84 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			84 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from fcbh import sd1_clip
 | 
						|
import torch
 | 
						|
import os
 | 
						|
 | 
						|
class SDXLClipG(sd1_clip.SD1ClipModel):
 | 
						|
    def __init__(self, device="cpu", max_length=77, freeze=True, layer="penultimate", layer_idx=None, textmodel_path=None, dtype=None):
 | 
						|
        if layer == "penultimate":
 | 
						|
            layer="hidden"
 | 
						|
            layer_idx=-2
 | 
						|
 | 
						|
        textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json")
 | 
						|
        super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, textmodel_path=textmodel_path, dtype=dtype)
 | 
						|
        self.empty_tokens = [[49406] + [49407] + [0] * 75]
 | 
						|
        self.layer_norm_hidden_state = False
 | 
						|
 | 
						|
    def load_sd(self, sd):
 | 
						|
        return super().load_sd(sd)
 | 
						|
 | 
						|
class SDXLClipGTokenizer(sd1_clip.SD1Tokenizer):
 | 
						|
    def __init__(self, tokenizer_path=None, embedding_directory=None):
 | 
						|
        super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1280, embedding_key='clip_g')
 | 
						|
 | 
						|
 | 
						|
class SDXLTokenizer(sd1_clip.SD1Tokenizer):
 | 
						|
    def __init__(self, embedding_directory=None):
 | 
						|
        self.clip_l = sd1_clip.SD1Tokenizer(embedding_directory=embedding_directory)
 | 
						|
        self.clip_g = SDXLClipGTokenizer(embedding_directory=embedding_directory)
 | 
						|
 | 
						|
    def tokenize_with_weights(self, text:str, return_word_ids=False):
 | 
						|
        out = {}
 | 
						|
        out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids)
 | 
						|
        out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
 | 
						|
        return out
 | 
						|
 | 
						|
    def untokenize(self, token_weight_pair):
 | 
						|
        return self.clip_g.untokenize(token_weight_pair)
 | 
						|
 | 
						|
class SDXLClipModel(torch.nn.Module):
 | 
						|
    def __init__(self, device="cpu", dtype=None):
 | 
						|
        super().__init__()
 | 
						|
        self.clip_l = sd1_clip.SD1ClipModel(layer="hidden", layer_idx=11, device=device, dtype=dtype)
 | 
						|
        self.clip_l.layer_norm_hidden_state = False
 | 
						|
        self.clip_g = SDXLClipG(device=device, dtype=dtype)
 | 
						|
 | 
						|
    def clip_layer(self, layer_idx):
 | 
						|
        self.clip_l.clip_layer(layer_idx)
 | 
						|
        self.clip_g.clip_layer(layer_idx)
 | 
						|
 | 
						|
    def reset_clip_layer(self):
 | 
						|
        self.clip_g.reset_clip_layer()
 | 
						|
        self.clip_l.reset_clip_layer()
 | 
						|
 | 
						|
    def encode_token_weights(self, token_weight_pairs):
 | 
						|
        token_weight_pairs_g = token_weight_pairs["g"]
 | 
						|
        token_weight_pairs_l = token_weight_pairs["l"]
 | 
						|
        g_out, g_pooled = self.clip_g.encode_token_weights(token_weight_pairs_g)
 | 
						|
        l_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l)
 | 
						|
        return torch.cat([l_out, g_out], dim=-1), g_pooled
 | 
						|
 | 
						|
    def load_sd(self, sd):
 | 
						|
        if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
 | 
						|
            return self.clip_g.load_sd(sd)
 | 
						|
        else:
 | 
						|
            return self.clip_l.load_sd(sd)
 | 
						|
 | 
						|
class SDXLRefinerClipModel(torch.nn.Module):
 | 
						|
    def __init__(self, device="cpu", dtype=None):
 | 
						|
        super().__init__()
 | 
						|
        self.clip_g = SDXLClipG(device=device, dtype=dtype)
 | 
						|
 | 
						|
    def clip_layer(self, layer_idx):
 | 
						|
        self.clip_g.clip_layer(layer_idx)
 | 
						|
 | 
						|
    def reset_clip_layer(self):
 | 
						|
        self.clip_g.reset_clip_layer()
 | 
						|
 | 
						|
    def encode_token_weights(self, token_weight_pairs):
 | 
						|
        token_weight_pairs_g = token_weight_pairs["g"]
 | 
						|
        g_out, g_pooled = self.clip_g.encode_token_weights(token_weight_pairs_g)
 | 
						|
        return g_out, g_pooled
 | 
						|
 | 
						|
    def load_sd(self, sd):
 | 
						|
        return self.clip_g.load_sd(sd)
 |