u-boot/arch/arm/mach-imx/imx9/scmi/soc.c
Ye Li 2f8b24d5cc spl: imx: use trampoline buffer to load images to secure region
When SPL loading image to secure region, for example, ATF and tee to
DDR secure region. Because the USDHC controller is non-secure master,
it can't access this region and will cause loading issue.

So use a trampoline buffer in non-secure region, then use CPU to copy the
image from trampoline buffer to destination secure region.

Signed-off-by: Ye Li <ye.li@nxp.com>
Signed-off-by: Alice Guo <alice.guo@nxp.com>
Reviewed-by: Peng Fan <peng.fan@nxp.com>
2025-05-03 16:55:32 -03:00

750 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2025 NXP
*
* Peng Fan <peng.fan@nxp.com>
*/
#include <asm/arch/clock.h>
#include <asm/arch/ddr.h>
#include <asm/arch/sys_proto.h>
#include <asm/armv8/mmu.h>
#include <asm/mach-imx/boot_mode.h>
#include <asm/mach-imx/ele_api.h>
#include <asm/setup.h>
#include <dm/uclass.h>
#include <dm/device.h>
#include <env_internal.h>
#include <fuse.h>
#include <imx_thermal.h>
#include <linux/iopoll.h>
#include <scmi_agent.h>
DECLARE_GLOBAL_DATA_PTR;
static rom_passover_t rom_passover_data = {0};
uint32_t scmi_get_rom_data(rom_passover_t *rom_data)
{
/* Read ROM passover data */
struct scmi_rom_passover_get_out out;
struct scmi_msg msg = {
.protocol_id = SCMI_PROTOCOL_ID_IMX_MISC,
.message_id = SCMI_MISC_ROM_PASSOVER_GET,
.in_msg = (u8 *)NULL,
.in_msg_sz = 0,
.out_msg = (u8 *)&out,
.out_msg_sz = sizeof(out),
};
int ret;
struct udevice *dev;
ret = uclass_get_device_by_name(UCLASS_CLK, "protocol@14", &dev);
if (ret)
return ret;
ret = devm_scmi_process_msg(dev, &msg);
if (ret == 0 && out.status == 0) {
memcpy(rom_data, (struct rom_passover_t *)out.passover, sizeof(rom_passover_t));
} else {
printf("Failed to get ROM passover data, scmi_err = %d, size_of(out) = %ld\n",
out.status, sizeof(out));
return -EINVAL;
}
return 0;
}
#if IS_ENABLED(CONFIG_ENV_IS_IN_MMC)
__weak int board_mmc_get_env_dev(int devno)
{
return devno;
}
int mmc_get_env_dev(void)
{
int ret;
u16 boot_type;
u8 boot_instance;
volatile gd_t *pgd = gd;
rom_passover_t *rdata;
#if IS_ENABLED(CONFIG_XPL_BUILD)
rdata = &rom_passover_data;
#else
rom_passover_t rom_data = {0};
if (!pgd->reloc_off)
rdata = &rom_data;
else
rdata = &rom_passover_data;
#endif
if (rdata->tag == 0) {
ret = scmi_get_rom_data(rdata);
if (ret != 0) {
puts("SCMI: failure at rom_boot_info\n");
return CONFIG_SYS_MMC_ENV_DEV;
}
}
boot_type = rdata->boot_dev_type;
boot_instance = rdata->boot_dev_inst;
set_gd(pgd);
debug("boot_type %d, instance %d\n", boot_type, boot_instance);
/* If not boot from sd/mmc, use default value */
if (boot_type != BOOT_TYPE_SD && boot_type != BOOT_TYPE_MMC)
return env_get_ulong("mmcdev", 10, CONFIG_SYS_MMC_ENV_DEV);
return board_mmc_get_env_dev(boot_instance);
}
#endif
u32 get_cpu_speed_grade_hz(void)
{
u32 speed, max_speed;
int ret;
u32 val, word, offset;
word = 17;
offset = 14;
ret = fuse_read(word / 8, word % 8, &val);
if (ret)
val = 0; /* If read fuse failed, return as blank fuse */
val >>= offset;
val &= 0xf;
max_speed = 2300000000;
speed = max_speed - val * 100000000;
if (is_imx95())
max_speed = 2000000000;
/* In case the fuse of speed grade not programmed */
if (speed > max_speed)
speed = max_speed;
return speed;
}
u32 get_cpu_temp_grade(int *minc, int *maxc)
{
int ret;
u32 val, word, offset;
word = 17;
offset = 12;
ret = fuse_read(word / 8, word % 8, &val);
if (ret)
val = 0; /* If read fuse failed, return as blank fuse */
val >>= offset;
val &= 0x3;
if (minc && maxc) {
if (val == TEMP_AUTOMOTIVE) {
*minc = -40;
*maxc = 125;
} else if (val == TEMP_INDUSTRIAL) {
*minc = -40;
*maxc = 105;
} else if (val == TEMP_EXTCOMMERCIAL) {
*minc = -20;
*maxc = 105;
} else {
*minc = 0;
*maxc = 95;
}
}
return val;
}
static void set_cpu_info(struct ele_get_info_data *info)
{
gd->arch.soc_rev = info->soc;
gd->arch.lifecycle = info->lc;
memcpy((void *)&gd->arch.uid, &info->uid, 4 * sizeof(u32));
}
u32 get_cpu_rev(void)
{
u32 rev = (gd->arch.soc_rev >> 24) - 0xa0;
return (MXC_CPU_IMX95 << 12) | (CHIP_REV_1_0 + rev);
}
#define UNLOCK_WORD 0xD928C520
#define REFRESH_WORD 0xB480A602
static void disable_wdog(void __iomem *wdog_base)
{
u32 val_cs = readl(wdog_base + 0x00);
int ret = 0;
if (!(val_cs & 0x80))
return;
/* default is 32bits cmd */
writel(REFRESH_WORD, (wdog_base + 0x04)); /* Refresh the CNT */
if (!(val_cs & 0x800)) {
writel(UNLOCK_WORD, (wdog_base + 0x04));
while (!(readl(wdog_base + 0x00) & 0x800))
;
}
writel(0x0, (wdog_base + 0x0C)); /* Set WIN to 0 */
writel(0x400, (wdog_base + 0x08)); /* Set timeout to default 0x400 */
writel(0x2120, (wdog_base + 0x00)); /* Disable it and set update */
ret = readl_poll_timeout(wdog_base, val_cs, val_cs & 0x400, 100000);
if (ret < 0)
debug("%s timeout\n", __func__);
}
static struct mm_region imx9_mem_map[] = {
{
/* M7 TCM */
.virt = 0x203c0000UL,
.phys = 0x203c0000UL,
.size = 0x80000UL,
.attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE |
PTE_BLOCK_PXN | PTE_BLOCK_UXN
}, {
/* OCRAM */
.virt = 0x20480000UL,
.phys = 0x20480000UL,
.size = 0xA0000UL,
.attrs = PTE_BLOCK_MEMTYPE(MT_NORMAL) |
PTE_BLOCK_OUTER_SHARE
}, {
/* AIPS */
.virt = 0x40000000UL,
.phys = 0x40000000UL,
.size = 0x40000000UL,
.attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE |
PTE_BLOCK_PXN | PTE_BLOCK_UXN
}, {
/* Flexible Serial Peripheral Interface */
.virt = 0x28000000UL,
.phys = 0x28000000UL,
.size = 0x8000000UL,
.attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE |
PTE_BLOCK_PXN | PTE_BLOCK_UXN
}, {
/* DRAM1 */
.virt = PHYS_SDRAM,
.phys = PHYS_SDRAM,
.size = PHYS_SDRAM_SIZE,
.attrs = PTE_BLOCK_MEMTYPE(MT_NORMAL) |
PTE_BLOCK_OUTER_SHARE
}, {
#ifdef PHYS_SDRAM_2_SIZE
/* DRAM2 */
.virt = 0x100000000UL,
.phys = 0x100000000UL,
.size = PHYS_SDRAM_2_SIZE,
.attrs = PTE_BLOCK_MEMTYPE(MT_NORMAL) |
PTE_BLOCK_OUTER_SHARE
}, {
#endif
/* empty entry to split table entry 5 if needed when TEEs are used */
0,
}, {
/* List terminator */
0,
}
};
struct mm_region *mem_map = imx9_mem_map;
static unsigned int imx9_find_dram_entry_in_mem_map(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(imx9_mem_map); i++)
if (imx9_mem_map[i].phys == CFG_SYS_SDRAM_BASE)
return i;
hang(); /* Entry not found, this must never happen. */
}
void enable_caches(void)
{
/* If OPTEE runs, remove OPTEE memory from MMU table to avoid speculative prefetch
* If OPTEE does not run, still update the MMU table according to dram banks structure
* to set correct dram size from board_phys_sdram_size
*/
int i = 0;
/*
* please make sure that entry initial value matches
* imx9_mem_map for DRAM1
*/
int entry = imx9_find_dram_entry_in_mem_map();
u64 attrs = imx9_mem_map[entry].attrs;
while (i < CONFIG_NR_DRAM_BANKS &&
entry < ARRAY_SIZE(imx9_mem_map)) {
if (gd->bd->bi_dram[i].start == 0)
break;
imx9_mem_map[entry].phys = gd->bd->bi_dram[i].start;
imx9_mem_map[entry].virt = gd->bd->bi_dram[i].start;
imx9_mem_map[entry].size = gd->bd->bi_dram[i].size;
imx9_mem_map[entry].attrs = attrs;
debug("Added memory mapping (%d): %llx %llx\n", entry,
imx9_mem_map[entry].phys, imx9_mem_map[entry].size);
i++; entry++;
}
icache_enable();
dcache_enable();
}
__weak int board_phys_sdram_size(phys_size_t *size)
{
phys_size_t start, end;
phys_size_t val;
if (!size)
return -EINVAL;
val = readl(REG_DDR_CS0_BNDS);
start = (val >> 16) << 24;
end = (val & 0xFFFF);
end = end ? end + 1 : 0;
end = end << 24;
*size = end - start;
val = readl(REG_DDR_CS1_BNDS);
start = (val >> 16) << 24;
end = (val & 0xFFFF);
end = end ? end + 1 : 0;
end = end << 24;
*size += end - start;
return 0;
}
int dram_init(void)
{
phys_size_t sdram_size;
int ret;
ret = board_phys_sdram_size(&sdram_size);
if (ret)
return ret;
/* rom_pointer[1] contains the size of TEE occupies */
if (rom_pointer[1] && PHYS_SDRAM < (phys_addr_t)rom_pointer[0])
gd->ram_size = sdram_size - rom_pointer[1];
else
gd->ram_size = sdram_size;
return 0;
}
int dram_init_banksize(void)
{
int bank = 0;
int ret;
phys_size_t sdram_size;
phys_size_t sdram_b1_size, sdram_b2_size;
ret = board_phys_sdram_size(&sdram_size);
if (ret)
return ret;
/* Bank 1 can't cross over 4GB space */
if (sdram_size > 0x80000000) {
sdram_b1_size = 0x100000000UL - PHYS_SDRAM;
sdram_b2_size = sdram_size - sdram_b1_size;
} else {
sdram_b1_size = sdram_size;
sdram_b2_size = 0;
}
gd->bd->bi_dram[bank].start = PHYS_SDRAM;
if (rom_pointer[1] && PHYS_SDRAM < (phys_addr_t)rom_pointer[0]) {
phys_addr_t optee_start = (phys_addr_t)rom_pointer[0];
phys_size_t optee_size = (size_t)rom_pointer[1];
gd->bd->bi_dram[bank].size = optee_start - gd->bd->bi_dram[bank].start;
if ((optee_start + optee_size) < (PHYS_SDRAM + sdram_b1_size)) {
if (++bank >= CONFIG_NR_DRAM_BANKS) {
puts("CONFIG_NR_DRAM_BANKS is not enough\n");
return -1;
}
gd->bd->bi_dram[bank].start = optee_start + optee_size;
gd->bd->bi_dram[bank].size = PHYS_SDRAM +
sdram_b1_size - gd->bd->bi_dram[bank].start;
}
} else {
gd->bd->bi_dram[bank].size = sdram_b1_size;
}
if (sdram_b2_size) {
if (++bank >= CONFIG_NR_DRAM_BANKS) {
puts("CONFIG_NR_DRAM_BANKS is not enough for SDRAM_2\n");
return -1;
}
gd->bd->bi_dram[bank].start = 0x100000000UL;
gd->bd->bi_dram[bank].size = sdram_b2_size;
}
return 0;
}
phys_size_t get_effective_memsize(void)
{
int ret;
phys_size_t sdram_size;
phys_size_t sdram_b1_size;
ret = board_phys_sdram_size(&sdram_size);
if (!ret) {
/* Bank 1 can't cross over 4GB space */
if (sdram_size > 0x80000000)
sdram_b1_size = 0x100000000UL - PHYS_SDRAM;
else
sdram_b1_size = sdram_size;
if (rom_pointer[1]) {
/* We will relocate u-boot to Top of dram1. Tee position has three cases:
* 1. At the top of dram1, Then return the size removed optee size.
* 2. In the middle of dram1, return the size of dram1.
* 3. Not in the scope of dram1, return the size of dram1.
*/
if ((rom_pointer[0] + rom_pointer[1]) == (PHYS_SDRAM + sdram_b1_size))
return ((phys_addr_t)rom_pointer[0] - PHYS_SDRAM);
}
return sdram_b1_size;
} else {
return PHYS_SDRAM_SIZE;
}
}
void imx_get_mac_from_fuse(int dev_id, unsigned char *mac)
{
u32 val[2] = {};
int ret, num_of_macs;
ret = fuse_read(40, 5, &val[0]);
if (ret)
goto err;
ret = fuse_read(40, 6, &val[1]);
if (ret)
goto err;
num_of_macs = (val[1] >> 24) & 0xff;
if (num_of_macs <= (dev_id * 3)) {
printf("WARNING: no MAC address assigned for MAC%d\n", dev_id);
goto err;
}
mac[0] = val[0] & 0xff;
mac[1] = (val[0] >> 8) & 0xff;
mac[2] = (val[0] >> 16) & 0xff;
mac[3] = (val[0] >> 24) & 0xff;
mac[4] = val[1] & 0xff;
mac[5] = (val[1] >> 8) & 0xff;
if (dev_id == 1)
mac[5] = mac[5] + 3;
if (dev_id == 2)
mac[5] = mac[5] + 6;
debug("%s: MAC%d: %pM\n", __func__, dev_id, mac);
return;
err:
memset(mac, 0, 6);
printf("%s: fuse read err: %d\n", __func__, ret);
}
const char *get_imx_type(u32 imxtype)
{
switch (imxtype) {
case MXC_CPU_IMX95:
return "95";/* iMX95 FULL */
default:
return "??";
}
}
void build_info(void)
{
u32 fw_version, sha1, res = 0, status;
int ret;
printf("\nBuildInfo:\n");
ret = ele_get_fw_status(&status, &res);
if (ret) {
printf(" - ELE firmware status failed %d, 0x%x\n", ret, res);
} else if ((status & 0xff) == 1) {
ret = ele_get_fw_version(&fw_version, &sha1, &res);
if (ret) {
printf(" - ELE firmware version failed %d, 0x%x\n", ret, res);
} else {
printf(" - ELE firmware version %u.%u.%u-%x",
(fw_version & (0x00ff0000)) >> 16,
(fw_version & (0x0000fff0)) >> 4,
(fw_version & (0x0000000f)), sha1);
((fw_version & (0x80000000)) >> 31) == 1 ? puts("-dirty\n") : puts("\n");
}
} else {
printf(" - ELE firmware not included\n");
}
puts("\n");
}
int arch_misc_init(void)
{
build_info();
return 0;
}
#if defined(CONFIG_OF_BOARD_FIXUP) && !defined(CONFIG_SPL_BUILD)
int board_fix_fdt(void *fdt)
{
return 0;
}
#endif
int ft_system_setup(void *blob, struct bd_info *bd)
{
return 0;
}
#if IS_ENABLED(CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG)
void get_board_serial(struct tag_serialnr *serialnr)
{
printf("UID: %08x%08x%08x%08x\n", __be32_to_cpu(gd->arch.uid[0]),
__be32_to_cpu(gd->arch.uid[1]), __be32_to_cpu(gd->arch.uid[2]),
__be32_to_cpu(gd->arch.uid[3]));
serialnr->low = __be32_to_cpu(gd->arch.uid[1]);
serialnr->high = __be32_to_cpu(gd->arch.uid[0]);
}
#endif
static void gpio_reset(ulong gpio_base)
{
writel(0, gpio_base + 0x10);
writel(0, gpio_base + 0x14);
writel(0, gpio_base + 0x18);
writel(0, gpio_base + 0x1c);
}
int arch_cpu_init(void)
{
if (IS_ENABLED(CONFIG_SPL_BUILD)) {
disable_wdog((void __iomem *)WDG3_BASE_ADDR);
disable_wdog((void __iomem *)WDG4_BASE_ADDR);
gpio_reset(GPIO2_BASE_ADDR);
gpio_reset(GPIO3_BASE_ADDR);
gpio_reset(GPIO4_BASE_ADDR);
gpio_reset(GPIO5_BASE_ADDR);
}
return 0;
}
int imx9_probe_mu(void)
{
struct udevice *dev;
int ret;
u32 res;
struct ele_get_info_data info;
ret = uclass_get_device_by_driver(UCLASS_SCMI_AGENT, DM_DRIVER_GET(scmi_mbox), &dev);
if (ret)
return ret;
ret = uclass_get_device_by_name(UCLASS_CLK, "protocol@14", &dev);
if (ret)
return ret;
ret = devm_scmi_of_get_channel(dev);
if (ret)
return ret;
ret = uclass_get_device_by_name(UCLASS_PINCTRL, "protocol@19", &dev);
if (ret)
return ret;
#if defined(CONFIG_SPL_BUILD)
ret = uclass_get_device_by_name(UCLASS_MISC, "mailbox@47530000", &dev);
#else
ret = uclass_get_device_by_name(UCLASS_MISC, "mailbox@47550000", &dev);
#endif
if (ret)
return ret;
if (gd->flags & GD_FLG_RELOC)
return 0;
ret = ele_get_info(&info, &res);
if (ret)
return ret;
set_cpu_info(&info);
return 0;
}
EVENT_SPY_SIMPLE(EVT_DM_POST_INIT_F, imx9_probe_mu);
EVENT_SPY_SIMPLE(EVT_DM_POST_INIT_R, imx9_probe_mu);
int timer_init(void)
{
gd->arch.tbl = 0;
gd->arch.tbu = 0;
if (IS_ENABLED(CONFIG_SPL_BUILD)) {
unsigned long freq = 24000000;
asm volatile("msr cntfrq_el0, %0" : : "r" (freq) : "memory");
/* Clear the compare frame interrupt */
unsigned long sctr_cmpcr_addr = SYSCNT_CMP_BASE_ADDR + 0x2c;
unsigned long sctr_cmpcr = readl(sctr_cmpcr_addr);
sctr_cmpcr &= ~0x1;
writel(sctr_cmpcr, sctr_cmpcr_addr);
}
return 0;
}
enum env_location env_get_location(enum env_operation op, int prio)
{
enum boot_device dev = get_boot_device();
enum env_location env_loc = ENVL_UNKNOWN;
if (prio)
return env_loc;
switch (dev) {
case QSPI_BOOT:
env_loc = ENVL_SPI_FLASH;
break;
case SD1_BOOT:
case SD2_BOOT:
case SD3_BOOT:
case MMC1_BOOT:
case MMC2_BOOT:
case MMC3_BOOT:
env_loc = ENVL_MMC;
break;
default:
env_loc = ENVL_NOWHERE;
break;
}
return env_loc;
}
enum imx9_soc_voltage_mode soc_target_voltage_mode(void)
{
u32 speed = get_cpu_speed_grade_hz();
enum imx9_soc_voltage_mode voltage = VOLT_OVER_DRIVE;
if (is_imx95()) {
if (speed == 2000000000)
voltage = VOLT_SUPER_OVER_DRIVE;
else if (speed == 1800000000)
voltage = VOLT_OVER_DRIVE;
else if (speed == 1400000000)
voltage = VOLT_NOMINAL_DRIVE;
else /* boot not support low drive mode according to AS */
printf("Unexpected A55 freq %u, default to OD\n", speed);
}
return voltage;
}
#if IS_ENABLED(CONFIG_SCMI_FIRMWARE)
enum boot_device get_boot_device(void)
{
volatile gd_t *pgd = gd;
int ret;
u16 boot_type;
u8 boot_instance;
enum boot_device boot_dev = 0;
rom_passover_t *rdata;
#if IS_ENABLED(CONFIG_SPL_BUILD)
rdata = &rom_passover_data;
#else
rom_passover_t rom_data = {0};
if (pgd->reloc_off == 0)
rdata = &rom_data;
else
rdata = &rom_passover_data;
#endif
if (rdata->tag == 0) {
ret = scmi_get_rom_data(rdata);
if (ret != 0) {
puts("SCMI: failure at rom_boot_info\n");
return -1;
}
}
boot_type = rdata->boot_dev_type;
boot_instance = rdata->boot_dev_inst;
set_gd(pgd);
switch (boot_type) {
case BT_DEV_TYPE_SD:
boot_dev = boot_instance + SD1_BOOT;
break;
case BT_DEV_TYPE_MMC:
boot_dev = boot_instance + MMC1_BOOT;
break;
case BT_DEV_TYPE_NAND:
boot_dev = NAND_BOOT;
break;
case BT_DEV_TYPE_FLEXSPINOR:
boot_dev = QSPI_BOOT;
break;
case BT_DEV_TYPE_USB:
boot_dev = boot_instance + USB_BOOT;
if (IS_ENABLED(CONFIG_IMX95))
boot_dev -= 3; //iMX95 usb instance start at 3
break;
default:
break;
}
return boot_dev;
}
#endif
bool arch_check_dst_in_secure(void *start, ulong size)
{
ulong ns_end = CFG_SYS_SDRAM_BASE + PHYS_SDRAM_SIZE;
#ifdef PHYS_SDRAM_2_SIZE
ns_end += PHYS_SDRAM_2_SIZE;
#endif
if ((ulong)start < CFG_SYS_SDRAM_BASE || (ulong)start + size > ns_end)
return true;
return false;
}
void *arch_get_container_trampoline(void)
{
return (void *)((ulong)CFG_SYS_SDRAM_BASE + PHYS_SDRAM_SIZE - SZ_16M);
}