u-boot/drivers/net/cortina_ni.c
Tom Rini d678a59d2d Revert "Merge patch series "arm: dts: am62-beagleplay: Fix Beagleplay Ethernet""
When bringing in the series 'arm: dts: am62-beagleplay: Fix Beagleplay
Ethernet"' I failed to notice that b4 noticed it was based on next and
so took that as the base commit and merged that part of next to master.

This reverts commit c8ffd1356d42223cbb8c86280a083cc3c93e6426, reversing
changes made to 2ee6f3a5f7550de3599faef9704e166e5dcace35.

Reported-by: Jonas Karlman <jonas@kwiboo.se>
Signed-off-by: Tom Rini <trini@konsulko.com>
2024-05-19 08:16:36 -06:00

1104 lines
32 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2020 Cortina Access Inc.
* Author: Aaron Tseng <aaron.tseng@cortina-access.com>
*
* Ethernet MAC Driver for all supported CAxxxx SoCs
*/
#include <common.h>
#include <command.h>
#include <malloc.h>
#include <net.h>
#include <miiphy.h>
#include <env.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <u-boot/crc.h>
#include <led.h>
#include "cortina_ni.h"
#define HEADER_A_SIZE 8
enum ca_led_state_t {
CA_LED_OFF = 0,
CA_LED_ON = 1,
};
enum ca_port_t {
NI_PORT_0 = 0,
NI_PORT_1,
NI_PORT_2,
NI_PORT_3,
NI_PORT_4,
NI_PORT_5,
NI_PORT_MAX,
};
static struct udevice *curr_dev;
static u32 *ca_rdwrptr_adv_one(u32 *x, unsigned long base, unsigned long max)
{
if (x + 1 >= (u32 *)max)
return (u32 *)base;
else
return (x + 1);
}
static void ca_reg_read(void *reg, u64 base, u64 offset)
{
u32 *val = (u32 *)reg;
*val = readl(KSEG1_ATU_XLAT(base + offset));
}
static void ca_reg_write(void *reg, u64 base, u64 offset)
{
u32 val = *(u32 *)reg;
writel(val, KSEG1_ATU_XLAT(base + offset));
}
static int ca_mdio_write_rgmii(u32 addr, u32 offset, u16 data)
{
/* up to 10000 cycles*/
u32 loop_wait = __MDIO_ACCESS_TIMEOUT;
struct PER_MDIO_ADDR_t mdio_addr;
struct PER_MDIO_CTRL_t mdio_ctrl;
struct cortina_ni_priv *priv = dev_get_priv(curr_dev);
memset(&mdio_addr, 0, sizeof(mdio_addr));
mdio_addr.mdio_addr = addr;
mdio_addr.mdio_offset = offset;
mdio_addr.mdio_rd_wr = __MDIO_WR_FLAG;
ca_reg_write(&mdio_addr, (u64)priv->per_mdio_base_addr,
PER_MDIO_ADDR_OFFSET);
ca_reg_write(&data, (u64)priv->per_mdio_base_addr,
PER_MDIO_WRDATA_OFFSET);
memset(&mdio_ctrl, 0, sizeof(mdio_ctrl));
mdio_ctrl.mdiostart = 1;
ca_reg_write(&mdio_ctrl, (u64)priv->per_mdio_base_addr,
PER_MDIO_CTRL_OFFSET);
debug("%s: phy_addr=%d, offset=%d, data=0x%x\n",
__func__, addr, offset, data);
do {
ca_reg_read(&mdio_ctrl, (u64)priv->per_mdio_base_addr,
PER_MDIO_CTRL_OFFSET);
if (mdio_ctrl.mdiodone) {
ca_reg_write(&mdio_ctrl, (u64)priv->per_mdio_base_addr,
PER_MDIO_CTRL_OFFSET);
return 0;
}
} while (--loop_wait);
printf("CA NI %s: PHY write timeout!!!\n", __func__);
return -ETIMEDOUT;
}
int ca_mdio_write(u32 addr, u32 offset, u16 data)
{
u32 reg_addr, reg_val;
struct NI_MDIO_OPER_T mdio_oper;
/* support range: 1~31*/
if (addr < CA_MDIO_ADDR_MIN || addr > CA_MDIO_ADDR_MAX)
return -EINVAL;
/* the phy addr 5 is connect to RGMII */
if (addr >= 5)
return ca_mdio_write_rgmii(addr, offset, data);
memset(&mdio_oper, 0, sizeof(mdio_oper));
mdio_oper.reg_off = offset;
mdio_oper.phy_addr = addr;
mdio_oper.reg_base = CA_NI_MDIO_REG_BASE;
reg_val = data;
memcpy(&reg_addr, &mdio_oper, sizeof(reg_addr));
ca_reg_write(&reg_val, (u64)reg_addr, 0);
return 0;
}
static int ca_mdio_read_rgmii(u32 addr, u32 offset, u16 *data)
{
u32 loop_wait = __MDIO_ACCESS_TIMEOUT;
struct PER_MDIO_ADDR_t mdio_addr;
struct PER_MDIO_CTRL_t mdio_ctrl;
struct PER_MDIO_RDDATA_t read_data;
struct cortina_ni_priv *priv = dev_get_priv(curr_dev);
memset(&mdio_addr, 0, sizeof(mdio_addr));
mdio_addr.mdio_addr = addr;
mdio_addr.mdio_offset = offset;
mdio_addr.mdio_rd_wr = __MDIO_RD_FLAG;
ca_reg_write(&mdio_addr, (u64)priv->per_mdio_base_addr,
PER_MDIO_ADDR_OFFSET);
memset(&mdio_ctrl, 0, sizeof(mdio_ctrl));
mdio_ctrl.mdiostart = 1;
ca_reg_write(&mdio_ctrl, (u64)priv->per_mdio_base_addr,
PER_MDIO_CTRL_OFFSET);
do {
ca_reg_read(&mdio_ctrl, (u64)priv->per_mdio_base_addr,
PER_MDIO_CTRL_OFFSET);
if (mdio_ctrl.mdiodone) {
ca_reg_write(&mdio_ctrl, (u64)priv->per_mdio_base_addr,
PER_MDIO_CTRL_OFFSET);
ca_reg_read(&read_data, (u64)priv->per_mdio_base_addr,
PER_MDIO_RDDATA_OFFSET);
*data = read_data.mdio_rddata;
return 0;
}
} while (--loop_wait);
printf("CA NI %s: TIMEOUT!!\n", __func__);
return -ETIMEDOUT;
}
int ca_mdio_read(u32 addr, u32 offset, u16 *data)
{
u32 reg_addr, reg_val;
struct NI_MDIO_OPER_T mdio_oper;
if (!data)
return -EINVAL;
/* support range: 1~31*/
if (addr < CA_MDIO_ADDR_MIN || addr > CA_MDIO_ADDR_MAX)
return -EINVAL;
/* the phy addr 5 is connect to RGMII */
if (addr >= 5)
return ca_mdio_read_rgmii(addr, offset, data);
memset(&mdio_oper, 0, sizeof(mdio_oper));
mdio_oper.reg_off = offset;
mdio_oper.phy_addr = addr;
mdio_oper.reg_base = CA_NI_MDIO_REG_BASE;
reg_val = *data;
memcpy(&reg_addr, &mdio_oper, sizeof(reg_addr));
ca_reg_read(&reg_val, (u64)reg_addr, 0);
*data = reg_val;
return 0;
}
int ca_miiphy_read(const char *devname, u8 addr, u8 reg, u16 *value)
{
return ca_mdio_read(addr, reg, value);
}
int ca_miiphy_write(const char *devname, u8 addr, u8 reg, u16 value)
{
return ca_mdio_write(addr, reg, value);
}
static int cortina_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
{
u16 data;
ca_mdio_read(addr, reg, &data);
return data;
}
static int cortina_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
u16 val)
{
return ca_mdio_write(addr, reg, val);
}
static void ca_ni_setup_mac_addr(void)
{
u8 mac[6];
struct NI_HV_GLB_MAC_ADDR_CFG0_t mac_addr_cfg0;
struct NI_HV_GLB_MAC_ADDR_CFG1_t mac_addr_cfg1;
struct NI_HV_PT_PORT_STATIC_CFG_t port_static_cfg;
struct NI_HV_XRAM_CPUXRAM_CFG_t cpuxram_cfg;
struct cortina_ni_priv *priv = dev_get_priv(curr_dev);
/* parsing ethaddr and set to NI registers. */
if (eth_env_get_enetaddr("ethaddr", mac)) {
/* The complete MAC address consists of
* {MAC_ADDR0_mac_addr0[0-3], MAC_ADDR1_mac_addr1[4],
* PT_PORT_STATIC_CFG_mac_addr6[5]}.
*/
mac_addr_cfg0.mac_addr0 = (mac[0] << 24) + (mac[1] << 16) +
(mac[2] << 8) + mac[3];
ca_reg_write(&mac_addr_cfg0, (u64)priv->ni_hv_base_addr,
NI_HV_GLB_MAC_ADDR_CFG0_OFFSET);
memset(&mac_addr_cfg1, 0, sizeof(mac_addr_cfg1));
mac_addr_cfg1.mac_addr1 = mac[4];
ca_reg_write(&mac_addr_cfg1, (u64)priv->ni_hv_base_addr,
NI_HV_GLB_MAC_ADDR_CFG1_OFFSET);
ca_reg_read(&port_static_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_PT_PORT_STATIC_CFG_OFFSET +
(APB0_NI_HV_PT_STRIDE * priv->active_port));
port_static_cfg.mac_addr6 = mac[5];
ca_reg_write(&port_static_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_PT_PORT_STATIC_CFG_OFFSET +
(APB0_NI_HV_PT_STRIDE * priv->active_port));
/* received only Broadcast and Address matched packets */
ca_reg_read(&cpuxram_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CFG_OFFSET);
cpuxram_cfg.xram_mgmt_promisc_mode = 0;
cpuxram_cfg.rx_0_cpu_pkt_dis = 0;
cpuxram_cfg.tx_0_cpu_pkt_dis = 0;
ca_reg_write(&cpuxram_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CFG_OFFSET);
} else {
/* received all packets(promiscuous mode) */
ca_reg_read(&cpuxram_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CFG_OFFSET);
cpuxram_cfg.xram_mgmt_promisc_mode = 3;
cpuxram_cfg.rx_0_cpu_pkt_dis = 0;
cpuxram_cfg.tx_0_cpu_pkt_dis = 0;
ca_reg_write(&cpuxram_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CFG_OFFSET);
}
}
static void ca_ni_enable_tx_rx(void)
{
struct NI_HV_PT_RXMAC_CFG_t rxmac_cfg;
struct NI_HV_PT_TXMAC_CFG_t txmac_cfg;
struct cortina_ni_priv *priv = dev_get_priv(curr_dev);
/* Enable TX and RX functions */
ca_reg_read(&rxmac_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_PT_RXMAC_CFG_OFFSET +
(APB0_NI_HV_PT_STRIDE * priv->active_port));
rxmac_cfg.rx_en = 1;
ca_reg_write(&rxmac_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_PT_RXMAC_CFG_OFFSET +
(APB0_NI_HV_PT_STRIDE * priv->active_port));
ca_reg_read(&txmac_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_PT_TXMAC_CFG_OFFSET +
(APB0_NI_HV_PT_STRIDE * priv->active_port));
txmac_cfg.tx_en = 1;
ca_reg_write(&txmac_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_PT_TXMAC_CFG_OFFSET +
(APB0_NI_HV_PT_STRIDE * priv->active_port));
}
#define AUTO_SCAN_TIMEOUT 3000 /* 3 seconds */
static int ca_ni_auto_scan_active_port(struct cortina_ni_priv *priv)
{
u8 i;
u16 data;
u32 start_time;
start_time = get_timer(0);
while (get_timer(start_time) < AUTO_SCAN_TIMEOUT) {
for (i = 0; i < priv->valid_port_num; i++) {
if (!priv->port_map[i].phy_addr)
continue;
ca_mdio_read(priv->port_map[i].phy_addr, 1, &data);
if (data & 0x04) {
priv->active_port = priv->port_map[i].port;
return 0;
}
}
}
printf("CA NI %s: auto scan active_port timeout.\n", __func__);
return -1;
}
static void ca_ni_led(int port, int status)
{
char label[10];
struct udevice *led_dev;
if (IS_ENABLED(CONFIG_LED_CORTINA)) {
snprintf(label, sizeof(label), "led%d", port);
debug("%s: set port %d led %s.\n",
__func__, port, status ? "on" : "off");
led_get_by_label(label, &led_dev);
led_set_state(led_dev, status);
}
}
static void ca_ni_reset(void)
{
int i;
struct NI_HV_GLB_INIT_DONE_t init_done;
struct NI_HV_GLB_INTF_RST_CONFIG_t intf_rst_config;
struct NI_HV_GLB_STATIC_CFG_t static_cfg;
struct GLOBAL_BLOCK_RESET_t glb_blk_reset;
struct cortina_ni_priv *priv = dev_get_priv(curr_dev);
/* NI global resets */
ca_reg_read(&glb_blk_reset, (u64)priv->glb_base_addr,
GLOBAL_BLOCK_RESET_OFFSET);
glb_blk_reset.reset_ni = 1;
ca_reg_write(&glb_blk_reset, (u64)priv->glb_base_addr,
GLOBAL_BLOCK_RESET_OFFSET);
/* Remove resets */
glb_blk_reset.reset_ni = 0;
ca_reg_write(&glb_blk_reset, (u64)priv->glb_base_addr,
GLOBAL_BLOCK_RESET_OFFSET);
/* check the ready bit of NI module */
for (i = 0; i < NI_READ_POLL_COUNT; i++) {
ca_reg_read(&init_done, (u64)priv->ni_hv_base_addr,
NI_HV_GLB_INIT_DONE_OFFSET);
if (init_done.ni_init_done)
break;
}
if (i == NI_READ_POLL_COUNT) {
printf("CA NI %s: NI init done not ready, init_done=0x%x!!!\n",
__func__, init_done.ni_init_done);
}
ca_reg_read(&intf_rst_config, (u64)priv->ni_hv_base_addr,
NI_HV_GLB_INTF_RST_CONFIG_OFFSET);
switch (priv->active_port) {
case NI_PORT_0:
intf_rst_config.intf_rst_p0 = 0;
intf_rst_config.mac_rx_rst_p0 = 0;
intf_rst_config.mac_tx_rst_p0 = 0;
break;
case NI_PORT_1:
intf_rst_config.intf_rst_p1 = 0;
intf_rst_config.mac_rx_rst_p1 = 0;
intf_rst_config.mac_tx_rst_p1 = 0;
break;
case NI_PORT_2:
intf_rst_config.intf_rst_p2 = 0;
intf_rst_config.mac_rx_rst_p2 = 0;
intf_rst_config.mac_tx_rst_p2 = 0;
break;
case NI_PORT_3:
intf_rst_config.intf_rst_p3 = 0;
intf_rst_config.mac_tx_rst_p3 = 0;
intf_rst_config.mac_rx_rst_p3 = 0;
break;
case NI_PORT_4:
intf_rst_config.intf_rst_p4 = 0;
intf_rst_config.mac_tx_rst_p4 = 0;
intf_rst_config.mac_rx_rst_p4 = 0;
break;
}
ca_reg_write(&intf_rst_config, (u64)priv->ni_hv_base_addr,
NI_HV_GLB_INTF_RST_CONFIG_OFFSET);
/* Only one GMAC can connect to CPU */
ca_reg_read(&static_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_GLB_STATIC_CFG_OFFSET);
static_cfg.port_to_cpu = priv->active_port;
static_cfg.txmib_mode = 1;
static_cfg.rxmib_mode = 1;
ca_reg_write(&static_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_GLB_STATIC_CFG_OFFSET);
}
static void ca_internal_gphy_cal(struct cortina_ni_priv *priv)
{
int i, port, num;
u32 reg_off, value;
num = priv->gphy_num;
for (port = 0; port < 4; port++) {
for (i = 0; i < num; i++) {
reg_off = priv->gphy_values[i].reg_off + (port * 0x80);
value = priv->gphy_values[i].value;
ca_reg_write(&value, reg_off, 0);
mdelay(50);
}
}
}
static int ca_mdio_register(struct udevice *dev)
{
int ret;
struct cortina_ni_priv *priv = dev_get_priv(dev);
struct mii_dev *mdio_bus = mdio_alloc();
if (!mdio_bus)
return -ENOMEM;
mdio_bus->read = cortina_mdio_read;
mdio_bus->write = cortina_mdio_write;
snprintf(mdio_bus->name, sizeof(mdio_bus->name), dev->name);
mdio_bus->priv = (void *)priv;
ret = mdio_register(mdio_bus);
if (ret)
return ret;
priv->mdio_bus = mdio_bus;
return 0;
}
static void ca_rgmii_init(struct cortina_ni_priv *priv)
{
struct GLOBAL_GLOBAL_CONFIG_t glb_config;
struct GLOBAL_IO_DRIVE_CONTROL_t io_drive_control;
/* Generating 25Mhz reference clock for switch */
ca_reg_read(&glb_config, (u64)priv->glb_base_addr,
GLOBAL_GLOBAL_CONFIG_OFFSET);
glb_config.refclk_sel = 0x01;
glb_config.ext_reset = 0x01;
ca_reg_write(&glb_config, (u64)priv->glb_base_addr,
GLOBAL_GLOBAL_CONFIG_OFFSET);
mdelay(20);
/* Do external reset */
ca_reg_read(&glb_config, (u64)priv->glb_base_addr,
GLOBAL_GLOBAL_CONFIG_OFFSET);
glb_config.ext_reset = 0x0;
ca_reg_write(&glb_config, (u64)priv->glb_base_addr,
GLOBAL_GLOBAL_CONFIG_OFFSET);
ca_reg_read(&io_drive_control, (u64)priv->glb_base_addr,
GLOBAL_IO_DRIVE_CONTROL_OFFSET);
io_drive_control.gmac_mode = 2;
io_drive_control.gmac_dn = 1;
io_drive_control.gmac_dp = 1;
ca_reg_write(&io_drive_control, (u64)priv->glb_base_addr,
GLOBAL_IO_DRIVE_CONTROL_OFFSET);
}
static int ca_phy_probe(struct udevice *dev)
{
int auto_scan_active_port = 0, tmp_port;
char *buf;
struct cortina_ni_priv *priv = dev_get_priv(dev);
struct phy_device *int_phydev, *ext_phydev;
/* Initialize internal phy device */
int_phydev = phy_connect(priv->mdio_bus,
priv->port_map[NI_PORT_3].phy_addr,
dev, priv->phy_interface);
if (int_phydev) {
int_phydev->supported &= PHY_GBIT_FEATURES;
int_phydev->advertising = int_phydev->supported;
phy_config(int_phydev);
} else {
printf("CA NI %s: There is no internal phy device\n", __func__);
}
/* Initialize external phy device */
ext_phydev = phy_connect(priv->mdio_bus,
priv->port_map[NI_PORT_4].phy_addr,
dev, priv->phy_interface);
if (ext_phydev) {
ext_phydev->supported &= PHY_GBIT_FEATURES;
ext_phydev->advertising = int_phydev->supported;
phy_config(ext_phydev);
} else {
printf("CA NI %s: There is no external phy device\n", __func__);
}
/* auto scan the first link up port as active_port */
buf = env_get("auto_scan_active_port");
if (buf != 0) {
auto_scan_active_port = simple_strtoul(buf, NULL, 0);
printf("CA NI %s: auto_scan_active_port=%d\n", __func__,
auto_scan_active_port);
}
if (auto_scan_active_port) {
ca_ni_auto_scan_active_port(priv);
} else {
buf = env_get("active_port");
if (buf != 0) {
tmp_port = simple_strtoul(buf, NULL, 0);
if (tmp_port < 0 &&
!(priv->valid_port_map && BIT(tmp_port))) {
printf("CA NI ERROR: not support this port.");
free(dev);
free(priv);
return 1;
}
priv->active_port = tmp_port;
}
}
printf("CA NI %s: active_port=%d\n", __func__, priv->active_port);
if (priv->active_port == NI_PORT_4)
priv->phydev = ext_phydev;
else
priv->phydev = int_phydev;
return 0;
}
static int cortina_eth_start(struct udevice *dev)
{
int ret;
struct NI_HV_XRAM_CPUXRAM_ADRCFG_RX_t cpuxram_adrcfg_rx;
struct NI_HV_XRAM_CPUXRAM_ADRCFG_TX_0_t cpuxram_adrcfg_tx;
struct NI_HV_XRAM_CPUXRAM_CFG_t cpuxram_cfg;
struct NI_HV_PT_PORT_STATIC_CFG_t port_static_cfg;
struct NI_HV_PT_PORT_GLB_CFG_t port_glb_cfg;
struct cortina_ni_priv *priv = dev_get_priv(dev);
struct phy_device *phydev = priv->phydev;
ret = phy_startup(priv->phydev);
if (ret) {
ca_ni_led(priv->active_port, CA_LED_OFF);
printf("CA NI Could not initialize PHY %s, active_port=%d\n",
priv->phydev->dev->name, priv->active_port);
return ret;
}
if (!priv->phydev->link) {
printf("CA NI %s: link down.\n", priv->phydev->dev->name);
return 0;
}
ca_ni_led(priv->active_port, CA_LED_ON);
printf("CA NI PHY ID 0x%08X %dMbps %s duplex\n",
phydev->phy_id, phydev->speed,
phydev->duplex == DUPLEX_HALF ? "half" : "full");
/* RX XRAM ADDRESS CONFIG (start and end address) */
memset(&cpuxram_adrcfg_rx, 0, sizeof(cpuxram_adrcfg_rx));
cpuxram_adrcfg_rx.rx_top_addr = RX_TOP_ADDR;
cpuxram_adrcfg_rx.rx_base_addr = RX_BASE_ADDR;
ca_reg_write(&cpuxram_adrcfg_rx, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_ADRCFG_RX_OFFSET);
/* TX XRAM ADDRESS CONFIG (start and end address) */
memset(&cpuxram_adrcfg_tx, 0, sizeof(cpuxram_adrcfg_tx));
cpuxram_adrcfg_tx.tx_top_addr = TX_TOP_ADDR;
cpuxram_adrcfg_tx.tx_base_addr = TX_BASE_ADDR;
ca_reg_write(&cpuxram_adrcfg_tx, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_ADRCFG_TX_0_OFFSET);
/*
* Configuration for Management Ethernet Interface:
* - RGMII 1000 mode or RGMII 100 mode
* - MAC mode
*/
ca_reg_read(&port_static_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_PT_PORT_STATIC_CFG_OFFSET +
(APB0_NI_HV_PT_STRIDE * priv->active_port));
if (phydev->speed == SPEED_1000) {
/* port 4 connects to RGMII PHY */
if (phydev->addr == 5)
port_static_cfg.int_cfg = GE_MAC_INTF_RGMII_1000;
else
port_static_cfg.int_cfg = GE_MAC_INTF_GMII;
} else {
/* port 4 connects to RGMII PHY */
if (phydev->addr == 5)
port_static_cfg.int_cfg = GE_MAC_INTF_RGMII_100;
else
port_static_cfg.int_cfg = GE_MAC_INTF_MII;
}
ca_reg_write(&port_static_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_PT_PORT_STATIC_CFG_OFFSET +
(APB0_NI_HV_PT_STRIDE * priv->active_port));
ca_reg_read(&port_glb_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_PT_PORT_GLB_CFG_OFFSET +
(APB0_NI_HV_PT_STRIDE * priv->active_port));
port_glb_cfg.speed = phydev->speed == SPEED_10 ? 1 : 0;
port_glb_cfg.duplex = phydev->duplex == DUPLEX_HALF ? 1 : 0;
ca_reg_write(&port_glb_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_PT_PORT_GLB_CFG_OFFSET +
(APB0_NI_HV_PT_STRIDE * priv->active_port));
/* Need to toggle the tx and rx cpu_pkt_dis bit */
/* after changing Address config register. */
ca_reg_read(&cpuxram_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CFG_OFFSET);
cpuxram_cfg.rx_0_cpu_pkt_dis = 1;
cpuxram_cfg.tx_0_cpu_pkt_dis = 1;
ca_reg_write(&cpuxram_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CFG_OFFSET);
ca_reg_read(&cpuxram_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CFG_OFFSET);
cpuxram_cfg.rx_0_cpu_pkt_dis = 0;
cpuxram_cfg.tx_0_cpu_pkt_dis = 0;
ca_reg_write(&cpuxram_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CFG_OFFSET);
ca_ni_enable_tx_rx();
return 0;
}
/*********************************************
* Packet receive routine from Management FE
* Expects a previously allocated buffer and
* fills the length
* Retruns 0 on success -1 on failure
*******************************************/
static int cortina_eth_recv(struct udevice *dev, int flags, uchar **packetp)
{
u8 *ptr;
u32 next_link, pktlen = 0;
u32 sw_rx_rd_ptr, hw_rx_wr_ptr, *rx_xram_ptr, *data_ptr;
int loop, index = 0, blk_num;
struct cortina_ni_priv *priv = dev_get_priv(dev);
struct NI_HEADER_X_T header_x;
struct NI_PACKET_STATUS packet_status;
struct NI_HV_XRAM_CPUXRAM_CPU_STA_RX_0_t cpuxram_cpu_sta_rx;
struct NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_t cpuxram_cpu_cfg_rx;
/* get the hw write pointer */
memset(&cpuxram_cpu_sta_rx, 0, sizeof(cpuxram_cpu_sta_rx));
ca_reg_read(&cpuxram_cpu_sta_rx, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CPU_STA_RX_0_OFFSET);
hw_rx_wr_ptr = cpuxram_cpu_sta_rx.pkt_wr_ptr;
/* get the sw read pointer */
memset(&cpuxram_cpu_cfg_rx, 0, sizeof(cpuxram_cpu_cfg_rx));
ca_reg_read(&cpuxram_cpu_cfg_rx, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET);
sw_rx_rd_ptr = cpuxram_cpu_cfg_rx.pkt_rd_ptr;
debug("%s: NI_HV_XRAM_CPUXRAM_CPU_STA_RX_0 = 0x%p, ", __func__,
priv->ni_hv_base_addr + NI_HV_XRAM_CPUXRAM_CPU_STA_RX_0_OFFSET);
debug("NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0 = 0x%p\n",
priv->ni_hv_base_addr + NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET);
debug("%s : RX hw_wr_ptr = %d, sw_rd_ptr = %d\n",
__func__, hw_rx_wr_ptr, sw_rx_rd_ptr);
while (sw_rx_rd_ptr != hw_rx_wr_ptr) {
/* Point to the absolute memory address of XRAM
* where read pointer is
*/
rx_xram_ptr = (u32 *)
((unsigned long)priv->ni_xram_base
+ sw_rx_rd_ptr * 8);
/* Wrap around if required */
if (rx_xram_ptr >= (u32 *)(unsigned long)priv->rx_xram_end_adr)
rx_xram_ptr = (u32 *)
(unsigned long)priv->rx_xram_base_adr;
/* Checking header XR. Do not update the read pointer yet */
/* skip unused 32-bit in Header XR */
rx_xram_ptr = ca_rdwrptr_adv_one(rx_xram_ptr,
priv->rx_xram_base_adr,
priv->rx_xram_end_adr);
memcpy(&header_x, rx_xram_ptr, sizeof(header_x));
next_link = header_x.next_link;
/* Header XR [31:0] */
if (*rx_xram_ptr == 0xffffffff)
printf("CA NI %s: XRAM Error !\n", __func__);
debug("%s : RX next link 0x%x\n", __func__, next_link);
debug("%s : bytes_valid %x\n", __func__, header_x.bytes_valid);
if (header_x.ownership == 0) {
/* point to Packet status [31:0] */
rx_xram_ptr = ca_rdwrptr_adv_one(rx_xram_ptr,
priv->rx_xram_base_adr,
priv->rx_xram_end_adr);
memcpy(&packet_status, rx_xram_ptr,
sizeof(*rx_xram_ptr));
if (packet_status.valid == 0) {
debug("%s: Invalid Packet !!, ", __func__);
debug("next_link=%d\n", next_link);
/* Update the software read pointer */
ca_reg_write(&next_link,
(u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET);
return 0;
}
if (packet_status.drop ||
packet_status.runt ||
packet_status.oversize ||
packet_status.jabber ||
packet_status.crc_error ||
packet_status.jumbo) {
debug("%s: Error Packet!!, ", __func__);
debug("next_link=%d\n", next_link);
/* Update the software read pointer */
ca_reg_write(&next_link,
(u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET);
return 0;
}
/* check whether packet size is larger than 1514 */
if (packet_status.packet_size > 1518) {
debug("%s: Error Packet !! Packet size=%d, ",
__func__, packet_status.packet_size);
debug("larger than 1518, next_link=%d\n",
next_link);
/* Update the software read pointer */
ca_reg_write(&next_link,
(u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET);
return 0;
}
rx_xram_ptr = ca_rdwrptr_adv_one(rx_xram_ptr,
priv->rx_xram_base_adr,
priv->rx_xram_end_adr);
pktlen = packet_status.packet_size;
debug("%s : rx packet length = %d\n",
__func__, packet_status.packet_size);
rx_xram_ptr = ca_rdwrptr_adv_one(rx_xram_ptr,
priv->rx_xram_base_adr,
priv->rx_xram_end_adr);
data_ptr = (u32 *)net_rx_packets[index];
/* Read out the packet */
/* Data is in little endian form in the XRAM */
/* Send the packet to upper layer */
debug("%s: packet data[]=", __func__);
for (loop = 0; loop <= pktlen / 4; loop++) {
ptr = (u8 *)rx_xram_ptr;
if (loop < 10)
debug("[0x%x]-[0x%x]-[0x%x]-[0x%x]",
ptr[0], ptr[1], ptr[2], ptr[3]);
*data_ptr++ = *rx_xram_ptr++;
/* Wrap around if required */
if (rx_xram_ptr >= (u32 *)
(unsigned long)priv->rx_xram_end_adr) {
rx_xram_ptr = (u32 *)(unsigned long)
(priv->rx_xram_base_adr);
}
}
debug("\n");
net_process_received_packet(net_rx_packets[index],
pktlen);
if (++index >= PKTBUFSRX)
index = 0;
blk_num = net_rx_packets[index][0x2c] * 255 +
net_rx_packets[index][0x2d];
debug("%s: tftp block number=%d\n", __func__, blk_num);
/* Update the software read pointer */
ca_reg_write(&next_link,
(u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET);
}
/* get the hw write pointer */
ca_reg_read(&cpuxram_cpu_sta_rx, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CPU_STA_RX_0_OFFSET);
hw_rx_wr_ptr = cpuxram_cpu_sta_rx.pkt_wr_ptr;
/* get the sw read pointer */
ca_reg_read(&sw_rx_rd_ptr, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET);
}
return 0;
}
static int cortina_eth_send(struct udevice *dev, void *packet, int length)
{
u32 hw_tx_rd_ptr = 0, sw_tx_wr_ptr = 0;
u32 loop, new_pkt_len, ca_crc32;
u32 *tx_xram_ptr, *data_ptr;
u16 next_link = 0;
u8 *ptr, *pkt_buf_ptr, valid_bytes = 0;
int pad = 0;
static u8 pkt_buf[2048];
struct NI_HEADER_X_T hdr_xt;
struct NI_HV_XRAM_CPUXRAM_CPU_CFG_TX_0_t cpuxram_cpu_cfg_tx;
struct cortina_ni_priv *priv = dev_get_priv(dev);
if (!packet || length > 2032)
return -1;
/* Get the hardware read pointer */
ca_reg_read(&hw_tx_rd_ptr, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CPU_STAT_TX_0_OFFSET);
/* Get the software write pointer */
ca_reg_read(&sw_tx_wr_ptr, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CPU_CFG_TX_0_OFFSET);
debug("%s: NI_HV_XRAM_CPUXRAM_CPU_STAT_TX_0=0x%p, ",
__func__,
KSEG1_ATU_XLAT(priv->ni_hv_base_addr +
NI_HV_XRAM_CPUXRAM_CPU_STAT_TX_0_OFFSET));
debug("NI_HV_XRAM_CPUXRAM_CPU_CFG_TX_0=0x%p\n",
KSEG1_ATU_XLAT(priv->ni_hv_base_addr +
NI_HV_XRAM_CPUXRAM_CPU_CFG_TX_0_OFFSET));
debug("%s : hw_tx_rd_ptr = %d\n", __func__, hw_tx_rd_ptr);
debug("%s : sw_tx_wr_ptr = %d\n", __func__, sw_tx_wr_ptr);
if (hw_tx_rd_ptr != sw_tx_wr_ptr) {
printf("CA NI %s: Tx FIFO is not available!\n", __func__);
return 1;
}
/* a workaround on 2015/10/01
* the packet size+CRC should be 8-byte alignment
*/
if (((length + 4) % 8) != 0)
length += (8 - ((length + 4) % 8));
memset(pkt_buf, 0x00, sizeof(pkt_buf));
/* add 8-byte header_A at the beginning of packet */
memcpy(&pkt_buf[HEADER_A_SIZE], (const void *)packet, length);
pad = 64 - (length + 4); /* if packet length < 60 */
pad = (pad < 0) ? 0 : pad;
debug("%s: length=%d, pad=%d\n", __func__, length, pad);
new_pkt_len = length + pad; /* new packet length */
pkt_buf_ptr = (u8 *)pkt_buf;
/* Calculate the CRC32, skip 8-byte header_A */
ca_crc32 = crc32(0, (u8 *)(pkt_buf_ptr + HEADER_A_SIZE), new_pkt_len);
debug("%s: crc32 is 0x%x\n", __func__, ca_crc32);
debug("%s: ~crc32 is 0x%x\n", __func__, ~ca_crc32);
debug("%s: pkt len %d\n", __func__, new_pkt_len);
/* should add 8-byte header_! */
/* CRC will re-calculated by hardware */
memcpy((pkt_buf_ptr + new_pkt_len + HEADER_A_SIZE),
(u8 *)(&ca_crc32), sizeof(ca_crc32));
new_pkt_len = new_pkt_len + 4; /* add CRC */
valid_bytes = new_pkt_len % 8;
valid_bytes = valid_bytes ? valid_bytes : 0;
debug("%s: valid_bytes %d\n", __func__, valid_bytes);
/* should add 8-byte headerA */
next_link = sw_tx_wr_ptr +
(new_pkt_len + 7 + HEADER_A_SIZE) / 8; /* for headr XT */
/* add header */
next_link = next_link + 1;
/* Wrap around if required */
if (next_link > priv->tx_xram_end) {
next_link = priv->tx_xram_start +
(next_link - (priv->tx_xram_end + 1));
}
debug("%s: TX next_link %x\n", __func__, next_link);
memset(&hdr_xt, 0, sizeof(hdr_xt));
hdr_xt.ownership = 1;
hdr_xt.bytes_valid = valid_bytes;
hdr_xt.next_link = next_link;
tx_xram_ptr = (u32 *)((unsigned long)priv->ni_xram_base
+ sw_tx_wr_ptr * 8);
/* Wrap around if required */
if (tx_xram_ptr >= (u32 *)(unsigned long)priv->tx_xram_end_adr)
tx_xram_ptr = (u32 *)(unsigned long)priv->tx_xram_base_adr;
tx_xram_ptr = ca_rdwrptr_adv_one(tx_xram_ptr,
priv->tx_xram_base_adr,
priv->tx_xram_end_adr);
memcpy(tx_xram_ptr, &hdr_xt, sizeof(*tx_xram_ptr));
tx_xram_ptr = ca_rdwrptr_adv_one(tx_xram_ptr,
priv->tx_xram_base_adr,
priv->tx_xram_end_adr);
/* Now to copy the data. The first byte on the line goes first */
data_ptr = (u32 *)pkt_buf_ptr;
debug("%s: packet data[]=", __func__);
/* copy header_A to XRAM */
for (loop = 0; loop <= (new_pkt_len + HEADER_A_SIZE) / 4; loop++) {
ptr = (u8 *)data_ptr;
if ((loop % 4) == 0)
debug("\n");
debug("[0x%x]-[0x%x]-[0x%x]-[0x%x]-",
ptr[0], ptr[1], ptr[2], ptr[3]);
*tx_xram_ptr = *data_ptr++;
tx_xram_ptr = ca_rdwrptr_adv_one(tx_xram_ptr,
priv->tx_xram_base_adr,
priv->tx_xram_end_adr);
}
debug("\n");
/* Publish the software write pointer */
cpuxram_cpu_cfg_tx.pkt_wr_ptr = next_link;
ca_reg_write(&cpuxram_cpu_cfg_tx,
(u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CPU_CFG_TX_0_OFFSET);
return 0;
}
static void cortina_eth_stop(struct udevice *netdev)
{
/* Nothing to do for now. */
}
static int cortina_eth_probe(struct udevice *dev)
{
int ret, reg_value;
struct cortina_ni_priv *priv;
priv = dev_get_priv(dev);
priv->rx_xram_base_adr = priv->ni_xram_base + (RX_BASE_ADDR * 8);
priv->rx_xram_end_adr = priv->ni_xram_base + ((RX_TOP_ADDR + 1) * 8);
priv->rx_xram_start = RX_BASE_ADDR;
priv->rx_xram_end = RX_TOP_ADDR;
priv->tx_xram_base_adr = priv->ni_xram_base + (TX_BASE_ADDR * 8);
priv->tx_xram_end_adr = priv->ni_xram_base + ((TX_TOP_ADDR + 1) * 8);
priv->tx_xram_start = TX_BASE_ADDR;
priv->tx_xram_end = TX_TOP_ADDR;
curr_dev = dev;
debug("%s: rx_base_addr:%x\t rx_top_addr %x\n",
__func__, priv->rx_xram_start, priv->rx_xram_end);
debug("%s: tx_base_addr:%x\t tx_top_addr %x\n",
__func__, priv->tx_xram_start, priv->tx_xram_end);
debug("%s: rx physical start address = %x end address = %x\n",
__func__, priv->rx_xram_base_adr, priv->rx_xram_end_adr);
debug("%s: tx physical start address = %x end address = %x\n",
__func__, priv->tx_xram_base_adr, priv->tx_xram_end_adr);
/* MDIO register */
ret = ca_mdio_register(dev);
if (ret)
return ret;
/* set MDIO pre-scale value */
ca_reg_read(&reg_value, (u64)priv->per_mdio_base_addr,
PER_MDIO_CFG_OFFSET);
reg_value = reg_value | 0x00280000;
ca_reg_write(&reg_value, (u64)priv->per_mdio_base_addr,
PER_MDIO_CFG_OFFSET);
ca_phy_probe(dev);
priv->phydev->addr = priv->port_map[priv->active_port].phy_addr;
ca_ni_led(priv->active_port, CA_LED_ON);
ca_ni_reset();
printf("CA NI %s: active_port=%d, phy_addr=%d\n",
__func__, priv->active_port, priv->phydev->addr);
printf("CA NI %s: phy_id=0x%x, phy_id & PHY_ID_MASK=0x%x\n", __func__,
priv->phydev->phy_id, priv->phydev->phy_id & 0xFFFFFFF0);
/* parsing ethaddr and set to NI registers. */
ca_ni_setup_mac_addr();
#ifdef MIIPHY_REGISTER
/* the phy_read and phy_write
* should meet the proto type of miiphy_register
*/
miiphy_register(dev->name, ca_miiphy_read, ca_miiphy_write);
#endif
if (priv->init_rgmii) {
/* hardware settings for RGMII port */
ca_rgmii_init(priv);
}
if (priv->gphy_num > 0) {
/* do internal gphy calibration */
ca_internal_gphy_cal(priv);
}
return 0;
}
static int ca_ni_of_to_plat(struct udevice *dev)
{
int i, ret;
struct cortina_ni_priv *priv = dev_get_priv(dev);
memset(priv, 0, sizeof(struct cortina_ni_priv));
priv->glb_base_addr = dev_remap_addr_index(dev, 0);
if (!priv->glb_base_addr)
return -ENOENT;
printf("CA NI %s: priv->glb_base_addr for index 0 is 0x%p\n",
__func__, priv->glb_base_addr);
priv->per_mdio_base_addr = dev_remap_addr_index(dev, 1);
if (!priv->per_mdio_base_addr)
return -ENOENT;
printf("CA NI %s: priv->per_mdio_base_addr for index 1 is 0x%p\n",
__func__, priv->per_mdio_base_addr);
priv->ni_hv_base_addr = dev_remap_addr_index(dev, 2);
if (!priv->ni_hv_base_addr)
return -ENOENT;
printf("CA NI %s: priv->ni_hv_base_addr for index 2 is 0x%p\n",
__func__, priv->ni_hv_base_addr);
priv->valid_port_map = dev_read_u32_default(dev, "valid-port-map", 1);
priv->valid_port_num = dev_read_u32_default(dev, "valid-port-num", 1);
for (i = 0; i < priv->valid_port_num; i++) {
ret = dev_read_u32_index(dev, "valid-ports", i * 2,
&priv->port_map[i].phy_addr);
ret = dev_read_u32_index(dev, "valid-ports", (i * 2) + 1,
&priv->port_map[i].port);
}
priv->gphy_num = dev_read_u32_default(dev, "inter-gphy-num", 1);
for (i = 0; i < priv->gphy_num; i++) {
ret = dev_read_u32_index(dev, "inter-gphy-val", i * 2,
&priv->gphy_values[i].reg_off);
ret = dev_read_u32_index(dev, "inter-gphy-val", (i * 2) + 1,
&priv->gphy_values[i].value);
}
priv->active_port = dev_read_u32_default(dev, "def-active-port", 1);
priv->init_rgmii = dev_read_u32_default(dev, "init-rgmii", 1);
priv->ni_xram_base = dev_read_u32_default(dev, "ni-xram-base", 1);
return 0;
}
static const struct eth_ops cortina_eth_ops = {
.start = cortina_eth_start,
.send = cortina_eth_send,
.recv = cortina_eth_recv,
.stop = cortina_eth_stop,
};
static const struct udevice_id cortina_eth_ids[] = {
{ .compatible = "eth_cortina" },
{ }
};
U_BOOT_DRIVER(eth_cortina) = {
.name = "eth_cortina",
.id = UCLASS_ETH,
.of_match = cortina_eth_ids,
.probe = cortina_eth_probe,
.ops = &cortina_eth_ops,
.priv_auto = sizeof(struct cortina_ni_priv),
.plat_auto = sizeof(struct eth_pdata),
.of_to_plat = ca_ni_of_to_plat,
};