mirror of
				https://source.denx.de/u-boot/u-boot.git
				synced 2025-10-31 08:21:36 +01:00 
			
		
		
		
	Implement the crypto_algo .verify() function for ecdsa256. Because it backends on UCLASS_ECDSA, this change is focused on parsing the keys from devicetree and passing this information to the specific UCLASS driver. Signed-off-by: Alexandru Gagniuc <mr.nuke.me@gmail.com> Reviewed-by: Simon Glass <sjg@chromium.org> Reviewed-by: Patrick Delaunay <patrick.delaunay@foss.st.com>
		
			
				
	
	
		
			135 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			135 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0+
 | |
| /*
 | |
|  * ECDSA signature verification for u-boot
 | |
|  *
 | |
|  * This implements the firmware-side wrapper for ECDSA verification. It bridges
 | |
|  * the struct crypto_algo API to the ECDSA uclass implementations.
 | |
|  *
 | |
|  * Copyright (c) 2020, Alexandru Gagniuc <mr.nuke.me@gmail.com>
 | |
|  */
 | |
| 
 | |
| #include <crypto/ecdsa-uclass.h>
 | |
| #include <dm/uclass.h>
 | |
| #include <u-boot/ecdsa.h>
 | |
| 
 | |
| /*
 | |
|  * Derive size of an ECDSA key from the curve name
 | |
|  *
 | |
|  * While it's possible to extract the key size by using string manipulation,
 | |
|  * use a list of known curves for the time being.
 | |
|  */
 | |
| static int ecdsa_key_size(const char *curve_name)
 | |
| {
 | |
| 	if (!strcmp(curve_name, "prime256v1"))
 | |
| 		return 256;
 | |
| 	else
 | |
| 		return 0;
 | |
| }
 | |
| 
 | |
| static int fdt_get_key(struct ecdsa_public_key *key, const void *fdt, int node)
 | |
| {
 | |
| 	int x_len, y_len;
 | |
| 
 | |
| 	key->curve_name = fdt_getprop(fdt, node, "ecdsa,curve", NULL);
 | |
| 	key->size_bits = ecdsa_key_size(key->curve_name);
 | |
| 	if (key->size_bits == 0) {
 | |
| 		debug("Unknown ECDSA curve '%s'", key->curve_name);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	key->x = fdt_getprop(fdt, node, "ecdsa,x-point", &x_len);
 | |
| 	key->y = fdt_getprop(fdt, node, "ecdsa,y-point", &y_len);
 | |
| 
 | |
| 	if (!key->x || !key->y)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (x_len != (key->size_bits / 8) || y_len != (key->size_bits / 8)) {
 | |
| 		printf("%s: node=%d, curve@%p x@%p+%i y@%p+%i\n", __func__,
 | |
| 		       node, key->curve_name, key->x, x_len, key->y, y_len);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ecdsa_verify_hash(struct udevice *dev,
 | |
| 			     const struct image_sign_info *info,
 | |
| 			     const void *hash, const void *sig, uint sig_len)
 | |
| {
 | |
| 	const struct ecdsa_ops *ops = device_get_ops(dev);
 | |
| 	const struct checksum_algo *algo = info->checksum;
 | |
| 	struct ecdsa_public_key key;
 | |
| 	int sig_node, key_node, ret;
 | |
| 
 | |
| 	if (!ops || !ops->verify)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	if (info->required_keynode > 0) {
 | |
| 		ret = fdt_get_key(&key, info->fdt_blob, info->required_keynode);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 
 | |
| 		return ops->verify(dev, &key, hash, algo->checksum_len,
 | |
| 				   sig, sig_len);
 | |
| 	}
 | |
| 
 | |
| 	sig_node = fdt_subnode_offset(info->fdt_blob, 0, FIT_SIG_NODENAME);
 | |
| 	if (sig_node < 0)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	/* Try all possible keys under the "/signature" node */
 | |
| 	fdt_for_each_subnode(key_node, info->fdt_blob, sig_node) {
 | |
| 		ret = fdt_get_key(&key, info->fdt_blob, key_node);
 | |
| 		if (ret < 0)
 | |
| 			continue;
 | |
| 
 | |
| 		ret = ops->verify(dev, &key, hash, algo->checksum_len,
 | |
| 				  sig, sig_len);
 | |
| 
 | |
| 		/* On success, don't worry about remaining keys */
 | |
| 		if (!ret)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	return -EPERM;
 | |
| }
 | |
| 
 | |
| int ecdsa_verify(struct image_sign_info *info,
 | |
| 		 const struct image_region region[], int region_count,
 | |
| 		 uint8_t *sig, uint sig_len)
 | |
| {
 | |
| 	const struct checksum_algo *algo = info->checksum;
 | |
| 	uint8_t hash[algo->checksum_len];
 | |
| 	struct udevice *dev;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = uclass_first_device_err(UCLASS_ECDSA, &dev);
 | |
| 	if (ret) {
 | |
| 		debug("ECDSA: Could not find ECDSA implementation: %d\n", ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ret = algo->calculate(algo->name, region, region_count, hash);
 | |
| 	if (ret < 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return ecdsa_verify_hash(dev, info, hash, sig, sig_len);
 | |
| }
 | |
| 
 | |
| U_BOOT_CRYPTO_ALGO(ecdsa) = {
 | |
| 	.name = "ecdsa256",
 | |
| 	.key_len = ECDSA256_BYTES,
 | |
| 	.verify = ecdsa_verify,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * uclass definition for ECDSA API
 | |
|  *
 | |
|  * We don't implement any wrappers around ecdsa_ops->verify() because it's
 | |
|  * trivial to call ops->verify().
 | |
|  */
 | |
| UCLASS_DRIVER(ecdsa) = {
 | |
| 	.id		= UCLASS_ECDSA,
 | |
| 	.name		= "ecdsa_verifier",
 | |
| };
 |