mirror of
				https://source.denx.de/u-boot/u-boot.git
				synced 2025-10-25 22:41:21 +02:00 
			
		
		
		
	Move this uncommon header out of the common header. Signed-off-by: Simon Glass <sjg@chromium.org>
		
			
				
	
	
		
			872 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			872 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0+
 | |
| /*
 | |
|  * Copyright (c) International Business Machines Corp., 2006
 | |
|  * Copyright (c) Nokia Corporation, 2006, 2007
 | |
|  *
 | |
|  * Author: Artem Bityutskiy (Битюцкий Артём)
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * This file includes volume table manipulation code. The volume table is an
 | |
|  * on-flash table containing volume meta-data like name, number of reserved
 | |
|  * physical eraseblocks, type, etc. The volume table is stored in the so-called
 | |
|  * "layout volume".
 | |
|  *
 | |
|  * The layout volume is an internal volume which is organized as follows. It
 | |
|  * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical
 | |
|  * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each
 | |
|  * other. This redundancy guarantees robustness to unclean reboots. The volume
 | |
|  * table is basically an array of volume table records. Each record contains
 | |
|  * full information about the volume and protected by a CRC checksum. Note,
 | |
|  * nowadays we use the atomic LEB change operation when updating the volume
 | |
|  * table, so we do not really need 2 LEBs anymore, but we preserve the older
 | |
|  * design for the backward compatibility reasons.
 | |
|  *
 | |
|  * When the volume table is changed, it is first changed in RAM. Then LEB 0 is
 | |
|  * erased, and the updated volume table is written back to LEB 0. Then same for
 | |
|  * LEB 1. This scheme guarantees recoverability from unclean reboots.
 | |
|  *
 | |
|  * In this UBI implementation the on-flash volume table does not contain any
 | |
|  * information about how much data static volumes contain.
 | |
|  *
 | |
|  * But it would still be beneficial to store this information in the volume
 | |
|  * table. For example, suppose we have a static volume X, and all its physical
 | |
|  * eraseblocks became bad for some reasons. Suppose we are attaching the
 | |
|  * corresponding MTD device, for some reason we find no logical eraseblocks
 | |
|  * corresponding to the volume X. According to the volume table volume X does
 | |
|  * exist. So we don't know whether it is just empty or all its physical
 | |
|  * eraseblocks went bad. So we cannot alarm the user properly.
 | |
|  *
 | |
|  * The volume table also stores so-called "update marker", which is used for
 | |
|  * volume updates. Before updating the volume, the update marker is set, and
 | |
|  * after the update operation is finished, the update marker is cleared. So if
 | |
|  * the update operation was interrupted (e.g. by an unclean reboot) - the
 | |
|  * update marker is still there and we know that the volume's contents is
 | |
|  * damaged.
 | |
|  */
 | |
| 
 | |
| #ifndef __UBOOT__
 | |
| #include <log.h>
 | |
| #include <dm/devres.h>
 | |
| #include <linux/crc32.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/slab.h>
 | |
| #include <asm/div64.h>
 | |
| #include <u-boot/crc.h>
 | |
| #else
 | |
| #include <ubi_uboot.h>
 | |
| #include <linux/bug.h>
 | |
| #endif
 | |
| 
 | |
| #include <linux/err.h>
 | |
| #include "ubi.h"
 | |
| 
 | |
| static void self_vtbl_check(const struct ubi_device *ubi);
 | |
| 
 | |
| /* Empty volume table record */
 | |
| static struct ubi_vtbl_record empty_vtbl_record;
 | |
| 
 | |
| /**
 | |
|  * ubi_update_layout_vol - helper for updatting layout volumes on flash
 | |
|  * @ubi: UBI device description object
 | |
|  */
 | |
| static int ubi_update_layout_vol(struct ubi_device *ubi)
 | |
| {
 | |
| 	struct ubi_volume *layout_vol;
 | |
| 	int i, err;
 | |
| 
 | |
| 	layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)];
 | |
| 	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
 | |
| 		err = ubi_eba_atomic_leb_change(ubi, layout_vol, i, ubi->vtbl,
 | |
| 						ubi->vtbl_size);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubi_change_vtbl_record - change volume table record.
 | |
|  * @ubi: UBI device description object
 | |
|  * @idx: table index to change
 | |
|  * @vtbl_rec: new volume table record
 | |
|  *
 | |
|  * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty
 | |
|  * volume table record is written. The caller does not have to calculate CRC of
 | |
|  * the record as it is done by this function. Returns zero in case of success
 | |
|  * and a negative error code in case of failure.
 | |
|  */
 | |
| int ubi_change_vtbl_record(struct ubi_device *ubi, int idx,
 | |
| 			   struct ubi_vtbl_record *vtbl_rec)
 | |
| {
 | |
| 	int err;
 | |
| 	uint32_t crc;
 | |
| 
 | |
| 	ubi_assert(idx >= 0 && idx < ubi->vtbl_slots);
 | |
| 
 | |
| 	if (!vtbl_rec)
 | |
| 		vtbl_rec = &empty_vtbl_record;
 | |
| 	else {
 | |
| 		crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC);
 | |
| 		vtbl_rec->crc = cpu_to_be32(crc);
 | |
| 	}
 | |
| 
 | |
| 	memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record));
 | |
| 	err = ubi_update_layout_vol(ubi);
 | |
| 
 | |
| 	self_vtbl_check(ubi);
 | |
| 	return err ? err : 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubi_vtbl_rename_volumes - rename UBI volumes in the volume table.
 | |
|  * @ubi: UBI device description object
 | |
|  * @rename_list: list of &struct ubi_rename_entry objects
 | |
|  *
 | |
|  * This function re-names multiple volumes specified in @req in the volume
 | |
|  * table. Returns zero in case of success and a negative error code in case of
 | |
|  * failure.
 | |
|  */
 | |
| int ubi_vtbl_rename_volumes(struct ubi_device *ubi,
 | |
| 			    struct list_head *rename_list)
 | |
| {
 | |
| 	struct ubi_rename_entry *re;
 | |
| 
 | |
| 	list_for_each_entry(re, rename_list, list) {
 | |
| 		uint32_t crc;
 | |
| 		struct ubi_volume *vol = re->desc->vol;
 | |
| 		struct ubi_vtbl_record *vtbl_rec = &ubi->vtbl[vol->vol_id];
 | |
| 
 | |
| 		if (re->remove) {
 | |
| 			memcpy(vtbl_rec, &empty_vtbl_record,
 | |
| 			       sizeof(struct ubi_vtbl_record));
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		vtbl_rec->name_len = cpu_to_be16(re->new_name_len);
 | |
| 		memcpy(vtbl_rec->name, re->new_name, re->new_name_len);
 | |
| 		memset(vtbl_rec->name + re->new_name_len, 0,
 | |
| 		       UBI_VOL_NAME_MAX + 1 - re->new_name_len);
 | |
| 		crc = crc32(UBI_CRC32_INIT, vtbl_rec,
 | |
| 			    UBI_VTBL_RECORD_SIZE_CRC);
 | |
| 		vtbl_rec->crc = cpu_to_be32(crc);
 | |
| 	}
 | |
| 
 | |
| 	return ubi_update_layout_vol(ubi);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * vtbl_check - check if volume table is not corrupted and sensible.
 | |
|  * @ubi: UBI device description object
 | |
|  * @vtbl: volume table
 | |
|  *
 | |
|  * This function returns zero if @vtbl is all right, %1 if CRC is incorrect,
 | |
|  * and %-EINVAL if it contains inconsistent data.
 | |
|  */
 | |
| static int vtbl_check(const struct ubi_device *ubi,
 | |
| 		      const struct ubi_vtbl_record *vtbl)
 | |
| {
 | |
| 	int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len;
 | |
| 	int upd_marker, err;
 | |
| 	uint32_t crc;
 | |
| 	const char *name;
 | |
| 
 | |
| 	for (i = 0; i < ubi->vtbl_slots; i++) {
 | |
| 		cond_resched();
 | |
| 
 | |
| 		reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
 | |
| 		alignment = be32_to_cpu(vtbl[i].alignment);
 | |
| 		data_pad = be32_to_cpu(vtbl[i].data_pad);
 | |
| 		upd_marker = vtbl[i].upd_marker;
 | |
| 		vol_type = vtbl[i].vol_type;
 | |
| 		name_len = be16_to_cpu(vtbl[i].name_len);
 | |
| 		name = &vtbl[i].name[0];
 | |
| 
 | |
| 		crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC);
 | |
| 		if (be32_to_cpu(vtbl[i].crc) != crc) {
 | |
| 			ubi_err(ubi, "bad CRC at record %u: %#08x, not %#08x",
 | |
| 				 i, crc, be32_to_cpu(vtbl[i].crc));
 | |
| 			ubi_dump_vtbl_record(&vtbl[i], i);
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		if (reserved_pebs == 0) {
 | |
| 			if (memcmp(&vtbl[i], &empty_vtbl_record,
 | |
| 						UBI_VTBL_RECORD_SIZE)) {
 | |
| 				err = 2;
 | |
| 				goto bad;
 | |
| 			}
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 ||
 | |
| 		    name_len < 0) {
 | |
| 			err = 3;
 | |
| 			goto bad;
 | |
| 		}
 | |
| 
 | |
| 		if (alignment > ubi->leb_size || alignment == 0) {
 | |
| 			err = 4;
 | |
| 			goto bad;
 | |
| 		}
 | |
| 
 | |
| 		n = alignment & (ubi->min_io_size - 1);
 | |
| 		if (alignment != 1 && n) {
 | |
| 			err = 5;
 | |
| 			goto bad;
 | |
| 		}
 | |
| 
 | |
| 		n = ubi->leb_size % alignment;
 | |
| 		if (data_pad != n) {
 | |
| 			ubi_err(ubi, "bad data_pad, has to be %d", n);
 | |
| 			err = 6;
 | |
| 			goto bad;
 | |
| 		}
 | |
| 
 | |
| 		if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
 | |
| 			err = 7;
 | |
| 			goto bad;
 | |
| 		}
 | |
| 
 | |
| 		if (upd_marker != 0 && upd_marker != 1) {
 | |
| 			err = 8;
 | |
| 			goto bad;
 | |
| 		}
 | |
| 
 | |
| 		if (reserved_pebs > ubi->good_peb_count) {
 | |
| 			ubi_err(ubi, "too large reserved_pebs %d, good PEBs %d",
 | |
| 				reserved_pebs, ubi->good_peb_count);
 | |
| 			err = 9;
 | |
| 			goto bad;
 | |
| 		}
 | |
| 
 | |
| 		if (name_len > UBI_VOL_NAME_MAX) {
 | |
| 			err = 10;
 | |
| 			goto bad;
 | |
| 		}
 | |
| 
 | |
| 		if (name[0] == '\0') {
 | |
| 			err = 11;
 | |
| 			goto bad;
 | |
| 		}
 | |
| 
 | |
| 		if (name_len != strnlen(name, name_len + 1)) {
 | |
| 			err = 12;
 | |
| 			goto bad;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Checks that all names are unique */
 | |
| 	for (i = 0; i < ubi->vtbl_slots - 1; i++) {
 | |
| 		for (n = i + 1; n < ubi->vtbl_slots; n++) {
 | |
| 			int len1 = be16_to_cpu(vtbl[i].name_len);
 | |
| 			int len2 = be16_to_cpu(vtbl[n].name_len);
 | |
| 
 | |
| 			if (len1 > 0 && len1 == len2 &&
 | |
| #ifndef __UBOOT__
 | |
| 			    !strncmp(vtbl[i].name, vtbl[n].name, len1)) {
 | |
| #else
 | |
| 			    !strncmp((char *)vtbl[i].name, vtbl[n].name, len1)) {
 | |
| #endif
 | |
| 				ubi_err(ubi, "volumes %d and %d have the same name \"%s\"",
 | |
| 					i, n, vtbl[i].name);
 | |
| 				ubi_dump_vtbl_record(&vtbl[i], i);
 | |
| 				ubi_dump_vtbl_record(&vtbl[n], n);
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| bad:
 | |
| 	ubi_err(ubi, "volume table check failed: record %d, error %d", i, err);
 | |
| 	ubi_dump_vtbl_record(&vtbl[i], i);
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * create_vtbl - create a copy of volume table.
 | |
|  * @ubi: UBI device description object
 | |
|  * @ai: attaching information
 | |
|  * @copy: number of the volume table copy
 | |
|  * @vtbl: contents of the volume table
 | |
|  *
 | |
|  * This function returns zero in case of success and a negative error code in
 | |
|  * case of failure.
 | |
|  */
 | |
| static int create_vtbl(struct ubi_device *ubi, struct ubi_attach_info *ai,
 | |
| 		       int copy, void *vtbl)
 | |
| {
 | |
| 	int err, tries = 0;
 | |
| 	struct ubi_vid_hdr *vid_hdr;
 | |
| 	struct ubi_ainf_peb *new_aeb;
 | |
| 
 | |
| 	dbg_gen("create volume table (copy #%d)", copy + 1);
 | |
| 
 | |
| 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
 | |
| 	if (!vid_hdr)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| retry:
 | |
| 	new_aeb = ubi_early_get_peb(ubi, ai);
 | |
| 	if (IS_ERR(new_aeb)) {
 | |
| 		err = PTR_ERR(new_aeb);
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	vid_hdr->vol_type = UBI_LAYOUT_VOLUME_TYPE;
 | |
| 	vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOLUME_ID);
 | |
| 	vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT;
 | |
| 	vid_hdr->data_size = vid_hdr->used_ebs =
 | |
| 			     vid_hdr->data_pad = cpu_to_be32(0);
 | |
| 	vid_hdr->lnum = cpu_to_be32(copy);
 | |
| 	vid_hdr->sqnum = cpu_to_be64(++ai->max_sqnum);
 | |
| 
 | |
| 	/* The EC header is already there, write the VID header */
 | |
| 	err = ubi_io_write_vid_hdr(ubi, new_aeb->pnum, vid_hdr);
 | |
| 	if (err)
 | |
| 		goto write_error;
 | |
| 
 | |
| 	/* Write the layout volume contents */
 | |
| 	err = ubi_io_write_data(ubi, vtbl, new_aeb->pnum, 0, ubi->vtbl_size);
 | |
| 	if (err)
 | |
| 		goto write_error;
 | |
| 
 | |
| 	/*
 | |
| 	 * And add it to the attaching information. Don't delete the old version
 | |
| 	 * of this LEB as it will be deleted and freed in 'ubi_add_to_av()'.
 | |
| 	 */
 | |
| 	err = ubi_add_to_av(ubi, ai, new_aeb->pnum, new_aeb->ec, vid_hdr, 0);
 | |
| 	kmem_cache_free(ai->aeb_slab_cache, new_aeb);
 | |
| 	ubi_free_vid_hdr(ubi, vid_hdr);
 | |
| 	return err;
 | |
| 
 | |
| write_error:
 | |
| 	if (err == -EIO && ++tries <= 5) {
 | |
| 		/*
 | |
| 		 * Probably this physical eraseblock went bad, try to pick
 | |
| 		 * another one.
 | |
| 		 */
 | |
| 		list_add(&new_aeb->u.list, &ai->erase);
 | |
| 		goto retry;
 | |
| 	}
 | |
| 	kmem_cache_free(ai->aeb_slab_cache, new_aeb);
 | |
| out_free:
 | |
| 	ubi_free_vid_hdr(ubi, vid_hdr);
 | |
| 	return err;
 | |
| 
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * process_lvol - process the layout volume.
 | |
|  * @ubi: UBI device description object
 | |
|  * @ai: attaching information
 | |
|  * @av: layout volume attaching information
 | |
|  *
 | |
|  * This function is responsible for reading the layout volume, ensuring it is
 | |
|  * not corrupted, and recovering from corruptions if needed. Returns volume
 | |
|  * table in case of success and a negative error code in case of failure.
 | |
|  */
 | |
| static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi,
 | |
| 					    struct ubi_attach_info *ai,
 | |
| 					    struct ubi_ainf_volume *av)
 | |
| {
 | |
| 	int err;
 | |
| 	struct rb_node *rb;
 | |
| 	struct ubi_ainf_peb *aeb;
 | |
| 	struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL };
 | |
| 	int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1};
 | |
| 
 | |
| 	/*
 | |
| 	 * UBI goes through the following steps when it changes the layout
 | |
| 	 * volume:
 | |
| 	 * a. erase LEB 0;
 | |
| 	 * b. write new data to LEB 0;
 | |
| 	 * c. erase LEB 1;
 | |
| 	 * d. write new data to LEB 1.
 | |
| 	 *
 | |
| 	 * Before the change, both LEBs contain the same data.
 | |
| 	 *
 | |
| 	 * Due to unclean reboots, the contents of LEB 0 may be lost, but there
 | |
| 	 * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not.
 | |
| 	 * Similarly, LEB 1 may be lost, but there should be LEB 0. And
 | |
| 	 * finally, unclean reboots may result in a situation when neither LEB
 | |
| 	 * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB
 | |
| 	 * 0 contains more recent information.
 | |
| 	 *
 | |
| 	 * So the plan is to first check LEB 0. Then
 | |
| 	 * a. if LEB 0 is OK, it must be containing the most recent data; then
 | |
| 	 *    we compare it with LEB 1, and if they are different, we copy LEB
 | |
| 	 *    0 to LEB 1;
 | |
| 	 * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1
 | |
| 	 *    to LEB 0.
 | |
| 	 */
 | |
| 
 | |
| 	dbg_gen("check layout volume");
 | |
| 
 | |
| 	/* Read both LEB 0 and LEB 1 into memory */
 | |
| 	ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
 | |
| 		leb[aeb->lnum] = vzalloc(ubi->vtbl_size);
 | |
| 		if (!leb[aeb->lnum]) {
 | |
| 			err = -ENOMEM;
 | |
| 			goto out_free;
 | |
| 		}
 | |
| 
 | |
| 		err = ubi_io_read_data(ubi, leb[aeb->lnum], aeb->pnum, 0,
 | |
| 				       ubi->vtbl_size);
 | |
| 		if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err))
 | |
| 			/*
 | |
| 			 * Scrub the PEB later. Note, -EBADMSG indicates an
 | |
| 			 * uncorrectable ECC error, but we have our own CRC and
 | |
| 			 * the data will be checked later. If the data is OK,
 | |
| 			 * the PEB will be scrubbed (because we set
 | |
| 			 * aeb->scrub). If the data is not OK, the contents of
 | |
| 			 * the PEB will be recovered from the second copy, and
 | |
| 			 * aeb->scrub will be cleared in
 | |
| 			 * 'ubi_add_to_av()'.
 | |
| 			 */
 | |
| 			aeb->scrub = 1;
 | |
| 		else if (err)
 | |
| 			goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	err = -EINVAL;
 | |
| 	if (leb[0]) {
 | |
| 		leb_corrupted[0] = vtbl_check(ubi, leb[0]);
 | |
| 		if (leb_corrupted[0] < 0)
 | |
| 			goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	if (!leb_corrupted[0]) {
 | |
| 		/* LEB 0 is OK */
 | |
| 		if (leb[1])
 | |
| 			leb_corrupted[1] = memcmp(leb[0], leb[1],
 | |
| 						  ubi->vtbl_size);
 | |
| 		if (leb_corrupted[1]) {
 | |
| 			ubi_warn(ubi, "volume table copy #2 is corrupted");
 | |
| 			err = create_vtbl(ubi, ai, 1, leb[0]);
 | |
| 			if (err)
 | |
| 				goto out_free;
 | |
| 			ubi_msg(ubi, "volume table was restored");
 | |
| 		}
 | |
| 
 | |
| 		/* Both LEB 1 and LEB 2 are OK and consistent */
 | |
| 		vfree(leb[1]);
 | |
| 		return leb[0];
 | |
| 	} else {
 | |
| 		/* LEB 0 is corrupted or does not exist */
 | |
| 		if (leb[1]) {
 | |
| 			leb_corrupted[1] = vtbl_check(ubi, leb[1]);
 | |
| 			if (leb_corrupted[1] < 0)
 | |
| 				goto out_free;
 | |
| 		}
 | |
| 		if (leb_corrupted[1]) {
 | |
| 			/* Both LEB 0 and LEB 1 are corrupted */
 | |
| 			ubi_err(ubi, "both volume tables are corrupted");
 | |
| 			goto out_free;
 | |
| 		}
 | |
| 
 | |
| 		ubi_warn(ubi, "volume table copy #1 is corrupted");
 | |
| 		err = create_vtbl(ubi, ai, 0, leb[1]);
 | |
| 		if (err)
 | |
| 			goto out_free;
 | |
| 		ubi_msg(ubi, "volume table was restored");
 | |
| 
 | |
| 		vfree(leb[0]);
 | |
| 		return leb[1];
 | |
| 	}
 | |
| 
 | |
| out_free:
 | |
| 	vfree(leb[0]);
 | |
| 	vfree(leb[1]);
 | |
| 	return ERR_PTR(err);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * create_empty_lvol - create empty layout volume.
 | |
|  * @ubi: UBI device description object
 | |
|  * @ai: attaching information
 | |
|  *
 | |
|  * This function returns volume table contents in case of success and a
 | |
|  * negative error code in case of failure.
 | |
|  */
 | |
| static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi,
 | |
| 						 struct ubi_attach_info *ai)
 | |
| {
 | |
| 	int i;
 | |
| 	struct ubi_vtbl_record *vtbl;
 | |
| 
 | |
| 	vtbl = vzalloc(ubi->vtbl_size);
 | |
| 	if (!vtbl)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	for (i = 0; i < ubi->vtbl_slots; i++)
 | |
| 		memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE);
 | |
| 
 | |
| 	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
 | |
| 		int err;
 | |
| 
 | |
| 		err = create_vtbl(ubi, ai, i, vtbl);
 | |
| 		if (err) {
 | |
| 			vfree(vtbl);
 | |
| 			return ERR_PTR(err);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return vtbl;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * init_volumes - initialize volume information for existing volumes.
 | |
|  * @ubi: UBI device description object
 | |
|  * @ai: scanning information
 | |
|  * @vtbl: volume table
 | |
|  *
 | |
|  * This function allocates volume description objects for existing volumes.
 | |
|  * Returns zero in case of success and a negative error code in case of
 | |
|  * failure.
 | |
|  */
 | |
| static int init_volumes(struct ubi_device *ubi,
 | |
| 			const struct ubi_attach_info *ai,
 | |
| 			const struct ubi_vtbl_record *vtbl)
 | |
| {
 | |
| 	int i, reserved_pebs = 0;
 | |
| 	struct ubi_ainf_volume *av;
 | |
| 	struct ubi_volume *vol;
 | |
| 
 | |
| 	for (i = 0; i < ubi->vtbl_slots; i++) {
 | |
| 		cond_resched();
 | |
| 
 | |
| 		if (be32_to_cpu(vtbl[i].reserved_pebs) == 0)
 | |
| 			continue; /* Empty record */
 | |
| 
 | |
| 		vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
 | |
| 		if (!vol)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
 | |
| 		vol->alignment = be32_to_cpu(vtbl[i].alignment);
 | |
| 		vol->data_pad = be32_to_cpu(vtbl[i].data_pad);
 | |
| 		vol->upd_marker = vtbl[i].upd_marker;
 | |
| 		vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ?
 | |
| 					UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
 | |
| 		vol->name_len = be16_to_cpu(vtbl[i].name_len);
 | |
| 		vol->usable_leb_size = ubi->leb_size - vol->data_pad;
 | |
| 		memcpy(vol->name, vtbl[i].name, vol->name_len);
 | |
| 		vol->name[vol->name_len] = '\0';
 | |
| 		vol->vol_id = i;
 | |
| 
 | |
| 		if (vtbl[i].flags & UBI_VTBL_SKIP_CRC_CHECK_FLG)
 | |
| 			vol->skip_check = 1;
 | |
| 
 | |
| 		if (vtbl[i].flags & UBI_VTBL_AUTORESIZE_FLG) {
 | |
| 			/* Auto re-size flag may be set only for one volume */
 | |
| 			if (ubi->autoresize_vol_id != -1) {
 | |
| 				ubi_err(ubi, "more than one auto-resize volume (%d and %d)",
 | |
| 					ubi->autoresize_vol_id, i);
 | |
| 				kfree(vol);
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 
 | |
| 			ubi->autoresize_vol_id = i;
 | |
| 		}
 | |
| 
 | |
| 		ubi_assert(!ubi->volumes[i]);
 | |
| 		ubi->volumes[i] = vol;
 | |
| 		ubi->vol_count += 1;
 | |
| 		vol->ubi = ubi;
 | |
| 		reserved_pebs += vol->reserved_pebs;
 | |
| 
 | |
| 		/*
 | |
| 		 * In case of dynamic volume UBI knows nothing about how many
 | |
| 		 * data is stored there. So assume the whole volume is used.
 | |
| 		 */
 | |
| 		if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
 | |
| 			vol->used_ebs = vol->reserved_pebs;
 | |
| 			vol->last_eb_bytes = vol->usable_leb_size;
 | |
| 			vol->used_bytes =
 | |
| 				(long long)vol->used_ebs * vol->usable_leb_size;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Static volumes only */
 | |
| 		av = ubi_find_av(ai, i);
 | |
| 		if (!av || !av->leb_count) {
 | |
| 			/*
 | |
| 			 * No eraseblocks belonging to this volume found. We
 | |
| 			 * don't actually know whether this static volume is
 | |
| 			 * completely corrupted or just contains no data. And
 | |
| 			 * we cannot know this as long as data size is not
 | |
| 			 * stored on flash. So we just assume the volume is
 | |
| 			 * empty. FIXME: this should be handled.
 | |
| 			 */
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (av->leb_count != av->used_ebs) {
 | |
| 			/*
 | |
| 			 * We found a static volume which misses several
 | |
| 			 * eraseblocks. Treat it as corrupted.
 | |
| 			 */
 | |
| 			ubi_warn(ubi, "static volume %d misses %d LEBs - corrupted",
 | |
| 				 av->vol_id, av->used_ebs - av->leb_count);
 | |
| 			vol->corrupted = 1;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		vol->used_ebs = av->used_ebs;
 | |
| 		vol->used_bytes =
 | |
| 			(long long)(vol->used_ebs - 1) * vol->usable_leb_size;
 | |
| 		vol->used_bytes += av->last_data_size;
 | |
| 		vol->last_eb_bytes = av->last_data_size;
 | |
| 	}
 | |
| 
 | |
| 	/* And add the layout volume */
 | |
| 	vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
 | |
| 	if (!vol)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS;
 | |
| 	vol->alignment = UBI_LAYOUT_VOLUME_ALIGN;
 | |
| 	vol->vol_type = UBI_DYNAMIC_VOLUME;
 | |
| 	vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1;
 | |
| 	memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1);
 | |
| 	vol->usable_leb_size = ubi->leb_size;
 | |
| 	vol->used_ebs = vol->reserved_pebs;
 | |
| 	vol->last_eb_bytes = vol->reserved_pebs;
 | |
| 	vol->used_bytes =
 | |
| 		(long long)vol->used_ebs * (ubi->leb_size - vol->data_pad);
 | |
| 	vol->vol_id = UBI_LAYOUT_VOLUME_ID;
 | |
| 	vol->ref_count = 1;
 | |
| 
 | |
| 	ubi_assert(!ubi->volumes[i]);
 | |
| 	ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol;
 | |
| 	reserved_pebs += vol->reserved_pebs;
 | |
| 	ubi->vol_count += 1;
 | |
| 	vol->ubi = ubi;
 | |
| 
 | |
| 	if (reserved_pebs > ubi->avail_pebs) {
 | |
| 		ubi_err(ubi, "not enough PEBs, required %d, available %d",
 | |
| 			reserved_pebs, ubi->avail_pebs);
 | |
| 		if (ubi->corr_peb_count)
 | |
| 			ubi_err(ubi, "%d PEBs are corrupted and not used",
 | |
| 				ubi->corr_peb_count);
 | |
| 	}
 | |
| 	ubi->rsvd_pebs += reserved_pebs;
 | |
| 	ubi->avail_pebs -= reserved_pebs;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * check_av - check volume attaching information.
 | |
|  * @vol: UBI volume description object
 | |
|  * @av: volume attaching information
 | |
|  *
 | |
|  * This function returns zero if the volume attaching information is consistent
 | |
|  * to the data read from the volume tabla, and %-EINVAL if not.
 | |
|  */
 | |
| static int check_av(const struct ubi_volume *vol,
 | |
| 		    const struct ubi_ainf_volume *av)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	if (av->highest_lnum >= vol->reserved_pebs) {
 | |
| 		err = 1;
 | |
| 		goto bad;
 | |
| 	}
 | |
| 	if (av->leb_count > vol->reserved_pebs) {
 | |
| 		err = 2;
 | |
| 		goto bad;
 | |
| 	}
 | |
| 	if (av->vol_type != vol->vol_type) {
 | |
| 		err = 3;
 | |
| 		goto bad;
 | |
| 	}
 | |
| 	if (av->used_ebs > vol->reserved_pebs) {
 | |
| 		err = 4;
 | |
| 		goto bad;
 | |
| 	}
 | |
| 	if (av->data_pad != vol->data_pad) {
 | |
| 		err = 5;
 | |
| 		goto bad;
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
| bad:
 | |
| 	ubi_err(vol->ubi, "bad attaching information, error %d", err);
 | |
| 	ubi_dump_av(av);
 | |
| 	ubi_dump_vol_info(vol);
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * check_attaching_info - check that attaching information.
 | |
|  * @ubi: UBI device description object
 | |
|  * @ai: attaching information
 | |
|  *
 | |
|  * Even though we protect on-flash data by CRC checksums, we still don't trust
 | |
|  * the media. This function ensures that attaching information is consistent to
 | |
|  * the information read from the volume table. Returns zero if the attaching
 | |
|  * information is OK and %-EINVAL if it is not.
 | |
|  */
 | |
| static int check_attaching_info(const struct ubi_device *ubi,
 | |
| 			       struct ubi_attach_info *ai)
 | |
| {
 | |
| 	int err, i;
 | |
| 	struct ubi_ainf_volume *av;
 | |
| 	struct ubi_volume *vol;
 | |
| 
 | |
| 	if (ai->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) {
 | |
| 		ubi_err(ubi, "found %d volumes while attaching, maximum is %d + %d",
 | |
| 			ai->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (ai->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT &&
 | |
| 	    ai->highest_vol_id < UBI_INTERNAL_VOL_START) {
 | |
| 		ubi_err(ubi, "too large volume ID %d found",
 | |
| 			ai->highest_vol_id);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
 | |
| 		cond_resched();
 | |
| 
 | |
| 		av = ubi_find_av(ai, i);
 | |
| 		vol = ubi->volumes[i];
 | |
| 		if (!vol) {
 | |
| 			if (av)
 | |
| 				ubi_remove_av(ai, av);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (vol->reserved_pebs == 0) {
 | |
| 			ubi_assert(i < ubi->vtbl_slots);
 | |
| 
 | |
| 			if (!av)
 | |
| 				continue;
 | |
| 
 | |
| 			/*
 | |
| 			 * During attaching we found a volume which does not
 | |
| 			 * exist according to the information in the volume
 | |
| 			 * table. This must have happened due to an unclean
 | |
| 			 * reboot while the volume was being removed. Discard
 | |
| 			 * these eraseblocks.
 | |
| 			 */
 | |
| 			ubi_msg(ubi, "finish volume %d removal", av->vol_id);
 | |
| 			ubi_remove_av(ai, av);
 | |
| 		} else if (av) {
 | |
| 			err = check_av(vol, av);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubi_read_volume_table - read the volume table.
 | |
|  * @ubi: UBI device description object
 | |
|  * @ai: attaching information
 | |
|  *
 | |
|  * This function reads volume table, checks it, recover from errors if needed,
 | |
|  * or creates it if needed. Returns zero in case of success and a negative
 | |
|  * error code in case of failure.
 | |
|  */
 | |
| int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_attach_info *ai)
 | |
| {
 | |
| 	int i, err;
 | |
| 	struct ubi_ainf_volume *av;
 | |
| 
 | |
| 	empty_vtbl_record.crc = cpu_to_be32(0xf116c36b);
 | |
| 
 | |
| 	/*
 | |
| 	 * The number of supported volumes is limited by the eraseblock size
 | |
| 	 * and by the UBI_MAX_VOLUMES constant.
 | |
| 	 */
 | |
| 	ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE;
 | |
| 	if (ubi->vtbl_slots > UBI_MAX_VOLUMES)
 | |
| 		ubi->vtbl_slots = UBI_MAX_VOLUMES;
 | |
| 
 | |
| 	ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE;
 | |
| 	ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size);
 | |
| 
 | |
| 	av = ubi_find_av(ai, UBI_LAYOUT_VOLUME_ID);
 | |
| 	if (!av) {
 | |
| 		/*
 | |
| 		 * No logical eraseblocks belonging to the layout volume were
 | |
| 		 * found. This could mean that the flash is just empty. In
 | |
| 		 * this case we create empty layout volume.
 | |
| 		 *
 | |
| 		 * But if flash is not empty this must be a corruption or the
 | |
| 		 * MTD device just contains garbage.
 | |
| 		 */
 | |
| 		if (ai->is_empty) {
 | |
| 			ubi->vtbl = create_empty_lvol(ubi, ai);
 | |
| 			if (IS_ERR(ubi->vtbl))
 | |
| 				return PTR_ERR(ubi->vtbl);
 | |
| 		} else {
 | |
| 			ubi_err(ubi, "the layout volume was not found");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (av->leb_count > UBI_LAYOUT_VOLUME_EBS) {
 | |
| 			/* This must not happen with proper UBI images */
 | |
| 			ubi_err(ubi, "too many LEBs (%d) in layout volume",
 | |
| 				av->leb_count);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		ubi->vtbl = process_lvol(ubi, ai, av);
 | |
| 		if (IS_ERR(ubi->vtbl))
 | |
| 			return PTR_ERR(ubi->vtbl);
 | |
| 	}
 | |
| 
 | |
| 	ubi->avail_pebs = ubi->good_peb_count - ubi->corr_peb_count;
 | |
| 
 | |
| 	/*
 | |
| 	 * The layout volume is OK, initialize the corresponding in-RAM data
 | |
| 	 * structures.
 | |
| 	 */
 | |
| 	err = init_volumes(ubi, ai, ubi->vtbl);
 | |
| 	if (err)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure that the attaching information is consistent to the
 | |
| 	 * information stored in the volume table.
 | |
| 	 */
 | |
| 	err = check_attaching_info(ubi, ai);
 | |
| 	if (err)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_free:
 | |
| 	vfree(ubi->vtbl);
 | |
| 	for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
 | |
| 		kfree(ubi->volumes[i]);
 | |
| 		ubi->volumes[i] = NULL;
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * self_vtbl_check - check volume table.
 | |
|  * @ubi: UBI device description object
 | |
|  */
 | |
| static void self_vtbl_check(const struct ubi_device *ubi)
 | |
| {
 | |
| 	if (!ubi_dbg_chk_gen(ubi))
 | |
| 		return;
 | |
| 
 | |
| 	if (vtbl_check(ubi, ubi->vtbl)) {
 | |
| 		ubi_err(ubi, "self-check failed");
 | |
| 		BUG();
 | |
| 	}
 | |
| }
 |