78 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			78 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import torch
 | 
						||
 | 
						||
import fcbh.model_management as model_management
 | 
						||
 | 
						||
from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
 | 
						||
from modules.path import fooocus_expansion_path
 | 
						||
from fcbh.model_patcher import ModelPatcher
 | 
						||
 | 
						||
 | 
						||
fooocus_magic_split = [
 | 
						||
    ', extremely',
 | 
						||
    ', intricate,',
 | 
						||
]
 | 
						||
dangrous_patterns = '[]【】()()|::'
 | 
						||
 | 
						||
 | 
						||
def safe_str(x):
 | 
						||
    x = str(x)
 | 
						||
    for _ in range(16):
 | 
						||
        x = x.replace('  ', ' ')
 | 
						||
    return x.strip(",. \r\n")
 | 
						||
 | 
						||
 | 
						||
def remove_pattern(x, pattern):
 | 
						||
    for p in pattern:
 | 
						||
        x = x.replace(p, '')
 | 
						||
    return x
 | 
						||
 | 
						||
 | 
						||
class FooocusExpansion:
 | 
						||
    def __init__(self):
 | 
						||
        self.tokenizer = AutoTokenizer.from_pretrained(fooocus_expansion_path)
 | 
						||
        self.model = AutoModelForCausalLM.from_pretrained(fooocus_expansion_path)
 | 
						||
        self.model.eval()
 | 
						||
 | 
						||
        load_device = model_management.text_encoder_device()
 | 
						||
        offload_device = model_management.text_encoder_offload_device()
 | 
						||
 | 
						||
        # MPS hack
 | 
						||
        if model_management.is_device_mps(load_device):
 | 
						||
            load_device = torch.device('cpu')
 | 
						||
            offload_device = torch.device('cpu')
 | 
						||
 | 
						||
        use_fp16 = model_management.should_use_fp16(device=load_device)
 | 
						||
 | 
						||
        if use_fp16:
 | 
						||
            self.model.half()
 | 
						||
 | 
						||
        self.patcher = ModelPatcher(self.model, load_device=load_device, offload_device=offload_device)
 | 
						||
        print(f'Fooocus Expansion engine loaded for {load_device}, use_fp16 = {use_fp16}.')
 | 
						||
 | 
						||
    def __call__(self, prompt, seed):
 | 
						||
        if self.patcher.current_device != self.patcher.load_device:
 | 
						||
            print('Fooocus Expansion loaded by itself.')
 | 
						||
            model_management.load_model_gpu(self.patcher)
 | 
						||
 | 
						||
        seed = int(seed)
 | 
						||
        set_seed(seed)
 | 
						||
        origin = safe_str(prompt)
 | 
						||
        prompt = origin + fooocus_magic_split[seed % len(fooocus_magic_split)]
 | 
						||
 | 
						||
        tokenized_kwargs = self.tokenizer(prompt, return_tensors="pt")
 | 
						||
        tokenized_kwargs.data['input_ids'] = tokenized_kwargs.data['input_ids'].to(self.patcher.load_device)
 | 
						||
        tokenized_kwargs.data['attention_mask'] = tokenized_kwargs.data['attention_mask'].to(self.patcher.load_device)
 | 
						||
 | 
						||
        # https://huggingface.co/blog/introducing-csearch
 | 
						||
        # https://huggingface.co/docs/transformers/generation_strategies
 | 
						||
        features = self.model.generate(**tokenized_kwargs,
 | 
						||
                                       num_beams=1,
 | 
						||
                                       max_new_tokens=256,
 | 
						||
                                       do_sample=True)
 | 
						||
 | 
						||
        response = self.tokenizer.batch_decode(features, skip_special_tokens=True)
 | 
						||
        result = response[0][len(origin):]
 | 
						||
        result = safe_str(result)
 | 
						||
        result = remove_pattern(result, dangrous_patterns)
 | 
						||
        return result
 |