @torch.no_grad()
 | |
|     def plms_sampling(self, cond, shape,
 | |
|                       x_T=None, ddim_use_original_steps=False,
 | |
|                       callback=None, timesteps=None, quantize_denoised=False,
 | |
|                       mask=None, x0=None, img_callback=None, log_every_t=100,
 | |
|                       temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
 | |
|                       unconditional_guidance_scale=1., unconditional_conditioning=None,
 | |
|                       dynamic_threshold=None):
 | |
|         device = self.model.betas.device
 | |
|         b = shape[0]
 | |
|         if x_T is None:
 | |
|             img = torch.randn(shape, device=device)
 | |
|         else:
 | |
|             img = x_T
 | |
| 
 | |
|         if timesteps is None:
 | |
|             timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
 | |
|         elif timesteps is not None and not ddim_use_original_steps:
 | |
|             subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
 | |
|             timesteps = self.ddim_timesteps[:subset_end]
 | |
| 
 | |
|         intermediates = {'x_inter': [img], 'pred_x0': [img]}
 | |
|         time_range = list(reversed(range(0,timesteps))) if ddim_use_original_steps else np.flip(timesteps)
 | |
|         total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
 | |
|         print(f"Running PLMS Sampling with {total_steps} timesteps")
 | |
| 
 | |
|         iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps)
 | |
|         old_eps = []
 | |
| 
 | |
|         for i, step in enumerate(iterator):
 | |
|             index = total_steps - i - 1
 | |
|             ts = torch.full((b,), step, device=device, dtype=torch.long)
 | |
|             ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long)
 | |
| 
 | |
|             if mask is not None:
 | |
|                 assert x0 is not None
 | |
|                 img_orig = self.model.q_sample(x0, ts)  # TODO: deterministic forward pass?
 | |
|                 img = img_orig * mask + (1. - mask) * img
 | |
| 
 | |
|             outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
 | |
|                                       quantize_denoised=quantize_denoised, temperature=temperature,
 | |
|                                       noise_dropout=noise_dropout, score_corrector=score_corrector,
 | |
|                                       corrector_kwargs=corrector_kwargs,
 | |
|                                       unconditional_guidance_scale=unconditional_guidance_scale,
 | |
|                                       unconditional_conditioning=unconditional_conditioning,
 | |
|                                       old_eps=old_eps, t_next=ts_next,
 | |
|                                       dynamic_threshold=dynamic_threshold)
 | |
|             img, pred_x0, e_t = outs
 | |
|             old_eps.append(e_t)
 | |
|             if len(old_eps) >= 4:
 | |
|                 old_eps.pop(0)
 | |
|             if callback: callback(i)
 | |
|             if img_callback: img_callback(pred_x0, i)
 | |
| 
 | |
|             if index % log_every_t == 0 or index == total_steps - 1:
 | |
|                 intermediates['x_inter'].append(img)
 | |
|                 intermediates['pred_x0'].append(pred_x0)
 | |
| 
 | |
|         return img, intermediates
 | |
| 
 | |
|     @torch.no_grad()
 | |
|     def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
 | |
|                       temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
 | |
|                       unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None,
 | |
|                       dynamic_threshold=None):
 | |
|         b, *_, device = *x.shape, x.device
 | |
| 
 | |
|         def get_model_output(x, t):
 | |
|             if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
 | |
|                 e_t = self.model.apply_model(x, t, c)
 | |
|             else:
 | |
|                 x_in = torch.cat([x] * 2)
 | |
|                 t_in = torch.cat([t] * 2)
 | |
|                 c_in = torch.cat([unconditional_conditioning, c])
 | |
|                 e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
 | |
|                 e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
 | |
| 
 | |
|             if score_corrector is not None:
 | |
|                 assert self.model.parameterization == "eps"
 | |
|                 e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
 | |
| 
 | |
|             return e_t
 | |
| 
 | |
|         alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
 | |
|         alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
 | |
|         sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
 | |
|         sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
 | |
| 
 | |
|         def get_x_prev_and_pred_x0(e_t, index):
 | |
|             # select parameters corresponding to the currently considered timestep
 | |
|             a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
 | |
|             a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
 | |
|             sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
 | |
|             sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
 | |
| 
 | |
|             # current prediction for x_0
 | |
|             pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
 | |
|             if quantize_denoised:
 | |
|                 pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
 | |
|             if dynamic_threshold is not None:
 | |
|                 pred_x0 = norm_thresholding(pred_x0, dynamic_threshold)
 | |
|             # direction pointing to x_t
 | |
|             dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
 | |
|             noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
 | |
|             if noise_dropout > 0.:
 | |
|                 noise = torch.nn.functional.dropout(noise, p=noise_dropout)
 | |
|             x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
 | |
|             return x_prev, pred_x0
 | |
| 
 | |
|         e_t = get_model_output(x, t)
 | |
|         if len(old_eps) == 0:
 | |
|             # Pseudo Improved Euler (2nd order)
 | |
|             x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
 | |
|             e_t_next = get_model_output(x_prev, t_next)
 | |
|             e_t_prime = (e_t + e_t_next) / 2
 | |
|         elif len(old_eps) == 1:
 | |
|             # 2nd order Pseudo Linear Multistep (Adams-Bashforth)
 | |
|             e_t_prime = (3 * e_t - old_eps[-1]) / 2
 | |
|         elif len(old_eps) == 2:
 | |
|             # 3nd order Pseudo Linear Multistep (Adams-Bashforth)
 | |
|             e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
 | |
|         elif len(old_eps) >= 3:
 | |
|             # 4nd order Pseudo Linear Multistep (Adams-Bashforth)
 | |
|             e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
 | |
| 
 | |
|         x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
 | |
| 
 | |
|         return x_prev, pred_x0, e_t
 |