mirror of
				https://github.com/k4yt3x/video2x.git
				synced 2025-10-31 04:40:59 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			251 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			251 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| #!/usr/bin/env python3
 | |
| # -*- coding: utf-8 -*-
 | |
| """
 | |
| 
 | |
| __      __  _       _                  ___   __   __
 | |
| \ \    / / (_)     | |                |__ \  \ \ / /
 | |
|  \ \  / /   _    __| |   ___    ___      ) |  \ V /
 | |
|   \ \/ /   | |  / _` |  / _ \  / _ \    / /    > <
 | |
|    \  /    | | | (_| | |  __/ | (_) |  / /_   / . \
 | |
|     \/     |_|  \__,_|  \___|  \___/  |____| /_/ \_\
 | |
| 
 | |
| 
 | |
| Name: Video2X Controller
 | |
| Author: K4YT3X
 | |
| Date Created: Feb 24, 2018
 | |
| Last Modified: March 9, 2019
 | |
| 
 | |
| Licensed under the GNU General Public License Version 3 (GNU GPL v3),
 | |
|     available at: https://www.gnu.org/licenses/gpl-3.0.txt
 | |
| 
 | |
| (C) 2018-2019 K4YT3X
 | |
| 
 | |
| Description: Video2X is an automation software based on
 | |
| waifu2x image enlarging engine. It extracts frames from a
 | |
| video, enlarge it by a number of times without losing any
 | |
| details or quality, keeping lines smooth and edges sharp.
 | |
| """
 | |
| from avalon_framework import Avalon
 | |
| from upscaler import Upscaler
 | |
| from upscaler import MODELS_AVAILABLE
 | |
| import GPUtil
 | |
| import argparse
 | |
| import json
 | |
| import os
 | |
| import psutil
 | |
| import shutil
 | |
| import tempfile
 | |
| import time
 | |
| import traceback
 | |
| 
 | |
| VERSION = '2.6.1'
 | |
| 
 | |
| # Each thread might take up to 2.5 GB during initialization.
 | |
| # (system memory, not to be confused with GPU memory)
 | |
| SYS_MEM_PER_THREAD = 2.5
 | |
| GPU_MEM_PER_THREAD = 3.5
 | |
| 
 | |
| 
 | |
| def process_arguments():
 | |
|     """Processes CLI arguments
 | |
| 
 | |
|     This function parses all arguments
 | |
|     This allows users to customize options
 | |
|     for the output video.
 | |
|     """
 | |
|     parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
 | |
| 
 | |
|     # Video options
 | |
|     basic_options = parser.add_argument_group('Basic Options')
 | |
|     basic_options.add_argument('-i', '--input', help='Specify source video file/directory', action='store', default=False, required=True)
 | |
|     basic_options.add_argument('-o', '--output', help='Specify output video file/directory', action='store', default=False, required=True)
 | |
|     basic_options.add_argument('-m', '--method', help='Specify upscaling method', action='store', default='gpu', choices=['cpu', 'gpu', 'cudnn'], required=True)
 | |
|     basic_options.add_argument('-d', '--driver', help='Waifu2x driver', action='store', default='waifu2x_caffe', choices=['waifu2x_caffe', 'waifu2x_converter'])
 | |
|     basic_options.add_argument('-y', '--model_type', help='Specify model to use', action='store', default='models/cunet', choices=MODELS_AVAILABLE)
 | |
|     basic_options.add_argument('-t', '--threads', help='Specify number of threads to use for upscaling', action='store', type=int, default=5)
 | |
|     basic_options.add_argument('-c', '--config', help='Manually specify config file', action='store', default='{}\\video2x.json'.format(os.path.dirname(os.path.abspath(__file__))))
 | |
|     basic_options.add_argument('-b', '--batch', help='Enable batch mode (select all default values to questions)', action='store_true', default=False)
 | |
| 
 | |
|     # Scaling options
 | |
|     # scaling_options = parser.add_argument_group('Scaling Options', required=True)  # TODO: (width & height) || (factor)
 | |
|     scaling_options = parser.add_argument_group('Scaling Options')  # TODO: (width & height) || (factor)
 | |
|     scaling_options.add_argument('--width', help='Output video width', action='store', type=int, default=False)
 | |
|     scaling_options.add_argument('--height', help='Output video height', action='store', type=int, default=False)
 | |
|     scaling_options.add_argument('-r', '--ratio', help='Scaling ratio', action='store', type=int, default=False)
 | |
| 
 | |
|     # Parse arguments
 | |
|     return parser.parse_args()
 | |
| 
 | |
| 
 | |
| def print_logo():
 | |
|     print('__      __  _       _                  ___   __   __')
 | |
|     print('\\ \\    / / (_)     | |                |__ \\  \\ \\ / /')
 | |
|     print(' \\ \\  / /   _    __| |   ___    ___      ) |  \\ V /')
 | |
|     print('  \\ \\/ /   | |  / _` |  / _ \\  / _ \\    / /    > <')
 | |
|     print('   \\  /    | | | (_| | |  __/ | (_) |  / /_   / . \\')
 | |
|     print('    \\/     |_|  \\__,_|  \\___|  \\___/  |____| /_/ \\_\\')
 | |
|     print('\n               Video2X Video Enlarger')
 | |
|     spaces = ((44 - len("Version {}".format(VERSION))) // 2) * " "
 | |
|     print('{}\n{}    Version {}\n{}'.format(Avalon.FM.BD, spaces, VERSION, Avalon.FM.RST))
 | |
| 
 | |
| 
 | |
| def check_memory():
 | |
|     """ Check usable system memory
 | |
|     Warn the user if insufficient memory is available for
 | |
|     the number of threads that the user have chosen.
 | |
|     """
 | |
| 
 | |
|     memory_status = []
 | |
|     # Get system available memory
 | |
|     system_memory_available = psutil.virtual_memory().available / (1024 ** 3)
 | |
|     memory_status.append(('system', system_memory_available))
 | |
| 
 | |
|     # Check if Nvidia-smi is available
 | |
|     # GPUtil requires nvidia-smi.exe to interact with GPU
 | |
|     if args.method == 'gpu' or args.method == 'cudnn':
 | |
|         if not os.path.isfile('C:\\Program Files\\NVIDIA Corporation\\NVSMI\\nvidia-smi.exe'):
 | |
|             # Nvidia System Management Interface not available
 | |
|             Avalon.warning('Nvidia-smi not available, skipping available memory check')
 | |
|             Avalon.warning('If you experience error \"cudaSuccess  out of memory\", try reducing number of threads you\'re using')
 | |
|         else:
 | |
|             # "0" is GPU ID. Both waifu2x drivers use the first GPU available, therefore only 0 makes sense
 | |
|             gpu_memory_available = (GPUtil.getGPUs()[0].memoryTotal - GPUtil.getGPUs()[0].memoryUsed) / 1024
 | |
|             memory_status.append(('GPU', gpu_memory_available))
 | |
| 
 | |
|     # Go though each checkable memory type and check availability
 | |
|     for memory_type, memory_available in memory_status:
 | |
| 
 | |
|         if memory_type == 'system':
 | |
|             mem_per_thread = SYS_MEM_PER_THREAD
 | |
|         else:
 | |
|             mem_per_thread = GPU_MEM_PER_THREAD
 | |
| 
 | |
|         # If user doesn't even have enough memory to run even one thread
 | |
|         if memory_available < mem_per_thread:
 | |
|             Avalon.warning('You might have insufficient amount of {} memory available to run this program ({} GB)'.format(memory_type, memory_available))
 | |
|             Avalon.warning('Proceed with caution')
 | |
|             if args.threads > 1:
 | |
|                 if Avalon.ask('Reduce number of threads to avoid crashing?', default=True, batch=args.batch):
 | |
|                     args.threads = 1
 | |
|         # If memory available is less than needed, warn the user
 | |
|         elif memory_available < (mem_per_thread * args.threads):
 | |
|             Avalon.warning('Each waifu2x-caffe thread will require up to 2.5 GB of system memory')
 | |
|             Avalon.warning('You demanded {} threads to be created, but you only have {} GB {} memory available'.format(args.threads, round(memory_available, 4), memory_type))
 | |
|             Avalon.warning('{} GB of {} memory is recommended for {} threads'.format(mem_per_thread * args.threads, memory_type, args.threads))
 | |
|             Avalon.warning('With your current amount of {} memory available, {} threads is recommended'.format(memory_type, int(memory_available // mem_per_thread)))
 | |
| 
 | |
|             # Ask the user if he / she wants to change to the recommended
 | |
|             # number of threads
 | |
|             if Avalon.ask('Change to the recommended value?', default=True, batch=args.batch):
 | |
|                 args.threads = int(memory_available // mem_per_thread)
 | |
|             else:
 | |
|                 Avalon.warning('Proceed with caution')
 | |
| 
 | |
| 
 | |
| def read_config(config_file):
 | |
|     """ Reads configuration file
 | |
| 
 | |
|     Returns a dictionary read by JSON.
 | |
|     """
 | |
|     with open(config_file, 'r') as raw_config:
 | |
|         config = json.load(raw_config)
 | |
|         return config
 | |
| 
 | |
| 
 | |
| # /////////////////// Execution /////////////////// #
 | |
| 
 | |
| # This is not a library
 | |
| if __name__ != '__main__':
 | |
|     Avalon.error('This file cannot be imported')
 | |
|     raise ImportError('{} cannot be imported'.format(__file__))
 | |
| 
 | |
| print_logo()
 | |
| 
 | |
| # Process CLI arguments
 | |
| args = process_arguments()
 | |
| 
 | |
| # Arguments sanity check
 | |
| if args.driver == 'waifu2x_converter' and args.width and args.height:
 | |
|     Avalon.error('Waifu2x Converter CPP accepts only scaling ratio')
 | |
|     exit(1)
 | |
| if (args.width or args.height) and args.ratio:
 | |
|     Avalon.error('You can only specify either scaling ratio or output width and height')
 | |
|     exit(1)
 | |
| if (args.width and not args.height) or (not args.width and args.height):
 | |
|     Avalon.error('You must specify both width and height')
 | |
|     exit(1)
 | |
| 
 | |
| # Check available memory
 | |
| check_memory()
 | |
| 
 | |
| # Read configurations from JSON
 | |
| config = read_config(args.config)
 | |
| 
 | |
| # load waifu2x configuration
 | |
| if args.driver == 'waifu2x_caffe':
 | |
|     waifu2x_settings = config['waifu2x_caffe']
 | |
| elif args.driver == 'waifu2x_converter':
 | |
|     waifu2x_settings = config['waifu2x_converter']
 | |
| 
 | |
| # read FFMPEG configuration
 | |
| ffmpeg_settings = config['ffmpeg']
 | |
| 
 | |
| # load video2x settings
 | |
| video2x_cache_folder = config['video2x']['video2x_cache_folder']
 | |
| preserve_frames = config['video2x']['preserve_frames']
 | |
| 
 | |
| # Create temp directories if they don't exist
 | |
| if not video2x_cache_folder:
 | |
|     video2x_cache_folder = '{}\\video2x'.format(tempfile.gettempdir())
 | |
| 
 | |
| if video2x_cache_folder and not os.path.isdir(video2x_cache_folder):
 | |
|     if not os.path.isfile(video2x_cache_folder) and not os.path.islink(video2x_cache_folder):
 | |
|         Avalon.warning('Specified cache folder/directory {} does not exist'.format(video2x_cache_folder))
 | |
|         if Avalon.ask('Create folder/directory?', default=True, batch=args.batch):
 | |
|             if os.mkdir(video2x_cache_folder) is None:
 | |
|                 Avalon.info('{} created'.format(video2x_cache_folder))
 | |
|             else:
 | |
|                 Avalon.error('Unable to create {}'.format(video2x_cache_folder))
 | |
|                 Avalon.error('Aborting...')
 | |
|                 exit(1)
 | |
|     else:
 | |
|         Avalon.error('Specified cache folder/directory is a file/link')
 | |
|         Avalon.error('Unable to continue, exiting...')
 | |
|         exit(1)
 | |
| 
 | |
| 
 | |
| # Start execution
 | |
| try:
 | |
|     # Start timer
 | |
|     begin_time = time.time()
 | |
| 
 | |
|     if os.path.isfile(args.input):
 | |
|         """ Upscale single video file """
 | |
|         Avalon.info('Upscaling single video file: {}'.format(args.input))
 | |
|         upscaler = Upscaler(input_video=args.input, output_video=args.output, method=args.method, waifu2x_settings=waifu2x_settings, ffmpeg_settings=ffmpeg_settings, waifu2x_driver=args.driver, scale_width=args.width, scale_height=args.height, scale_ratio=args.ratio, model_type=args.model_type, threads=args.threads, video2x_cache_folder=video2x_cache_folder)
 | |
|         upscaler.run()
 | |
|         upscaler.cleanup()
 | |
|     elif os.path.isdir(args.input):
 | |
|         """ Upscale videos in a folder/directory """
 | |
|         Avalon.info('Upscaling videos in folder/directory: {}'.format(args.input))
 | |
|         for input_video in [f for f in os.listdir(args.input) if os.path.isfile(os.path.join(args.input, f))]:
 | |
|             output_video = '{}\\{}'.format(args.output, input_video)
 | |
|             upscaler = Upscaler(input_video=os.path.join(args.input, input_video), output_video=output_video, method=args.method, waifu2x_settings=waifu2x_settings, ffmpeg_settings=ffmpeg_settings, waifu2x_driver=args.driver, scale_width=args.width, scale_height=args.height, scale_ratio=args.ratio, model_type=args.model_type, threads=args.threads, video2x_cache_folder=video2x_cache_folder)
 | |
|             upscaler.run()
 | |
|             upscaler.cleanup()
 | |
|     else:
 | |
|         Avalon.error('Input path is neither a file nor a folder/directory')
 | |
|         raise FileNotFoundError('{} is neither file nor folder/directory'.format(args.input))
 | |
| 
 | |
|     Avalon.info('Program completed, taking {} seconds'.format(round((time.time() - begin_time), 5)))
 | |
| except Exception:
 | |
|     Avalon.error('An exception has occurred')
 | |
|     traceback.print_exc()
 | |
| finally:
 | |
|     # Remove Video2X Cache folder
 | |
|     try:
 | |
|         if not preserve_frames:
 | |
|             shutil.rmtree(video2x_cache_folder)
 | |
|     except FileNotFoundError:
 | |
|         pass
 |