246 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			246 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import numpy as np
 | |
| import torch
 | |
| import torch.nn.functional as F
 | |
| from PIL import Image
 | |
| import math
 | |
| 
 | |
| import fcbh.utils
 | |
| 
 | |
| 
 | |
| class Blend:
 | |
|     def __init__(self):
 | |
|         pass
 | |
| 
 | |
|     @classmethod
 | |
|     def INPUT_TYPES(s):
 | |
|         return {
 | |
|             "required": {
 | |
|                 "image1": ("IMAGE",),
 | |
|                 "image2": ("IMAGE",),
 | |
|                 "blend_factor": ("FLOAT", {
 | |
|                     "default": 0.5,
 | |
|                     "min": 0.0,
 | |
|                     "max": 1.0,
 | |
|                     "step": 0.01
 | |
|                 }),
 | |
|                 "blend_mode": (["normal", "multiply", "screen", "overlay", "soft_light"],),
 | |
|             },
 | |
|         }
 | |
| 
 | |
|     RETURN_TYPES = ("IMAGE",)
 | |
|     FUNCTION = "blend_images"
 | |
| 
 | |
|     CATEGORY = "image/postprocessing"
 | |
| 
 | |
|     def blend_images(self, image1: torch.Tensor, image2: torch.Tensor, blend_factor: float, blend_mode: str):
 | |
|         if image1.shape != image2.shape:
 | |
|             image2 = image2.permute(0, 3, 1, 2)
 | |
|             image2 = fcbh.utils.common_upscale(image2, image1.shape[2], image1.shape[1], upscale_method='bicubic', crop='center')
 | |
|             image2 = image2.permute(0, 2, 3, 1)
 | |
| 
 | |
|         blended_image = self.blend_mode(image1, image2, blend_mode)
 | |
|         blended_image = image1 * (1 - blend_factor) + blended_image * blend_factor
 | |
|         blended_image = torch.clamp(blended_image, 0, 1)
 | |
|         return (blended_image,)
 | |
| 
 | |
|     def blend_mode(self, img1, img2, mode):
 | |
|         if mode == "normal":
 | |
|             return img2
 | |
|         elif mode == "multiply":
 | |
|             return img1 * img2
 | |
|         elif mode == "screen":
 | |
|             return 1 - (1 - img1) * (1 - img2)
 | |
|         elif mode == "overlay":
 | |
|             return torch.where(img1 <= 0.5, 2 * img1 * img2, 1 - 2 * (1 - img1) * (1 - img2))
 | |
|         elif mode == "soft_light":
 | |
|             return torch.where(img2 <= 0.5, img1 - (1 - 2 * img2) * img1 * (1 - img1), img1 + (2 * img2 - 1) * (self.g(img1) - img1))
 | |
|         else:
 | |
|             raise ValueError(f"Unsupported blend mode: {mode}")
 | |
| 
 | |
|     def g(self, x):
 | |
|         return torch.where(x <= 0.25, ((16 * x - 12) * x + 4) * x, torch.sqrt(x))
 | |
| 
 | |
| def gaussian_kernel(kernel_size: int, sigma: float, device=None):
 | |
|     x, y = torch.meshgrid(torch.linspace(-1, 1, kernel_size, device=device), torch.linspace(-1, 1, kernel_size, device=device), indexing="ij")
 | |
|     d = torch.sqrt(x * x + y * y)
 | |
|     g = torch.exp(-(d * d) / (2.0 * sigma * sigma))
 | |
|     return g / g.sum()
 | |
| 
 | |
| class Blur:
 | |
|     def __init__(self):
 | |
|         pass
 | |
| 
 | |
|     @classmethod
 | |
|     def INPUT_TYPES(s):
 | |
|         return {
 | |
|             "required": {
 | |
|                 "image": ("IMAGE",),
 | |
|                 "blur_radius": ("INT", {
 | |
|                     "default": 1,
 | |
|                     "min": 1,
 | |
|                     "max": 31,
 | |
|                     "step": 1
 | |
|                 }),
 | |
|                 "sigma": ("FLOAT", {
 | |
|                     "default": 1.0,
 | |
|                     "min": 0.1,
 | |
|                     "max": 10.0,
 | |
|                     "step": 0.1
 | |
|                 }),
 | |
|             },
 | |
|         }
 | |
| 
 | |
|     RETURN_TYPES = ("IMAGE",)
 | |
|     FUNCTION = "blur"
 | |
| 
 | |
|     CATEGORY = "image/postprocessing"
 | |
| 
 | |
|     def blur(self, image: torch.Tensor, blur_radius: int, sigma: float):
 | |
|         if blur_radius == 0:
 | |
|             return (image,)
 | |
| 
 | |
|         batch_size, height, width, channels = image.shape
 | |
| 
 | |
|         kernel_size = blur_radius * 2 + 1
 | |
|         kernel = gaussian_kernel(kernel_size, sigma, device=image.device).repeat(channels, 1, 1).unsqueeze(1)
 | |
| 
 | |
|         image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
 | |
|         padded_image = F.pad(image, (blur_radius,blur_radius,blur_radius,blur_radius), 'reflect')
 | |
|         blurred = F.conv2d(padded_image, kernel, padding=kernel_size // 2, groups=channels)[:,:,blur_radius:-blur_radius, blur_radius:-blur_radius]
 | |
|         blurred = blurred.permute(0, 2, 3, 1)
 | |
| 
 | |
|         return (blurred,)
 | |
| 
 | |
| class Quantize:
 | |
|     def __init__(self):
 | |
|         pass
 | |
| 
 | |
|     @classmethod
 | |
|     def INPUT_TYPES(s):
 | |
|         return {
 | |
|             "required": {
 | |
|                 "image": ("IMAGE",),
 | |
|                 "colors": ("INT", {
 | |
|                     "default": 256,
 | |
|                     "min": 1,
 | |
|                     "max": 256,
 | |
|                     "step": 1
 | |
|                 }),
 | |
|                 "dither": (["none", "floyd-steinberg"],),
 | |
|             },
 | |
|         }
 | |
| 
 | |
|     RETURN_TYPES = ("IMAGE",)
 | |
|     FUNCTION = "quantize"
 | |
| 
 | |
|     CATEGORY = "image/postprocessing"
 | |
| 
 | |
|     def quantize(self, image: torch.Tensor, colors: int = 256, dither: str = "FLOYDSTEINBERG"):
 | |
|         batch_size, height, width, _ = image.shape
 | |
|         result = torch.zeros_like(image)
 | |
| 
 | |
|         dither_option = Image.Dither.FLOYDSTEINBERG if dither == "floyd-steinberg" else Image.Dither.NONE
 | |
| 
 | |
|         for b in range(batch_size):
 | |
|             tensor_image = image[b]
 | |
|             img = (tensor_image * 255).to(torch.uint8).numpy()
 | |
|             pil_image = Image.fromarray(img, mode='RGB')
 | |
| 
 | |
|             palette = pil_image.quantize(colors=colors) # Required as described in https://github.com/python-pillow/Pillow/issues/5836
 | |
|             quantized_image = pil_image.quantize(colors=colors, palette=palette, dither=dither_option)
 | |
| 
 | |
|             quantized_array = torch.tensor(np.array(quantized_image.convert("RGB"))).float() / 255
 | |
|             result[b] = quantized_array
 | |
| 
 | |
|         return (result,)
 | |
| 
 | |
| class Sharpen:
 | |
|     def __init__(self):
 | |
|         pass
 | |
| 
 | |
|     @classmethod
 | |
|     def INPUT_TYPES(s):
 | |
|         return {
 | |
|             "required": {
 | |
|                 "image": ("IMAGE",),
 | |
|                 "sharpen_radius": ("INT", {
 | |
|                     "default": 1,
 | |
|                     "min": 1,
 | |
|                     "max": 31,
 | |
|                     "step": 1
 | |
|                 }),
 | |
|                 "sigma": ("FLOAT", {
 | |
|                     "default": 1.0,
 | |
|                     "min": 0.1,
 | |
|                     "max": 10.0,
 | |
|                     "step": 0.1
 | |
|                 }),
 | |
|                 "alpha": ("FLOAT", {
 | |
|                     "default": 1.0,
 | |
|                     "min": 0.0,
 | |
|                     "max": 5.0,
 | |
|                     "step": 0.1
 | |
|                 }),
 | |
|             },
 | |
|         }
 | |
| 
 | |
|     RETURN_TYPES = ("IMAGE",)
 | |
|     FUNCTION = "sharpen"
 | |
| 
 | |
|     CATEGORY = "image/postprocessing"
 | |
| 
 | |
|     def sharpen(self, image: torch.Tensor, sharpen_radius: int, sigma:float, alpha: float):
 | |
|         if sharpen_radius == 0:
 | |
|             return (image,)
 | |
| 
 | |
|         batch_size, height, width, channels = image.shape
 | |
| 
 | |
|         kernel_size = sharpen_radius * 2 + 1
 | |
|         kernel = gaussian_kernel(kernel_size, sigma) * -(alpha*10)
 | |
|         center = kernel_size // 2
 | |
|         kernel[center, center] = kernel[center, center] - kernel.sum() + 1.0
 | |
|         kernel = kernel.repeat(channels, 1, 1).unsqueeze(1)
 | |
| 
 | |
|         tensor_image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
 | |
|         tensor_image = F.pad(tensor_image, (sharpen_radius,sharpen_radius,sharpen_radius,sharpen_radius), 'reflect')
 | |
|         sharpened = F.conv2d(tensor_image, kernel, padding=center, groups=channels)[:,:,sharpen_radius:-sharpen_radius, sharpen_radius:-sharpen_radius]
 | |
|         sharpened = sharpened.permute(0, 2, 3, 1)
 | |
| 
 | |
|         result = torch.clamp(sharpened, 0, 1)
 | |
| 
 | |
|         return (result,)
 | |
| 
 | |
| class ImageScaleToTotalPixels:
 | |
|     upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
 | |
|     crop_methods = ["disabled", "center"]
 | |
| 
 | |
|     @classmethod
 | |
|     def INPUT_TYPES(s):
 | |
|         return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
 | |
|                               "megapixels": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 16.0, "step": 0.01}),
 | |
|                             }}
 | |
|     RETURN_TYPES = ("IMAGE",)
 | |
|     FUNCTION = "upscale"
 | |
| 
 | |
|     CATEGORY = "image/upscaling"
 | |
| 
 | |
|     def upscale(self, image, upscale_method, megapixels):
 | |
|         samples = image.movedim(-1,1)
 | |
|         total = int(megapixels * 1024 * 1024)
 | |
| 
 | |
|         scale_by = math.sqrt(total / (samples.shape[3] * samples.shape[2]))
 | |
|         width = round(samples.shape[3] * scale_by)
 | |
|         height = round(samples.shape[2] * scale_by)
 | |
| 
 | |
|         s = fcbh.utils.common_upscale(samples, width, height, upscale_method, "disabled")
 | |
|         s = s.movedim(1,-1)
 | |
|         return (s,)
 | |
| 
 | |
| NODE_CLASS_MAPPINGS = {
 | |
|     "ImageBlend": Blend,
 | |
|     "ImageBlur": Blur,
 | |
|     "ImageQuantize": Quantize,
 | |
|     "ImageSharpen": Sharpen,
 | |
|     "ImageScaleToTotalPixels": ImageScaleToTotalPixels,
 | |
| }
 |