68 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			68 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#!/usr/bin/env python3
 | 
						|
"""
 | 
						|
Tiny AutoEncoder for Stable Diffusion
 | 
						|
(DNN for encoding / decoding SD's latent space)
 | 
						|
"""
 | 
						|
import torch
 | 
						|
import torch.nn as nn
 | 
						|
 | 
						|
import fcbh.utils
 | 
						|
 | 
						|
def conv(n_in, n_out, **kwargs):
 | 
						|
    return nn.Conv2d(n_in, n_out, 3, padding=1, **kwargs)
 | 
						|
 | 
						|
class Clamp(nn.Module):
 | 
						|
    def forward(self, x):
 | 
						|
        return torch.tanh(x / 3) * 3
 | 
						|
 | 
						|
class Block(nn.Module):
 | 
						|
    def __init__(self, n_in, n_out):
 | 
						|
        super().__init__()
 | 
						|
        self.conv = nn.Sequential(conv(n_in, n_out), nn.ReLU(), conv(n_out, n_out), nn.ReLU(), conv(n_out, n_out))
 | 
						|
        self.skip = nn.Conv2d(n_in, n_out, 1, bias=False) if n_in != n_out else nn.Identity()
 | 
						|
        self.fuse = nn.ReLU()
 | 
						|
    def forward(self, x):
 | 
						|
        return self.fuse(self.conv(x) + self.skip(x))
 | 
						|
 | 
						|
def Encoder():
 | 
						|
    return nn.Sequential(
 | 
						|
        conv(3, 64), Block(64, 64),
 | 
						|
        conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
 | 
						|
        conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
 | 
						|
        conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
 | 
						|
        conv(64, 4),
 | 
						|
    )
 | 
						|
 | 
						|
def Decoder():
 | 
						|
    return nn.Sequential(
 | 
						|
        Clamp(), conv(4, 64), nn.ReLU(),
 | 
						|
        Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
 | 
						|
        Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
 | 
						|
        Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
 | 
						|
        Block(64, 64), conv(64, 3),
 | 
						|
    )
 | 
						|
 | 
						|
class TAESD(nn.Module):
 | 
						|
    latent_magnitude = 3
 | 
						|
    latent_shift = 0.5
 | 
						|
 | 
						|
    def __init__(self, encoder_path="taesd_encoder.pth", decoder_path="taesd_decoder.pth"):
 | 
						|
        """Initialize pretrained TAESD on the given device from the given checkpoints."""
 | 
						|
        super().__init__()
 | 
						|
        self.encoder = Encoder()
 | 
						|
        self.decoder = Decoder()
 | 
						|
        if encoder_path is not None:
 | 
						|
            self.encoder.load_state_dict(fcbh.utils.load_torch_file(encoder_path, safe_load=True))
 | 
						|
        if decoder_path is not None:
 | 
						|
            self.decoder.load_state_dict(fcbh.utils.load_torch_file(decoder_path, safe_load=True))
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def scale_latents(x):
 | 
						|
        """raw latents -> [0, 1]"""
 | 
						|
        return x.div(2 * TAESD.latent_magnitude).add(TAESD.latent_shift).clamp(0, 1)
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def unscale_latents(x):
 | 
						|
        """[0, 1] -> raw latents"""
 | 
						|
        return x.sub(TAESD.latent_shift).mul(2 * TAESD.latent_magnitude)
 |