mirror of
				https://github.com/k4yt3x/video2x.git
				synced 2025-11-04 06:31:00 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			362 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			362 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
#!/usr/bin/env python3
 | 
						|
# -*- coding: utf-8 -*-
 | 
						|
"""
 | 
						|
 | 
						|
__      __  _       _                  ___   __   __
 | 
						|
\ \    / / (_)     | |                |__ \  \ \ / /
 | 
						|
 \ \  / /   _    __| |   ___    ___      ) |  \ V /
 | 
						|
  \ \/ /   | |  / _` |  / _ \  / _ \    / /    > <
 | 
						|
   \  /    | | | (_| | |  __/ | (_) |  / /_   / . \
 | 
						|
    \/     |_|  \__,_|  \___|  \___/  |____| /_/ \_\
 | 
						|
 | 
						|
 | 
						|
Name: Video2x Controller
 | 
						|
Author: K4YT3X
 | 
						|
Date Created: Feb 24, 2018
 | 
						|
Last Modified: November 26, 2018
 | 
						|
 | 
						|
Licensed under the GNU General Public License Version 3 (GNU GPL v3),
 | 
						|
    available at: https://www.gnu.org/licenses/gpl-3.0.txt
 | 
						|
 | 
						|
(C) 2018 K4YT3X
 | 
						|
 | 
						|
Description: Video2X is an automation software based on
 | 
						|
waifu2x image enlarging engine. It extracts frames from a
 | 
						|
video, enlarge it by a number of times without losing any
 | 
						|
details or quality, keeping lines smooth and edges sharp.
 | 
						|
"""
 | 
						|
from avalon_framework import Avalon
 | 
						|
from ffmpeg import Ffmpeg
 | 
						|
from fractions import Fraction
 | 
						|
from waifu2x import Waifu2x
 | 
						|
import argparse
 | 
						|
import inspect
 | 
						|
import json
 | 
						|
import os
 | 
						|
import psutil
 | 
						|
import shutil
 | 
						|
import subprocess
 | 
						|
import threading
 | 
						|
import time
 | 
						|
import traceback
 | 
						|
 | 
						|
VERSION = '2.1.6'
 | 
						|
 | 
						|
EXEC_PATH = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
 | 
						|
FRAMES = '{}\\frames'.format(EXEC_PATH)  # Folder containing extracted frames
 | 
						|
UPSCALED = '{}\\upscaled'.format(EXEC_PATH)  # Folder containing enlarges frames
 | 
						|
 | 
						|
 | 
						|
def process_arguments():
 | 
						|
    """Processes CLI arguments
 | 
						|
 | 
						|
    This function parses all arguments
 | 
						|
    This allows users to customize options
 | 
						|
    for the output video.
 | 
						|
    """
 | 
						|
    parser = argparse.ArgumentParser()
 | 
						|
 | 
						|
    # Video options
 | 
						|
    options_group = parser.add_argument_group('Options')
 | 
						|
    options_group.add_argument('--width', help='Output video width', action='store', type=int, default=False)
 | 
						|
    options_group.add_argument('--height', help='Output video height', action='store', type=int, default=False)
 | 
						|
    options_group.add_argument('-f', '--factor', help='Factor to upscale the videos by', action='store', type=int, default=False)
 | 
						|
    options_group.add_argument('-v', '--video', help='Specify source video file', action='store', default=False)
 | 
						|
    options_group.add_argument('-o', '--output', help='Specify output file', action='store', default=False)
 | 
						|
    options_group.add_argument('-y', '--model_type', help='Specify model to use', action='store', default='anime_style_art_rgb')
 | 
						|
    options_group.add_argument('-t', '--threads', help='Specify number of threads to use for upscaling', action='store', type=int, default=5)
 | 
						|
    options_group.add_argument('-c', '--config', help='Manually specify config file', action='store', default='video2x.json')
 | 
						|
 | 
						|
    # Render drivers, at least one option must be specified
 | 
						|
    driver_group = parser.add_argument_group('Render Drivers')
 | 
						|
    driver_group.add_argument('--cpu', help='Use CPU for enlarging', action='store_true', default=False)
 | 
						|
    driver_group.add_argument('--gpu', help='Use GPU for enlarging', action='store_true', default=False)
 | 
						|
    driver_group.add_argument('--cudnn', help='Use CUDNN for enlarging', action='store_true', default=False)
 | 
						|
    return parser.parse_args()
 | 
						|
 | 
						|
 | 
						|
def print_logo():
 | 
						|
    print('__      __  _       _                  ___   __   __')
 | 
						|
    print('\\ \\    / / (_)     | |                |__ \\  \\ \\ / /')
 | 
						|
    print(' \\ \\  / /   _    __| |   ___    ___      ) |  \\ V /')
 | 
						|
    print('  \\ \\/ /   | |  / _` |  / _ \\  / _ \\    / /    > <')
 | 
						|
    print('   \\  /    | | | (_| | |  __/ | (_) |  / /_   / . \\')
 | 
						|
    print('    \\/     |_|  \\__,_|  \\___|  \\___/  |____| /_/ \\_\\')
 | 
						|
    print('\n               Video2X Video Enlarger')
 | 
						|
    spaces = ((44 - len("Version " + VERSION)) // 2) * " "
 | 
						|
    print('{}\n{}    Version {}\n{}'.format(Avalon.FM.BD, spaces, VERSION, Avalon.FM.RST))
 | 
						|
 | 
						|
 | 
						|
def read_config():
 | 
						|
    """ Reads configuration file
 | 
						|
 | 
						|
    Returns a dictionary read by json.
 | 
						|
    """
 | 
						|
    with open(args.config, 'r') as raw_config:
 | 
						|
        config = json.load(raw_config)
 | 
						|
    return config
 | 
						|
 | 
						|
 | 
						|
def get_video_info():
 | 
						|
    """Gets original video information
 | 
						|
 | 
						|
    Retrieves original video information using
 | 
						|
    ffprobe, then export it into json file.
 | 
						|
    Finally it reads, parses the json file and
 | 
						|
    returns a dictionary
 | 
						|
 | 
						|
    Returns:
 | 
						|
        dictionary -- original video information
 | 
						|
    """
 | 
						|
    json_str = subprocess.check_output(
 | 
						|
        '\"{}ffprobe.exe\" -v quiet -print_format json -show_format -show_streams \"{}\"'.format(ffmpeg_path, args.video))
 | 
						|
    return json.loads(json_str.decode('utf-8'))
 | 
						|
 | 
						|
 | 
						|
def check_model_type(args):
 | 
						|
    """
 | 
						|
    Check if the model demanded from cli
 | 
						|
    argument is legal.
 | 
						|
    """
 | 
						|
    models_available = ['upconv_7_anime_style_art_rgb', 'upconv_7_photo',
 | 
						|
                        'anime_style_art_rgb', 'photo', 'anime_style_art_y']
 | 
						|
    if args.model_type not in models_available:
 | 
						|
        Avalon.error('Specified model type not found!')
 | 
						|
        Avalon.info('Available models:')
 | 
						|
        for model in models_available:
 | 
						|
            print(model)
 | 
						|
        exit(1)
 | 
						|
 | 
						|
 | 
						|
def upscale_frames(w2):
 | 
						|
    """ Upscale video frames with waifu2x-caffe
 | 
						|
 | 
						|
    This function upscales all the frames extracted
 | 
						|
    by ffmpeg using the waifu2x-caffe binary.
 | 
						|
 | 
						|
    Arguments:
 | 
						|
        w2 {Waifu2x Object} -- initialized waifu2x object
 | 
						|
    """
 | 
						|
 | 
						|
    # Create a container for all upscaler threads
 | 
						|
    upscaler_threads = []
 | 
						|
 | 
						|
    # List all images in the extracted frames
 | 
						|
    frames = [os.path.join(FRAMES, f) for f in os.listdir(FRAMES) if os.path.isfile(os.path.join(FRAMES, f))]
 | 
						|
 | 
						|
    # If we have less images than threads,
 | 
						|
    # create only the threads necessary
 | 
						|
    if len(frames) < args.threads:
 | 
						|
        args.threads = len(frames)
 | 
						|
 | 
						|
    # Create a folder for each thread and append folder
 | 
						|
    # name into a list
 | 
						|
 | 
						|
    thread_pool = []
 | 
						|
    for thread_id in range(args.threads):
 | 
						|
        thread_folder = '{}\\{}'.format(FRAMES, str(thread_id))
 | 
						|
 | 
						|
        # Delete old folders and create new folders
 | 
						|
        if os.path.isdir(thread_folder):
 | 
						|
            shutil.rmtree(thread_folder)
 | 
						|
        os.mkdir(thread_folder)
 | 
						|
 | 
						|
        # Append folder path into list
 | 
						|
        thread_pool.append((thread_folder, thread_id))
 | 
						|
 | 
						|
    # Evenly distribute images into each folder
 | 
						|
    # until there is none left in the folder
 | 
						|
    for image in frames:
 | 
						|
        # Move image
 | 
						|
        shutil.move(image, thread_pool[0][0])
 | 
						|
        # Rotate list
 | 
						|
        thread_pool = thread_pool[-1:] + thread_pool[:-1]
 | 
						|
 | 
						|
    # Create threads and start them
 | 
						|
    for thread_info in thread_pool:
 | 
						|
        # Create thread
 | 
						|
        thread = threading.Thread(target=w2.upscale, args=(thread_info[0], UPSCALED, args.width, args.height))
 | 
						|
        thread.name = thread_info[1]
 | 
						|
 | 
						|
        # Add threads into the pool
 | 
						|
        upscaler_threads.append(thread)
 | 
						|
 | 
						|
    # Start all threads
 | 
						|
    for thread in upscaler_threads:
 | 
						|
        thread.start()
 | 
						|
 | 
						|
    # Wait for threads to finish
 | 
						|
    for thread in upscaler_threads:
 | 
						|
        thread.join()
 | 
						|
 | 
						|
 | 
						|
def video2x():
 | 
						|
    """Main controller for Video2X
 | 
						|
 | 
						|
    This function controls the flow of video conversion
 | 
						|
    and handles all necessary functions.
 | 
						|
    """
 | 
						|
 | 
						|
    check_model_type(args)
 | 
						|
 | 
						|
    # Parse arguments for waifu2x
 | 
						|
    if args.cpu:
 | 
						|
        method = 'cpu'
 | 
						|
    elif args.gpu:
 | 
						|
        method = 'gpu'
 | 
						|
        ffmpeg_arguments.append('-hwaccel {}'.format(ffmpeg_hwaccel))
 | 
						|
    elif args.cudnn:
 | 
						|
        method = 'cudnn'
 | 
						|
        ffmpeg_arguments.append('-hwaccel {}'.format(ffmpeg_hwaccel))
 | 
						|
 | 
						|
    # Initialize objects for ffmpeg and waifu2x-caffe
 | 
						|
    fm = Ffmpeg(ffmpeg_path, args.output, ffmpeg_arguments)
 | 
						|
    w2 = Waifu2x(waifu2x_path, method, args.model_type)
 | 
						|
 | 
						|
    # Clear and create directories
 | 
						|
    if os.path.isdir(FRAMES):
 | 
						|
        shutil.rmtree(FRAMES)
 | 
						|
    if os.path.isdir(UPSCALED):
 | 
						|
        shutil.rmtree(UPSCALED)
 | 
						|
    os.mkdir(FRAMES)
 | 
						|
    os.mkdir(UPSCALED)
 | 
						|
 | 
						|
    # Extract frames from video
 | 
						|
    fm.extract_frames(args.video, FRAMES)
 | 
						|
 | 
						|
    Avalon.info('Reading video information')
 | 
						|
    info = get_video_info()
 | 
						|
    # Analyze original video with ffprobe and retrieve framerate
 | 
						|
    # width, height = info['streams'][0]['width'], info['streams'][0]['height']
 | 
						|
 | 
						|
    # Find index of video stream
 | 
						|
    video_stream_index = None
 | 
						|
    for stream in info['streams']:
 | 
						|
        if stream['codec_type'] == 'video':
 | 
						|
            video_stream_index = stream['index']
 | 
						|
            break
 | 
						|
 | 
						|
    # Exit if no video stream found
 | 
						|
    if video_stream_index is None:
 | 
						|
        Avalon.error('Aborting: No video stream found')
 | 
						|
 | 
						|
    # Get average frame rate of video stream
 | 
						|
    framerate = float(Fraction(info['streams'][video_stream_index]['avg_frame_rate']))
 | 
						|
    Avalon.info('Framerate: {}'.format(framerate))
 | 
						|
 | 
						|
    # Upscale images one by one using waifu2x
 | 
						|
    Avalon.info('Starting to upscale extracted images')
 | 
						|
    upscale_frames(w2)
 | 
						|
    Avalon.info('Upscaling completed')
 | 
						|
 | 
						|
    # Frames to Video
 | 
						|
    Avalon.info('Converting extracted frames into video')
 | 
						|
 | 
						|
    # Width/height will be coded width/height x upscale factor
 | 
						|
    if args.factor:
 | 
						|
        coded_width = info['streams'][video_stream_index]['coded_width']
 | 
						|
        coded_height = info['streams'][video_stream_index]['coded_height']
 | 
						|
        fm.convert_video(framerate, '{}x{}'.format(args.factor * coded_width, args.factor * coded_height), UPSCALED)
 | 
						|
 | 
						|
    # Use user defined output size
 | 
						|
    else:
 | 
						|
        fm.convert_video(framerate, '{}x{}'.format(args.width, args.height), UPSCALED)
 | 
						|
    Avalon.info('Conversion completed')
 | 
						|
 | 
						|
    # Extract and press audio in
 | 
						|
    Avalon.info('Stripping audio track from original video')
 | 
						|
    fm.extract_audio(args.video, UPSCALED)
 | 
						|
    Avalon.info('Inserting audio track into new video')
 | 
						|
    fm.insert_audio_track(UPSCALED)
 | 
						|
 | 
						|
 | 
						|
# /////////////////// Execution /////////////////// #
 | 
						|
 | 
						|
# This is not a library
 | 
						|
if __name__ != '__main__':
 | 
						|
    Avalon.error('This file cannot be imported')
 | 
						|
    exit(1)
 | 
						|
 | 
						|
# Process cli arguments
 | 
						|
args = process_arguments()
 | 
						|
 | 
						|
# Print video2x banner
 | 
						|
print_logo()
 | 
						|
 | 
						|
# Check if arguments are valid / all necessary argument
 | 
						|
# values are specified
 | 
						|
if not args.video:
 | 
						|
    Avalon.error('You need to specify the video to process')
 | 
						|
    exit(1)
 | 
						|
elif (not args.width or not args.height) or not args.upscale_factor:
 | 
						|
    Avalon.error('You must specify output video width and height or upscale factor')
 | 
						|
    exit(1)
 | 
						|
elif not args.output:
 | 
						|
    Avalon.error('You need to specify the output video name')
 | 
						|
    exit(1)
 | 
						|
elif not args.cpu and not args.gpu and not args.cudnn:
 | 
						|
    Avalon.error('You need to specify the enlarging processing unit')
 | 
						|
    exit(1)
 | 
						|
 | 
						|
# Convert paths to absolute paths
 | 
						|
args.video = os.path.abspath(args.video)
 | 
						|
args.output = os.path.abspath(args.output)
 | 
						|
 | 
						|
# Read configurations from config file
 | 
						|
config = read_config()
 | 
						|
waifu2x_path = config['waifu2x_path']
 | 
						|
ffmpeg_path = config['ffmpeg_path']
 | 
						|
ffmpeg_arguments = config['ffmpeg_arguments']
 | 
						|
ffmpeg_hwaccel = config['ffmpeg_hwaccel']
 | 
						|
 | 
						|
# Add a forward slash to directory if not present
 | 
						|
# otherwise there will be a format error
 | 
						|
if ffmpeg_path[-1] != '/' and ffmpeg_path[-1] != '\\':
 | 
						|
    ffmpeg_path = '{}/'.format(ffmpeg_path)
 | 
						|
 | 
						|
# Check if FFMPEG and waifu2x are present
 | 
						|
if not os.path.isdir(ffmpeg_path):
 | 
						|
    Avalon.error('FFMPEG binaries not found')
 | 
						|
    Avalon.error('Please specify FFMPEG binaries location in config file')
 | 
						|
    Avalon.error('Current value: {}'.format(ffmpeg_path))
 | 
						|
    raise FileNotFoundError(ffmpeg_path)
 | 
						|
if not os.path.isfile(waifu2x_path):
 | 
						|
    Avalon.error('Waifu2x CUI executable not found')
 | 
						|
    Avalon.error('Please specify Waifu2x CUI location in config file')
 | 
						|
    Avalon.error('Current value: {}'.format(waifu2x_path))
 | 
						|
    raise FileNotFoundError(waifu2x_path)
 | 
						|
 | 
						|
# Check usable memory
 | 
						|
# Warn the user if insufficient memory is available for
 | 
						|
# the number of threads that the user have chosen. Each
 | 
						|
# thread might take up to 2.5 GB during initialization.
 | 
						|
MEM_PER_THREAD = 2.5
 | 
						|
memory_available = psutil.virtual_memory().available / (1024 ** 3)
 | 
						|
 | 
						|
# If user doesn't even have enough memory to run even one thread
 | 
						|
if memory_available < MEM_PER_THREAD:
 | 
						|
    Avalon.warning('You might have an insufficient amount of memory available to run this program ({} GB)'.format(memory_available))
 | 
						|
    Avalon.warning('Proceed with caution')
 | 
						|
# If memory available is less than needed, warn the user
 | 
						|
elif memory_available < (MEM_PER_THREAD * args.threads):
 | 
						|
    Avalon.warning('Each waifu2x-caffe thread will require up to 2.5 GB during initialization')
 | 
						|
    Avalon.warning('You demanded {} threads to be created, but you only have {} GB memory available'.format(args.threads, round(memory_available, 4)))
 | 
						|
    Avalon.warning('{} GB of memory is recommended for {} threads'.format(MEM_PER_THREAD * args.threads, args.threads))
 | 
						|
    Avalon.warning('With your current amount of memory available, {} threads is recommended'.format(int(memory_available // MEM_PER_THREAD)))
 | 
						|
 | 
						|
    # Ask the user if he / she wants to change to the recommended
 | 
						|
    # number of threads
 | 
						|
    if Avalon.ask('Change to the recommended value?', True):
 | 
						|
        args.threads = int(memory_available // MEM_PER_THREAD)
 | 
						|
    else:
 | 
						|
        Avalon.warning('Proceed with caution')
 | 
						|
 | 
						|
# Start execution
 | 
						|
try:
 | 
						|
    begin_time = time.time()
 | 
						|
    video2x()
 | 
						|
    Avalon.info('Program completed, taking {} seconds'.format(round((time.time() - begin_time), 5)))
 | 
						|
except Exception:
 | 
						|
    Avalon.error('An exception occurred')
 | 
						|
    traceback.print_exc()
 |