mirror of
				https://source.denx.de/u-boot/u-boot.git
				synced 2025-10-31 08:21:36 +01:00 
			
		
		
		
	As commit 84b8bf6d5d2a ("bug.h: move BUILD_BUG_* defines to
include/linux/bug.h") noted, include/linux/bug.h was locally
modified for U-Boot because the name conflict of error() caused
build errors at that time.
Now error() is gone, so we can fully sync BUILD_BUG* with Linux.
These macros are just compile-time utilities.  Nothing depends on
platform code, so it should make sense to simply copy Linux's ones.
Please note Linux split BUILD_BUG stuff out into <linux/build_bug.h>
by commit bc6245e5efd7.  Let's follow it.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
		
	
			
		
			
				
	
	
		
			560 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			560 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #ifndef __LINUX_COMPILER_H
 | |
| #define __LINUX_COMPILER_H
 | |
| 
 | |
| #ifndef __ASSEMBLY__
 | |
| 
 | |
| #ifdef __CHECKER__
 | |
| # define __user		__attribute__((noderef, address_space(1)))
 | |
| # define __kernel	__attribute__((address_space(0)))
 | |
| # define __safe		__attribute__((safe))
 | |
| # define __force	__attribute__((force))
 | |
| # define __nocast	__attribute__((nocast))
 | |
| # define __iomem	__attribute__((noderef, address_space(2)))
 | |
| # define __must_hold(x)	__attribute__((context(x,1,1)))
 | |
| # define __acquires(x)	__attribute__((context(x,0,1)))
 | |
| # define __releases(x)	__attribute__((context(x,1,0)))
 | |
| # define __acquire(x)	__context__(x,1)
 | |
| # define __release(x)	__context__(x,-1)
 | |
| # define __cond_lock(x,c)	((c) ? ({ __acquire(x); 1; }) : 0)
 | |
| # define __percpu	__attribute__((noderef, address_space(3)))
 | |
| # define __pmem		__attribute__((noderef, address_space(5)))
 | |
| #ifdef CONFIG_SPARSE_RCU_POINTER
 | |
| # define __rcu		__attribute__((noderef, address_space(4)))
 | |
| #else
 | |
| # define __rcu
 | |
| #endif
 | |
| extern void __chk_user_ptr(const volatile void __user *);
 | |
| extern void __chk_io_ptr(const volatile void __iomem *);
 | |
| #else
 | |
| # define __user
 | |
| # define __kernel
 | |
| # define __safe
 | |
| # define __force
 | |
| # define __nocast
 | |
| # define __iomem
 | |
| # define __chk_user_ptr(x) (void)0
 | |
| # define __chk_io_ptr(x) (void)0
 | |
| # define __builtin_warning(x, y...) (1)
 | |
| # define __must_hold(x)
 | |
| # define __acquires(x)
 | |
| # define __releases(x)
 | |
| # define __acquire(x) (void)0
 | |
| # define __release(x) (void)0
 | |
| # define __cond_lock(x,c) (c)
 | |
| # define __percpu
 | |
| # define __rcu
 | |
| # define __pmem
 | |
| #endif
 | |
| 
 | |
| /* Indirect macros required for expanded argument pasting, eg. __LINE__. */
 | |
| #define ___PASTE(a,b) a##b
 | |
| #define __PASTE(a,b) ___PASTE(a,b)
 | |
| 
 | |
| #ifdef __KERNEL__
 | |
| 
 | |
| #ifdef __GNUC__
 | |
| #include <linux/compiler-gcc.h>
 | |
| #endif
 | |
| 
 | |
| #if defined(CC_USING_HOTPATCH) && !defined(__CHECKER__)
 | |
| #define notrace __attribute__((hotpatch(0,0)))
 | |
| #else
 | |
| #define notrace __attribute__((no_instrument_function))
 | |
| #endif
 | |
| 
 | |
| /* Intel compiler defines __GNUC__. So we will overwrite implementations
 | |
|  * coming from above header files here
 | |
|  */
 | |
| #ifdef __INTEL_COMPILER
 | |
| # include <linux/compiler-intel.h>
 | |
| #endif
 | |
| 
 | |
| /* Clang compiler defines __GNUC__. So we will overwrite implementations
 | |
|  * coming from above header files here
 | |
|  */
 | |
| #ifdef __clang__
 | |
| #include <linux/compiler-clang.h>
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Generic compiler-dependent macros required for kernel
 | |
|  * build go below this comment. Actual compiler/compiler version
 | |
|  * specific implementations come from the above header files
 | |
|  */
 | |
| 
 | |
| struct ftrace_branch_data {
 | |
| 	const char *func;
 | |
| 	const char *file;
 | |
| 	unsigned line;
 | |
| 	union {
 | |
| 		struct {
 | |
| 			unsigned long correct;
 | |
| 			unsigned long incorrect;
 | |
| 		};
 | |
| 		struct {
 | |
| 			unsigned long miss;
 | |
| 			unsigned long hit;
 | |
| 		};
 | |
| 		unsigned long miss_hit[2];
 | |
| 	};
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code
 | |
|  * to disable branch tracing on a per file basis.
 | |
|  */
 | |
| #if defined(CONFIG_TRACE_BRANCH_PROFILING) \
 | |
|     && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__)
 | |
| void ftrace_likely_update(struct ftrace_branch_data *f, int val, int expect);
 | |
| 
 | |
| #define likely_notrace(x)	__builtin_expect(!!(x), 1)
 | |
| #define unlikely_notrace(x)	__builtin_expect(!!(x), 0)
 | |
| 
 | |
| #define __branch_check__(x, expect) ({					\
 | |
| 			int ______r;					\
 | |
| 			static struct ftrace_branch_data		\
 | |
| 				__attribute__((__aligned__(4)))		\
 | |
| 				__attribute__((section("_ftrace_annotated_branch"))) \
 | |
| 				______f = {				\
 | |
| 				.func = __func__,			\
 | |
| 				.file = __FILE__,			\
 | |
| 				.line = __LINE__,			\
 | |
| 			};						\
 | |
| 			______r = likely_notrace(x);			\
 | |
| 			ftrace_likely_update(&______f, ______r, expect); \
 | |
| 			______r;					\
 | |
| 		})
 | |
| 
 | |
| /*
 | |
|  * Using __builtin_constant_p(x) to ignore cases where the return
 | |
|  * value is always the same.  This idea is taken from a similar patch
 | |
|  * written by Daniel Walker.
 | |
|  */
 | |
| # ifndef likely
 | |
| #  define likely(x)	(__builtin_constant_p(x) ? !!(x) : __branch_check__(x, 1))
 | |
| # endif
 | |
| # ifndef unlikely
 | |
| #  define unlikely(x)	(__builtin_constant_p(x) ? !!(x) : __branch_check__(x, 0))
 | |
| # endif
 | |
| 
 | |
| #ifdef CONFIG_PROFILE_ALL_BRANCHES
 | |
| /*
 | |
|  * "Define 'is'", Bill Clinton
 | |
|  * "Define 'if'", Steven Rostedt
 | |
|  */
 | |
| #define if(cond, ...) __trace_if( (cond , ## __VA_ARGS__) )
 | |
| #define __trace_if(cond) \
 | |
| 	if (__builtin_constant_p(!!(cond)) ? !!(cond) :			\
 | |
| 	({								\
 | |
| 		int ______r;						\
 | |
| 		static struct ftrace_branch_data			\
 | |
| 			__attribute__((__aligned__(4)))			\
 | |
| 			__attribute__((section("_ftrace_branch")))	\
 | |
| 			______f = {					\
 | |
| 				.func = __func__,			\
 | |
| 				.file = __FILE__,			\
 | |
| 				.line = __LINE__,			\
 | |
| 			};						\
 | |
| 		______r = !!(cond);					\
 | |
| 		______f.miss_hit[______r]++;					\
 | |
| 		______r;						\
 | |
| 	}))
 | |
| #endif /* CONFIG_PROFILE_ALL_BRANCHES */
 | |
| 
 | |
| #else
 | |
| # define likely(x)	__builtin_expect(!!(x), 1)
 | |
| # define unlikely(x)	__builtin_expect(!!(x), 0)
 | |
| #endif
 | |
| 
 | |
| /* Optimization barrier */
 | |
| #ifndef barrier
 | |
| # define barrier() __memory_barrier()
 | |
| #endif
 | |
| 
 | |
| #ifndef barrier_data
 | |
| # define barrier_data(ptr) barrier()
 | |
| #endif
 | |
| 
 | |
| /* Unreachable code */
 | |
| #ifndef unreachable
 | |
| # define unreachable() do { } while (1)
 | |
| #endif
 | |
| 
 | |
| #ifndef RELOC_HIDE
 | |
| # define RELOC_HIDE(ptr, off)					\
 | |
|   ({ unsigned long __ptr;					\
 | |
|      __ptr = (unsigned long) (ptr);				\
 | |
|     (typeof(ptr)) (__ptr + (off)); })
 | |
| #endif
 | |
| 
 | |
| #ifndef OPTIMIZER_HIDE_VAR
 | |
| #define OPTIMIZER_HIDE_VAR(var) barrier()
 | |
| #endif
 | |
| 
 | |
| /* Not-quite-unique ID. */
 | |
| #ifndef __UNIQUE_ID
 | |
| # define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __LINE__)
 | |
| #endif
 | |
| 
 | |
| #include <linux/types.h>
 | |
| 
 | |
| #define __READ_ONCE_SIZE						\
 | |
| ({									\
 | |
| 	switch (size) {							\
 | |
| 	case 1: *(__u8 *)res = *(volatile __u8 *)p; break;		\
 | |
| 	case 2: *(__u16 *)res = *(volatile __u16 *)p; break;		\
 | |
| 	case 4: *(__u32 *)res = *(volatile __u32 *)p; break;		\
 | |
| 	case 8: *(__u64 *)res = *(volatile __u64 *)p; break;		\
 | |
| 	default:							\
 | |
| 		barrier();						\
 | |
| 		__builtin_memcpy((void *)res, (const void *)p, size);	\
 | |
| 		barrier();						\
 | |
| 	}								\
 | |
| })
 | |
| 
 | |
| static __always_inline
 | |
| void __read_once_size(const volatile void *p, void *res, int size)
 | |
| {
 | |
| 	__READ_ONCE_SIZE;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_KASAN
 | |
| /*
 | |
|  * This function is not 'inline' because __no_sanitize_address confilcts
 | |
|  * with inlining. Attempt to inline it may cause a build failure.
 | |
|  * 	https://gcc.gnu.org/bugzilla/show_bug.cgi?id=67368
 | |
|  * '__maybe_unused' allows us to avoid defined-but-not-used warnings.
 | |
|  */
 | |
| static __no_sanitize_address __maybe_unused
 | |
| void __read_once_size_nocheck(const volatile void *p, void *res, int size)
 | |
| {
 | |
| 	__READ_ONCE_SIZE;
 | |
| }
 | |
| #else
 | |
| static __always_inline
 | |
| void __read_once_size_nocheck(const volatile void *p, void *res, int size)
 | |
| {
 | |
| 	__READ_ONCE_SIZE;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static __always_inline void __write_once_size(volatile void *p, void *res, int size)
 | |
| {
 | |
| 	switch (size) {
 | |
| 	case 1: *(volatile __u8 *)p = *(__u8 *)res; break;
 | |
| 	case 2: *(volatile __u16 *)p = *(__u16 *)res; break;
 | |
| 	case 4: *(volatile __u32 *)p = *(__u32 *)res; break;
 | |
| 	case 8: *(volatile __u64 *)p = *(__u64 *)res; break;
 | |
| 	default:
 | |
| 		barrier();
 | |
| 		__builtin_memcpy((void *)p, (const void *)res, size);
 | |
| 		barrier();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Prevent the compiler from merging or refetching reads or writes. The
 | |
|  * compiler is also forbidden from reordering successive instances of
 | |
|  * READ_ONCE, WRITE_ONCE and ACCESS_ONCE (see below), but only when the
 | |
|  * compiler is aware of some particular ordering.  One way to make the
 | |
|  * compiler aware of ordering is to put the two invocations of READ_ONCE,
 | |
|  * WRITE_ONCE or ACCESS_ONCE() in different C statements.
 | |
|  *
 | |
|  * In contrast to ACCESS_ONCE these two macros will also work on aggregate
 | |
|  * data types like structs or unions. If the size of the accessed data
 | |
|  * type exceeds the word size of the machine (e.g., 32 bits or 64 bits)
 | |
|  * READ_ONCE() and WRITE_ONCE()  will fall back to memcpy and print a
 | |
|  * compile-time warning.
 | |
|  *
 | |
|  * Their two major use cases are: (1) Mediating communication between
 | |
|  * process-level code and irq/NMI handlers, all running on the same CPU,
 | |
|  * and (2) Ensuring that the compiler does not  fold, spindle, or otherwise
 | |
|  * mutilate accesses that either do not require ordering or that interact
 | |
|  * with an explicit memory barrier or atomic instruction that provides the
 | |
|  * required ordering.
 | |
|  */
 | |
| 
 | |
| #define __READ_ONCE(x, check)						\
 | |
| ({									\
 | |
| 	union { typeof(x) __val; char __c[1]; } __u;			\
 | |
| 	if (check)							\
 | |
| 		__read_once_size(&(x), __u.__c, sizeof(x));		\
 | |
| 	else								\
 | |
| 		__read_once_size_nocheck(&(x), __u.__c, sizeof(x));	\
 | |
| 	__u.__val;							\
 | |
| })
 | |
| #define READ_ONCE(x) __READ_ONCE(x, 1)
 | |
| 
 | |
| /*
 | |
|  * Use READ_ONCE_NOCHECK() instead of READ_ONCE() if you need
 | |
|  * to hide memory access from KASAN.
 | |
|  */
 | |
| #define READ_ONCE_NOCHECK(x) __READ_ONCE(x, 0)
 | |
| 
 | |
| #define WRITE_ONCE(x, val) \
 | |
| ({							\
 | |
| 	union { typeof(x) __val; char __c[1]; } __u =	\
 | |
| 		{ .__val = (__force typeof(x)) (val) }; \
 | |
| 	__write_once_size(&(x), __u.__c, sizeof(x));	\
 | |
| 	__u.__val;					\
 | |
| })
 | |
| 
 | |
| /**
 | |
|  * smp_cond_acquire() - Spin wait for cond with ACQUIRE ordering
 | |
|  * @cond: boolean expression to wait for
 | |
|  *
 | |
|  * Equivalent to using smp_load_acquire() on the condition variable but employs
 | |
|  * the control dependency of the wait to reduce the barrier on many platforms.
 | |
|  *
 | |
|  * The control dependency provides a LOAD->STORE order, the additional RMB
 | |
|  * provides LOAD->LOAD order, together they provide LOAD->{LOAD,STORE} order,
 | |
|  * aka. ACQUIRE.
 | |
|  */
 | |
| #define smp_cond_acquire(cond)	do {		\
 | |
| 	while (!(cond))				\
 | |
| 		cpu_relax();			\
 | |
| 	smp_rmb(); /* ctrl + rmb := acquire */	\
 | |
| } while (0)
 | |
| 
 | |
| #endif /* __KERNEL__ */
 | |
| 
 | |
| #endif /* __ASSEMBLY__ */
 | |
| 
 | |
| #ifdef __KERNEL__
 | |
| /*
 | |
|  * Allow us to mark functions as 'deprecated' and have gcc emit a nice
 | |
|  * warning for each use, in hopes of speeding the functions removal.
 | |
|  * Usage is:
 | |
|  * 		int __deprecated foo(void)
 | |
|  */
 | |
| #ifndef __deprecated
 | |
| # define __deprecated		/* unimplemented */
 | |
| #endif
 | |
| 
 | |
| #ifdef MODULE
 | |
| #define __deprecated_for_modules __deprecated
 | |
| #else
 | |
| #define __deprecated_for_modules
 | |
| #endif
 | |
| 
 | |
| #ifndef __must_check
 | |
| #define __must_check
 | |
| #endif
 | |
| 
 | |
| #ifndef CONFIG_ENABLE_MUST_CHECK
 | |
| #undef __must_check
 | |
| #define __must_check
 | |
| #endif
 | |
| #ifndef CONFIG_ENABLE_WARN_DEPRECATED
 | |
| #undef __deprecated
 | |
| #undef __deprecated_for_modules
 | |
| #define __deprecated
 | |
| #define __deprecated_for_modules
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Allow us to avoid 'defined but not used' warnings on functions and data,
 | |
|  * as well as force them to be emitted to the assembly file.
 | |
|  *
 | |
|  * As of gcc 3.4, static functions that are not marked with attribute((used))
 | |
|  * may be elided from the assembly file.  As of gcc 3.4, static data not so
 | |
|  * marked will not be elided, but this may change in a future gcc version.
 | |
|  *
 | |
|  * NOTE: Because distributions shipped with a backported unit-at-a-time
 | |
|  * compiler in gcc 3.3, we must define __used to be __attribute__((used))
 | |
|  * for gcc >=3.3 instead of 3.4.
 | |
|  *
 | |
|  * In prior versions of gcc, such functions and data would be emitted, but
 | |
|  * would be warned about except with attribute((unused)).
 | |
|  *
 | |
|  * Mark functions that are referenced only in inline assembly as __used so
 | |
|  * the code is emitted even though it appears to be unreferenced.
 | |
|  */
 | |
| #ifndef __used
 | |
| # define __used			/* unimplemented */
 | |
| #endif
 | |
| 
 | |
| #ifndef __maybe_unused
 | |
| # define __maybe_unused		/* unimplemented */
 | |
| #endif
 | |
| 
 | |
| #ifndef __always_unused
 | |
| # define __always_unused	/* unimplemented */
 | |
| #endif
 | |
| 
 | |
| #ifndef noinline
 | |
| #define noinline
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Rather then using noinline to prevent stack consumption, use
 | |
|  * noinline_for_stack instead.  For documentation reasons.
 | |
|  */
 | |
| #define noinline_for_stack noinline
 | |
| 
 | |
| #ifndef __always_inline
 | |
| #define __always_inline inline
 | |
| #endif
 | |
| 
 | |
| #endif /* __KERNEL__ */
 | |
| 
 | |
| /*
 | |
|  * From the GCC manual:
 | |
|  *
 | |
|  * Many functions do not examine any values except their arguments,
 | |
|  * and have no effects except the return value.  Basically this is
 | |
|  * just slightly more strict class than the `pure' attribute above,
 | |
|  * since function is not allowed to read global memory.
 | |
|  *
 | |
|  * Note that a function that has pointer arguments and examines the
 | |
|  * data pointed to must _not_ be declared `const'.  Likewise, a
 | |
|  * function that calls a non-`const' function usually must not be
 | |
|  * `const'.  It does not make sense for a `const' function to return
 | |
|  * `void'.
 | |
|  */
 | |
| #ifndef __attribute_const__
 | |
| # define __attribute_const__	/* unimplemented */
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Tell gcc if a function is cold. The compiler will assume any path
 | |
|  * directly leading to the call is unlikely.
 | |
|  */
 | |
| 
 | |
| #ifndef __cold
 | |
| #define __cold
 | |
| #endif
 | |
| 
 | |
| /* Simple shorthand for a section definition */
 | |
| #ifndef __section
 | |
| # define __section(S) __attribute__ ((__section__(#S)))
 | |
| #endif
 | |
| 
 | |
| #ifndef __visible
 | |
| #define __visible
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Assume alignment of return value.
 | |
|  */
 | |
| #ifndef __assume_aligned
 | |
| #define __assume_aligned(a, ...)
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* Are two types/vars the same type (ignoring qualifiers)? */
 | |
| #ifndef __same_type
 | |
| # define __same_type(a, b) __builtin_types_compatible_p(typeof(a), typeof(b))
 | |
| #endif
 | |
| 
 | |
| /* Is this type a native word size -- useful for atomic operations */
 | |
| #ifndef __native_word
 | |
| # define __native_word(t) (sizeof(t) == sizeof(char) || sizeof(t) == sizeof(short) || sizeof(t) == sizeof(int) || sizeof(t) == sizeof(long))
 | |
| #endif
 | |
| 
 | |
| /* Compile time object size, -1 for unknown */
 | |
| #ifndef __compiletime_object_size
 | |
| # define __compiletime_object_size(obj) -1
 | |
| #endif
 | |
| #ifndef __compiletime_warning
 | |
| # define __compiletime_warning(message)
 | |
| #endif
 | |
| #ifndef __compiletime_error
 | |
| # define __compiletime_error(message)
 | |
| /*
 | |
|  * Sparse complains of variable sized arrays due to the temporary variable in
 | |
|  * __compiletime_assert. Unfortunately we can't just expand it out to make
 | |
|  * sparse see a constant array size without breaking compiletime_assert on old
 | |
|  * versions of GCC (e.g. 4.2.4), so hide the array from sparse altogether.
 | |
|  */
 | |
| # ifndef __CHECKER__
 | |
| #  define __compiletime_error_fallback(condition) \
 | |
| 	do { ((void)sizeof(char[1 - 2 * condition])); } while (0)
 | |
| # endif
 | |
| #endif
 | |
| #ifndef __compiletime_error_fallback
 | |
| # define __compiletime_error_fallback(condition) do { } while (0)
 | |
| #endif
 | |
| 
 | |
| #ifdef __OPTIMIZE__
 | |
| # define __compiletime_assert(condition, msg, prefix, suffix)		\
 | |
| 	do {								\
 | |
| 		bool __cond = !(condition);				\
 | |
| 		extern void prefix ## suffix(void) __compiletime_error(msg); \
 | |
| 		if (__cond)						\
 | |
| 			prefix ## suffix();				\
 | |
| 		__compiletime_error_fallback(__cond);			\
 | |
| 	} while (0)
 | |
| #else
 | |
| # define __compiletime_assert(condition, msg, prefix, suffix) do { } while (0)
 | |
| #endif
 | |
| 
 | |
| #define _compiletime_assert(condition, msg, prefix, suffix) \
 | |
| 	__compiletime_assert(condition, msg, prefix, suffix)
 | |
| 
 | |
| /**
 | |
|  * compiletime_assert - break build and emit msg if condition is false
 | |
|  * @condition: a compile-time constant condition to check
 | |
|  * @msg:       a message to emit if condition is false
 | |
|  *
 | |
|  * In tradition of POSIX assert, this macro will break the build if the
 | |
|  * supplied condition is *false*, emitting the supplied error message if the
 | |
|  * compiler has support to do so.
 | |
|  */
 | |
| #define compiletime_assert(condition, msg) \
 | |
| 	_compiletime_assert(condition, msg, __compiletime_assert_, __LINE__)
 | |
| 
 | |
| #define compiletime_assert_atomic_type(t)				\
 | |
| 	compiletime_assert(__native_word(t),				\
 | |
| 		"Need native word sized stores/loads for atomicity.")
 | |
| 
 | |
| /*
 | |
|  * Prevent the compiler from merging or refetching accesses.  The compiler
 | |
|  * is also forbidden from reordering successive instances of ACCESS_ONCE(),
 | |
|  * but only when the compiler is aware of some particular ordering.  One way
 | |
|  * to make the compiler aware of ordering is to put the two invocations of
 | |
|  * ACCESS_ONCE() in different C statements.
 | |
|  *
 | |
|  * ACCESS_ONCE will only work on scalar types. For union types, ACCESS_ONCE
 | |
|  * on a union member will work as long as the size of the member matches the
 | |
|  * size of the union and the size is smaller than word size.
 | |
|  *
 | |
|  * The major use cases of ACCESS_ONCE used to be (1) Mediating communication
 | |
|  * between process-level code and irq/NMI handlers, all running on the same CPU,
 | |
|  * and (2) Ensuring that the compiler does not  fold, spindle, or otherwise
 | |
|  * mutilate accesses that either do not require ordering or that interact
 | |
|  * with an explicit memory barrier or atomic instruction that provides the
 | |
|  * required ordering.
 | |
|  *
 | |
|  * If possible use READ_ONCE()/WRITE_ONCE() instead.
 | |
|  */
 | |
| #define __ACCESS_ONCE(x) ({ \
 | |
| 	 __maybe_unused typeof(x) __var = (__force typeof(x)) 0; \
 | |
| 	(volatile typeof(x) *)&(x); })
 | |
| #define ACCESS_ONCE(x) (*__ACCESS_ONCE(x))
 | |
| 
 | |
| /**
 | |
|  * lockless_dereference() - safely load a pointer for later dereference
 | |
|  * @p: The pointer to load
 | |
|  *
 | |
|  * Similar to rcu_dereference(), but for situations where the pointed-to
 | |
|  * object's lifetime is managed by something other than RCU.  That
 | |
|  * "something other" might be reference counting or simple immortality.
 | |
|  */
 | |
| #define lockless_dereference(p) \
 | |
| ({ \
 | |
| 	typeof(p) _________p1 = READ_ONCE(p); \
 | |
| 	smp_read_barrier_depends(); /* Dependency order vs. p above. */ \
 | |
| 	(_________p1); \
 | |
| })
 | |
| 
 | |
| /* Ignore/forbid kprobes attach on very low level functions marked by this attribute: */
 | |
| #ifdef CONFIG_KPROBES
 | |
| # define __kprobes	__attribute__((__section__(".kprobes.text")))
 | |
| # define nokprobe_inline	__always_inline
 | |
| #else
 | |
| # define __kprobes
 | |
| # define nokprobe_inline	inline
 | |
| #endif
 | |
| #endif /* __LINUX_COMPILER_H */
 |