mirror of
				https://source.denx.de/u-boot/u-boot.git
				synced 2025-10-31 16:31:25 +01:00 
			
		
		
		
	This patch cleans up the quark MRC codes coding style by: - Remove BIT0/1../31 defines from mrc_util.h - Create names for the documented BITs and use them - For undocumented single BITs, use (1 << n) directly - For undocumented ORed BITs, use the hex number directly - Remove redundancy parenthesis all over the codes - Replace to use lower case hex numbers Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
		
			
				
	
	
		
			397 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			397 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2013, Intel Corporation
 | |
|  * Copyright (C) 2015, Bin Meng <bmeng.cn@gmail.com>
 | |
|  *
 | |
|  * Ported from Intel released Quark UEFI BIOS
 | |
|  * QuarkSocPkg/QuarkNorthCluster/MemoryInit/Pei
 | |
|  *
 | |
|  * SPDX-License-Identifier:	Intel
 | |
|  */
 | |
| 
 | |
| #include <common.h>
 | |
| #include <asm/arch/mrc.h>
 | |
| #include <asm/arch/msg_port.h>
 | |
| #include "mrc_util.h"
 | |
| #include "hte.h"
 | |
| 
 | |
| /**
 | |
|  * Enable HTE to detect all possible errors for the given training parameters
 | |
|  * (per-bit or full byte lane).
 | |
|  */
 | |
| static void hte_enable_all_errors(void)
 | |
| {
 | |
| 	msg_port_write(HTE, 0x000200a2, 0xffffffff);
 | |
| 	msg_port_write(HTE, 0x000200a3, 0x000000ff);
 | |
| 	msg_port_write(HTE, 0x000200a4, 0x00000000);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Go and read the HTE register in order to find any error
 | |
|  *
 | |
|  * @return: The errors detected in the HTE status register
 | |
|  */
 | |
| static u32 hte_check_errors(void)
 | |
| {
 | |
| 	return msg_port_read(HTE, 0x000200a7);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Wait until HTE finishes
 | |
|  */
 | |
| static void hte_wait_for_complete(void)
 | |
| {
 | |
| 	u32 tmp;
 | |
| 
 | |
| 	ENTERFN();
 | |
| 
 | |
| 	do {} while ((msg_port_read(HTE, 0x00020012) & (1 << 30)) != 0);
 | |
| 
 | |
| 	tmp = msg_port_read(HTE, 0x00020011);
 | |
| 	tmp |= (1 << 9);
 | |
| 	tmp &= ~((1 << 12) | (1 << 13));
 | |
| 	msg_port_write(HTE, 0x00020011, tmp);
 | |
| 
 | |
| 	LEAVEFN();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Clear registers related with errors in the HTE
 | |
|  */
 | |
| static void hte_clear_error_regs(void)
 | |
| {
 | |
| 	u32 tmp;
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear all HTE errors and enable error checking
 | |
| 	 * for burst and chunk.
 | |
| 	 */
 | |
| 	tmp = msg_port_read(HTE, 0x000200a1);
 | |
| 	tmp |= (1 << 8);
 | |
| 	msg_port_write(HTE, 0x000200a1, tmp);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Execute a basic single-cache-line memory write/read/verify test using simple
 | |
|  * constant pattern, different for READ_TRAIN and WRITE_TRAIN modes.
 | |
|  *
 | |
|  * See hte_basic_write_read() which is the external visible wrapper.
 | |
|  *
 | |
|  * @mrc_params: host structure for all MRC global data
 | |
|  * @addr: memory adress being tested (must hit specific channel/rank)
 | |
|  * @first_run: if set then the HTE registers are configured, otherwise it is
 | |
|  *             assumed configuration is done and we just re-run the test
 | |
|  * @mode: READ_TRAIN or WRITE_TRAIN (the difference is in the pattern)
 | |
|  *
 | |
|  * @return: byte lane failure on each bit (for Quark only bit0 and bit1)
 | |
|  */
 | |
| static u16 hte_basic_data_cmp(struct mrc_params *mrc_params, u32 addr,
 | |
| 			      u8 first_run, u8 mode)
 | |
| {
 | |
| 	u32 pattern;
 | |
| 	u32 offset;
 | |
| 
 | |
| 	if (first_run) {
 | |
| 		msg_port_write(HTE, 0x00020020, 0x01b10021);
 | |
| 		msg_port_write(HTE, 0x00020021, 0x06000000);
 | |
| 		msg_port_write(HTE, 0x00020022, addr >> 6);
 | |
| 		msg_port_write(HTE, 0x00020062, 0x00800015);
 | |
| 		msg_port_write(HTE, 0x00020063, 0xaaaaaaaa);
 | |
| 		msg_port_write(HTE, 0x00020064, 0xcccccccc);
 | |
| 		msg_port_write(HTE, 0x00020065, 0xf0f0f0f0);
 | |
| 		msg_port_write(HTE, 0x00020061, 0x00030008);
 | |
| 
 | |
| 		if (mode == WRITE_TRAIN)
 | |
| 			pattern = 0xc33c0000;
 | |
| 		else /* READ_TRAIN */
 | |
| 			pattern = 0xaa5555aa;
 | |
| 
 | |
| 		for (offset = 0x80; offset <= 0x8f; offset++)
 | |
| 			msg_port_write(HTE, offset, pattern);
 | |
| 	}
 | |
| 
 | |
| 	msg_port_write(HTE, 0x000200a1, 0xffff1000);
 | |
| 	msg_port_write(HTE, 0x00020011, 0x00011000);
 | |
| 	msg_port_write(HTE, 0x00020011, 0x00011100);
 | |
| 
 | |
| 	hte_wait_for_complete();
 | |
| 
 | |
| 	/*
 | |
| 	 * Return bits 15:8 of HTE_CH0_ERR_XSTAT to check for
 | |
| 	 * any bytelane errors.
 | |
| 	 */
 | |
| 	return (hte_check_errors() >> 8) & 0xff;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Examine a single-cache-line memory with write/read/verify test using multiple
 | |
|  * data patterns (victim-aggressor algorithm).
 | |
|  *
 | |
|  * See hte_write_stress_bit_lanes() which is the external visible wrapper.
 | |
|  *
 | |
|  * @mrc_params: host structure for all MRC global data
 | |
|  * @addr: memory adress being tested (must hit specific channel/rank)
 | |
|  * @loop_cnt: number of test iterations
 | |
|  * @seed_victim: victim data pattern seed
 | |
|  * @seed_aggressor: aggressor data pattern seed
 | |
|  * @victim_bit: should be 0 as auto-rotate feature is in use
 | |
|  * @first_run: if set then the HTE registers are configured, otherwise it is
 | |
|  *             assumed configuration is done and we just re-run the test
 | |
|  *
 | |
|  * @return: byte lane failure on each bit (for Quark only bit0 and bit1)
 | |
|  */
 | |
| static u16 hte_rw_data_cmp(struct mrc_params *mrc_params, u32 addr,
 | |
| 			   u8 loop_cnt, u32 seed_victim, u32 seed_aggressor,
 | |
| 			   u8 victim_bit, u8 first_run)
 | |
| {
 | |
| 	u32 offset;
 | |
| 	u32 tmp;
 | |
| 
 | |
| 	if (first_run) {
 | |
| 		msg_port_write(HTE, 0x00020020, 0x00910024);
 | |
| 		msg_port_write(HTE, 0x00020023, 0x00810024);
 | |
| 		msg_port_write(HTE, 0x00020021, 0x06070000);
 | |
| 		msg_port_write(HTE, 0x00020024, 0x06070000);
 | |
| 		msg_port_write(HTE, 0x00020022, addr >> 6);
 | |
| 		msg_port_write(HTE, 0x00020025, addr >> 6);
 | |
| 		msg_port_write(HTE, 0x00020062, 0x0000002a);
 | |
| 		msg_port_write(HTE, 0x00020063, seed_victim);
 | |
| 		msg_port_write(HTE, 0x00020064, seed_aggressor);
 | |
| 		msg_port_write(HTE, 0x00020065, seed_victim);
 | |
| 
 | |
| 		/*
 | |
| 		 * Write the pattern buffers to select the victim bit
 | |
| 		 *
 | |
| 		 * Start with bit0
 | |
| 		 */
 | |
| 		for (offset = 0x80; offset <= 0x8f; offset++) {
 | |
| 			if ((offset % 8) == victim_bit)
 | |
| 				msg_port_write(HTE, offset, 0x55555555);
 | |
| 			else
 | |
| 				msg_port_write(HTE, offset, 0xcccccccc);
 | |
| 		}
 | |
| 
 | |
| 		msg_port_write(HTE, 0x00020061, 0x00000000);
 | |
| 		msg_port_write(HTE, 0x00020066, 0x03440000);
 | |
| 		msg_port_write(HTE, 0x000200a1, 0xffff1000);
 | |
| 	}
 | |
| 
 | |
| 	tmp = 0x10001000 | (loop_cnt << 16);
 | |
| 	msg_port_write(HTE, 0x00020011, tmp);
 | |
| 	msg_port_write(HTE, 0x00020011, tmp | (1 << 8));
 | |
| 
 | |
| 	hte_wait_for_complete();
 | |
| 
 | |
| 	/*
 | |
| 	 * Return bits 15:8 of HTE_CH0_ERR_XSTAT to check for
 | |
| 	 * any bytelane errors.
 | |
| 	 */
 | |
| 	return (hte_check_errors() >> 8) & 0xff;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Use HW HTE engine to initialize or test all memory attached to a given DUNIT.
 | |
|  * If flag is MRC_MEM_INIT, this routine writes 0s to all memory locations to
 | |
|  * initialize ECC. If flag is MRC_MEM_TEST, this routine will send an 5AA55AA5
 | |
|  * pattern to all memory locations on the RankMask and then read it back.
 | |
|  * Then it sends an A55AA55A pattern to all memory locations on the RankMask
 | |
|  * and reads it back.
 | |
|  *
 | |
|  * @mrc_params: host structure for all MRC global data
 | |
|  * @flag: MRC_MEM_INIT or MRC_MEM_TEST
 | |
|  *
 | |
|  * @return: errors register showing HTE failures. Also prints out which rank
 | |
|  *          failed the HTE test if failure occurs. For rank detection to work,
 | |
|  *          the address map must be left in its default state. If MRC changes
 | |
|  *          the address map, this function must be modified to change it back
 | |
|  *          to default at the beginning, then restore it at the end.
 | |
|  */
 | |
| u32 hte_mem_init(struct mrc_params *mrc_params, u8 flag)
 | |
| {
 | |
| 	u32 offset;
 | |
| 	int test_num;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear out the error registers at the start of each memory
 | |
| 	 * init or memory test run.
 | |
| 	 */
 | |
| 	hte_clear_error_regs();
 | |
| 
 | |
| 	msg_port_write(HTE, 0x00020062, 0x00000015);
 | |
| 
 | |
| 	for (offset = 0x80; offset <= 0x8f; offset++)
 | |
| 		msg_port_write(HTE, offset, ((offset & 1) ? 0xa55a : 0x5aa5));
 | |
| 
 | |
| 	msg_port_write(HTE, 0x00020021, 0x00000000);
 | |
| 	msg_port_write(HTE, 0x00020022, (mrc_params->mem_size >> 6) - 1);
 | |
| 	msg_port_write(HTE, 0x00020063, 0xaaaaaaaa);
 | |
| 	msg_port_write(HTE, 0x00020064, 0xcccccccc);
 | |
| 	msg_port_write(HTE, 0x00020065, 0xf0f0f0f0);
 | |
| 	msg_port_write(HTE, 0x00020066, 0x03000000);
 | |
| 
 | |
| 	switch (flag) {
 | |
| 	case MRC_MEM_INIT:
 | |
| 		/*
 | |
| 		 * Only 1 write pass through memory is needed
 | |
| 		 * to initialize ECC
 | |
| 		 */
 | |
| 		test_num = 1;
 | |
| 		break;
 | |
| 	case MRC_MEM_TEST:
 | |
| 		/* Write/read then write/read with inverted pattern */
 | |
| 		test_num = 4;
 | |
| 		break;
 | |
| 	default:
 | |
| 		DPF(D_INFO, "Unknown parameter for flag: %d\n", flag);
 | |
| 		return 0xffffffff;
 | |
| 	}
 | |
| 
 | |
| 	DPF(D_INFO, "hte_mem_init");
 | |
| 
 | |
| 	for (i = 0; i < test_num; i++) {
 | |
| 		DPF(D_INFO, ".");
 | |
| 
 | |
| 		if (i == 0) {
 | |
| 			msg_port_write(HTE, 0x00020061, 0x00000000);
 | |
| 			msg_port_write(HTE, 0x00020020, 0x00110010);
 | |
| 		} else if (i == 1) {
 | |
| 			msg_port_write(HTE, 0x00020061, 0x00000000);
 | |
| 			msg_port_write(HTE, 0x00020020, 0x00010010);
 | |
| 		} else if (i == 2) {
 | |
| 			msg_port_write(HTE, 0x00020061, 0x00010100);
 | |
| 			msg_port_write(HTE, 0x00020020, 0x00110010);
 | |
| 		} else {
 | |
| 			msg_port_write(HTE, 0x00020061, 0x00010100);
 | |
| 			msg_port_write(HTE, 0x00020020, 0x00010010);
 | |
| 		}
 | |
| 
 | |
| 		msg_port_write(HTE, 0x00020011, 0x00111000);
 | |
| 		msg_port_write(HTE, 0x00020011, 0x00111100);
 | |
| 
 | |
| 		hte_wait_for_complete();
 | |
| 
 | |
| 		/* If this is a READ pass, check for errors at the end */
 | |
| 		if ((i % 2) == 1) {
 | |
| 			/* Return immediately if error */
 | |
| 			if (hte_check_errors())
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	DPF(D_INFO, "done\n");
 | |
| 
 | |
| 	return hte_check_errors();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Execute a basic single-cache-line memory write/read/verify test using simple
 | |
|  * constant pattern, different for READ_TRAIN and WRITE_TRAIN modes.
 | |
|  *
 | |
|  * @mrc_params: host structure for all MRC global data
 | |
|  * @addr: memory adress being tested (must hit specific channel/rank)
 | |
|  * @first_run: if set then the HTE registers are configured, otherwise it is
 | |
|  *             assumed configuration is done and we just re-run the test
 | |
|  * @mode: READ_TRAIN or WRITE_TRAIN (the difference is in the pattern)
 | |
|  *
 | |
|  * @return: byte lane failure on each bit (for Quark only bit0 and bit1)
 | |
|  */
 | |
| u16 hte_basic_write_read(struct mrc_params *mrc_params, u32 addr,
 | |
| 			 u8 first_run, u8 mode)
 | |
| {
 | |
| 	u16 errors;
 | |
| 
 | |
| 	ENTERFN();
 | |
| 
 | |
| 	/* Enable all error reporting in preparation for HTE test */
 | |
| 	hte_enable_all_errors();
 | |
| 	hte_clear_error_regs();
 | |
| 
 | |
| 	errors = hte_basic_data_cmp(mrc_params, addr, first_run, mode);
 | |
| 
 | |
| 	LEAVEFN();
 | |
| 
 | |
| 	return errors;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Examine a single-cache-line memory with write/read/verify test using multiple
 | |
|  * data patterns (victim-aggressor algorithm).
 | |
|  *
 | |
|  * @mrc_params: host structure for all MRC global data
 | |
|  * @addr: memory adress being tested (must hit specific channel/rank)
 | |
|  * @first_run: if set then the HTE registers are configured, otherwise it is
 | |
|  *             assumed configuration is done and we just re-run the test
 | |
|  *
 | |
|  * @return: byte lane failure on each bit (for Quark only bit0 and bit1)
 | |
|  */
 | |
| u16 hte_write_stress_bit_lanes(struct mrc_params *mrc_params,
 | |
| 			       u32 addr, u8 first_run)
 | |
| {
 | |
| 	u16 errors;
 | |
| 	u8 victim_bit = 0;
 | |
| 
 | |
| 	ENTERFN();
 | |
| 
 | |
| 	/* Enable all error reporting in preparation for HTE test */
 | |
| 	hte_enable_all_errors();
 | |
| 	hte_clear_error_regs();
 | |
| 
 | |
| 	/*
 | |
| 	 * Loop through each bit in the bytelane.
 | |
| 	 *
 | |
| 	 * Each pass creates a victim bit while keeping all other bits the same
 | |
| 	 * as aggressors. AVN HTE adds an auto-rotate feature which allows us
 | |
| 	 * to program the entire victim/aggressor sequence in 1 step.
 | |
| 	 *
 | |
| 	 * The victim bit rotates on each pass so no need to have software
 | |
| 	 * implement a victim bit loop like on VLV.
 | |
| 	 */
 | |
| 	errors = hte_rw_data_cmp(mrc_params, addr, HTE_LOOP_CNT,
 | |
| 				 HTE_LFSR_VICTIM_SEED, HTE_LFSR_AGRESSOR_SEED,
 | |
| 				 victim_bit, first_run);
 | |
| 
 | |
| 	LEAVEFN();
 | |
| 
 | |
| 	return errors;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Execute a basic single-cache-line memory write or read.
 | |
|  * This is just for receive enable / fine write-levelling purpose.
 | |
|  *
 | |
|  * @addr: memory adress being tested (must hit specific channel/rank)
 | |
|  * @first_run: if set then the HTE registers are configured, otherwise it is
 | |
|  *             assumed configuration is done and we just re-run the test
 | |
|  * @is_write: when non-zero memory write operation executed, otherwise read
 | |
|  */
 | |
| void hte_mem_op(u32 addr, u8 first_run, u8 is_write)
 | |
| {
 | |
| 	u32 offset;
 | |
| 	u32 tmp;
 | |
| 
 | |
| 	hte_enable_all_errors();
 | |
| 	hte_clear_error_regs();
 | |
| 
 | |
| 	if (first_run) {
 | |
| 		tmp = is_write ? 0x01110021 : 0x01010021;
 | |
| 		msg_port_write(HTE, 0x00020020, tmp);
 | |
| 
 | |
| 		msg_port_write(HTE, 0x00020021, 0x06000000);
 | |
| 		msg_port_write(HTE, 0x00020022, addr >> 6);
 | |
| 		msg_port_write(HTE, 0x00020062, 0x00800015);
 | |
| 		msg_port_write(HTE, 0x00020063, 0xaaaaaaaa);
 | |
| 		msg_port_write(HTE, 0x00020064, 0xcccccccc);
 | |
| 		msg_port_write(HTE, 0x00020065, 0xf0f0f0f0);
 | |
| 		msg_port_write(HTE, 0x00020061, 0x00030008);
 | |
| 
 | |
| 		for (offset = 0x80; offset <= 0x8f; offset++)
 | |
| 			msg_port_write(HTE, offset, 0xc33c0000);
 | |
| 	}
 | |
| 
 | |
| 	msg_port_write(HTE, 0x000200a1, 0xffff1000);
 | |
| 	msg_port_write(HTE, 0x00020011, 0x00011000);
 | |
| 	msg_port_write(HTE, 0x00020011, 0x00011100);
 | |
| 
 | |
| 	hte_wait_for_complete();
 | |
| }
 |