u-boot/arch/arm/cpu/armv8/cache_v8.c
Ilias Apalodimas a5ac47911a arm64: Fix page permissions for platforms running at EL2
We currently set both and print both PXN and UXN bits when removing
execution for pages. This happens even in the existing per platform
definitions of 'struct mm_region'.

That's not entirely correct though. For stage-1 translations, if a
platform runs on a translation regime with a single privilege level or the
the translation regime supports two privilege levels and we are not
in EL1&0 with HCR_EL2.{NV, NV1} = {1, 1} only BIT54 (XN) is needed
and BIT53(PXN) is reserved 0.

Currently we support Non-Secure EL2, Non-secure EL2&0 and Non-secure
EL1&0.

We already have get_effective_el() which returns 1 if we are
- Running in EL1 so we assume an EL1 translation regime but without
  checking HCR_EL2.{NV, NV1} != {1,1}
- Running in EL2 with HCR_EL2.E2H = 1

The only problem with the above is that if we are in EL1&0 and
HCR_EL2.{NV1, NV} == {1, 1}, then
- Bit[54] holds the PXN instead of the UXN
- The Effective value of UXN is 0
- Bit[53] is RES0

So let's re-use that function and set PXN only when we are in
and EL[2|1]&0 translation regime.

Signed-off-by: Ilias Apalodimas <ilias.apalodimas@linaro.org>
2025-04-04 12:24:56 -06:00

1188 lines
28 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2013
* David Feng <fenghua@phytium.com.cn>
*
* (C) Copyright 2016
* Alexander Graf <agraf@suse.de>
*/
#include <cpu_func.h>
#include <hang.h>
#include <log.h>
#include <asm/cache.h>
#include <asm/global_data.h>
#include <asm/system.h>
#include <asm/armv8/mmu.h>
#include <linux/errno.h>
DECLARE_GLOBAL_DATA_PTR;
#if !CONFIG_IS_ENABLED(SYS_DCACHE_OFF)
/*
* With 4k page granule, a virtual address is split into 4 lookup parts
* spanning 9 bits each:
*
* _______________________________________________
* | | | | | | |
* | 0 | Lv0 | Lv1 | Lv2 | Lv3 | off |
* |_______|_______|_______|_______|_______|_______|
* 63-48 47-39 38-30 29-21 20-12 11-00
*
* mask page size
*
* Lv0: FF8000000000 --
* Lv1: 7FC0000000 1G
* Lv2: 3FE00000 2M
* Lv3: 1FF000 4K
* off: FFF
*/
static int get_effective_el(void)
{
int el = current_el();
if (el == 2) {
u64 hcr_el2;
/*
* If we are using the EL2&0 translation regime, the TCR_EL2
* looks like the EL1 version, even though we are in EL2.
*/
__asm__ ("mrs %0, HCR_EL2\n" : "=r" (hcr_el2));
if (hcr_el2 & BIT(HCR_EL2_E2H_BIT))
return 1;
}
return el;
}
u64 get_tcr(u64 *pips, u64 *pva_bits)
{
int el = get_effective_el();
u64 max_addr = 0;
u64 ips, va_bits;
u64 tcr;
int i;
/* Find the largest address we need to support */
for (i = 0; mem_map[i].size || mem_map[i].attrs; i++)
max_addr = max(max_addr, mem_map[i].virt + mem_map[i].size);
/* Calculate the maximum physical (and thus virtual) address */
if (max_addr > (1ULL << 44)) {
ips = 5;
va_bits = 48;
} else if (max_addr > (1ULL << 42)) {
ips = 4;
va_bits = 44;
} else if (max_addr > (1ULL << 40)) {
ips = 3;
va_bits = 42;
} else if (max_addr > (1ULL << 36)) {
ips = 2;
va_bits = 40;
} else if (max_addr > (1ULL << 32)) {
ips = 1;
va_bits = 36;
} else {
ips = 0;
va_bits = 32;
}
if (el == 1) {
tcr = TCR_EL1_RSVD | (ips << 32) | TCR_EPD1_DISABLE;
} else if (el == 2) {
tcr = TCR_EL2_RSVD | (ips << 16);
} else {
tcr = TCR_EL3_RSVD | (ips << 16);
}
/* PTWs cacheable, inner/outer WBWA and inner shareable */
tcr |= TCR_TG0_4K | TCR_SHARED_INNER | TCR_ORGN_WBWA | TCR_IRGN_WBWA;
tcr |= TCR_T0SZ(va_bits);
if (pips)
*pips = ips;
if (pva_bits)
*pva_bits = va_bits;
return tcr;
}
#define MAX_PTE_ENTRIES 512
static int pte_type(u64 *pte)
{
return *pte & PTE_TYPE_MASK;
}
/* Returns the LSB number for a PTE on level <level> */
static int level2shift(int level)
{
/* Page is 12 bits wide, every level translates 9 bits */
return (12 + 9 * (3 - level));
}
static u64 *find_pte(u64 addr, int level)
{
int start_level = 0;
u64 *pte;
u64 idx;
u64 va_bits;
int i;
debug("addr=%llx level=%d\n", addr, level);
get_tcr(NULL, &va_bits);
if (va_bits < 39)
start_level = 1;
if (level < start_level)
return NULL;
/* Walk through all page table levels to find our PTE */
pte = (u64*)gd->arch.tlb_addr;
for (i = start_level; i < 4; i++) {
idx = (addr >> level2shift(i)) & 0x1FF;
pte += idx;
debug("idx=%llx PTE %p at level %d: %llx\n", idx, pte, i, *pte);
/* Found it */
if (i == level)
return pte;
/* PTE is no table (either invalid or block), can't traverse */
if (pte_type(pte) != PTE_TYPE_TABLE)
return NULL;
/* Off to the next level */
pte = (u64*)(*pte & 0x0000fffffffff000ULL);
}
/* Should never reach here */
return NULL;
}
#ifdef CONFIG_CMO_BY_VA_ONLY
static void __cmo_on_leaves(void (*cmo_fn)(unsigned long, unsigned long),
u64 pte, int level, u64 base)
{
u64 *ptep;
int i;
ptep = (u64 *)(pte & GENMASK_ULL(47, PAGE_SHIFT));
for (i = 0; i < PAGE_SIZE / sizeof(u64); i++) {
u64 end, va = base + i * BIT(level2shift(level));
u64 type, attrs;
pte = ptep[i];
type = pte & PTE_TYPE_MASK;
attrs = pte & PMD_ATTRINDX_MASK;
debug("PTE %llx at level %d VA %llx\n", pte, level, va);
/* Not valid? next! */
if (!(type & PTE_TYPE_VALID))
continue;
/* Not a leaf? Recurse on the next level */
if (!(type == PTE_TYPE_BLOCK ||
(level == 3 && type == PTE_TYPE_PAGE))) {
__cmo_on_leaves(cmo_fn, pte, level + 1, va);
continue;
}
/*
* From this point, this must be a leaf.
*
* Start excluding non memory mappings
*/
if (attrs != PTE_BLOCK_MEMTYPE(MT_NORMAL) &&
attrs != PTE_BLOCK_MEMTYPE(MT_NORMAL_NC))
continue;
end = va + BIT(level2shift(level)) - 1;
/* No intersection with RAM? */
if (end < gd->ram_base ||
va >= (gd->ram_base + gd->ram_size))
continue;
/*
* OK, we have a partial RAM mapping. However, this
* can cover *more* than the RAM. Yes, u-boot is
* *that* braindead. Compute the intersection we care
* about, and not a byte more.
*/
va = max(va, (u64)gd->ram_base);
end = min(end, gd->ram_base + gd->ram_size);
debug("Flush PTE %llx at level %d: %llx-%llx\n",
pte, level, va, end);
cmo_fn(va, end);
}
}
static void apply_cmo_to_mappings(void (*cmo_fn)(unsigned long, unsigned long))
{
u64 va_bits;
int sl = 0;
if (!gd->arch.tlb_addr)
return;
get_tcr(NULL, &va_bits);
if (va_bits < 39)
sl = 1;
__cmo_on_leaves(cmo_fn, gd->arch.tlb_addr, sl, 0);
}
#else
static inline void apply_cmo_to_mappings(void *dummy) {}
#endif
/* Returns and creates a new full table (512 entries) */
static u64 *create_table(void)
{
u64 *new_table = (u64*)gd->arch.tlb_fillptr;
u64 pt_len = MAX_PTE_ENTRIES * sizeof(u64);
/* Allocate MAX_PTE_ENTRIES pte entries */
gd->arch.tlb_fillptr += pt_len;
if (gd->arch.tlb_fillptr - gd->arch.tlb_addr > gd->arch.tlb_size)
panic("Insufficient RAM for page table: 0x%lx > 0x%lx. "
"Please increase the size in get_page_table_size()",
gd->arch.tlb_fillptr - gd->arch.tlb_addr,
gd->arch.tlb_size);
/* Mark all entries as invalid */
memset(new_table, 0, pt_len);
return new_table;
}
static void set_pte_table(u64 *pte, u64 *table)
{
/* Point *pte to the new table */
debug("Setting %p to addr=%p\n", pte, table);
*pte = PTE_TYPE_TABLE | (ulong)table;
}
/* Splits a block PTE into table with subpages spanning the old block */
static void split_block(u64 *pte, int level)
{
u64 old_pte = *pte;
u64 *new_table;
u64 i = 0;
/* level describes the parent level, we need the child ones */
int levelshift = level2shift(level + 1);
if (pte_type(pte) != PTE_TYPE_BLOCK)
panic("PTE %p (%llx) is not a block. Some driver code wants to "
"modify dcache settings for an range not covered in "
"mem_map.", pte, old_pte);
new_table = create_table();
debug("Splitting pte %p (%llx) into %p\n", pte, old_pte, new_table);
for (i = 0; i < MAX_PTE_ENTRIES; i++) {
new_table[i] = old_pte | (i << levelshift);
/* Level 3 block PTEs have the table type */
if ((level + 1) == 3)
new_table[i] |= PTE_TYPE_TABLE;
debug("Setting new_table[%lld] = %llx\n", i, new_table[i]);
}
/* Set the new table into effect */
set_pte_table(pte, new_table);
}
static void map_range(u64 virt, u64 phys, u64 size, int level,
u64 *table, u64 attrs)
{
u64 map_size = BIT_ULL(level2shift(level));
int i, idx;
idx = (virt >> level2shift(level)) & (MAX_PTE_ENTRIES - 1);
for (i = idx; size; i++) {
u64 next_size, *next_table;
if (level >= 1 &&
size >= map_size && !(virt & (map_size - 1))) {
if (level == 3)
table[i] = phys | attrs | PTE_TYPE_PAGE;
else
table[i] = phys | attrs;
virt += map_size;
phys += map_size;
size -= map_size;
continue;
}
/* Going one level down */
if (pte_type(&table[i]) == PTE_TYPE_FAULT)
set_pte_table(&table[i], create_table());
else if (pte_type(&table[i]) != PTE_TYPE_TABLE)
split_block(&table[i], level);
next_table = (u64 *)(table[i] & GENMASK_ULL(47, PAGE_SHIFT));
next_size = min(map_size - (virt & (map_size - 1)), size);
map_range(virt, phys, next_size, level + 1, next_table, attrs);
virt += next_size;
phys += next_size;
size -= next_size;
}
}
void mmu_map_region(phys_addr_t addr, u64 size, bool emergency)
{
u64 va_bits;
int level = 0;
u64 attrs = PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_INNER_SHARE;
attrs |= PTE_TYPE_BLOCK | PTE_BLOCK_AF;
get_tcr(NULL, &va_bits);
if (va_bits < 39)
level = 1;
if (emergency)
map_range(addr, addr, size, level,
(u64 *)gd->arch.tlb_emerg, attrs);
/* Switch pagetables while we update the primary one */
__asm_switch_ttbr(gd->arch.tlb_emerg);
map_range(addr, addr, size, level,
(u64 *)gd->arch.tlb_addr, attrs);
__asm_switch_ttbr(gd->arch.tlb_addr);
}
static void add_map(struct mm_region *map)
{
u64 attrs = map->attrs | PTE_TYPE_BLOCK | PTE_BLOCK_AF;
u64 va_bits;
int level = 0;
get_tcr(NULL, &va_bits);
if (va_bits < 39)
level = 1;
map_range(map->virt, map->phys, map->size, level,
(u64 *)gd->arch.tlb_addr, attrs);
}
static void count_range(u64 virt, u64 size, int level, int *cntp)
{
u64 map_size = BIT_ULL(level2shift(level));
int i, idx;
idx = (virt >> level2shift(level)) & (MAX_PTE_ENTRIES - 1);
for (i = idx; size; i++) {
u64 next_size;
if (level >= 1 &&
size >= map_size && !(virt & (map_size - 1))) {
virt += map_size;
size -= map_size;
continue;
}
/* Going one level down */
(*cntp)++;
next_size = min(map_size - (virt & (map_size - 1)), size);
count_range(virt, next_size, level + 1, cntp);
virt += next_size;
size -= next_size;
}
}
static int count_ranges(void)
{
int i, count = 0, level = 0;
u64 va_bits;
get_tcr(NULL, &va_bits);
if (va_bits < 39)
level = 1;
for (i = 0; mem_map[i].size || mem_map[i].attrs; i++)
count_range(mem_map[i].virt, mem_map[i].size, level, &count);
return count;
}
#define ALL_ATTRS (3 << 8 | PMD_ATTRMASK)
#define PTE_IS_TABLE(pte, level) (pte_type(&(pte)) == PTE_TYPE_TABLE && (level) < 3)
enum walker_state {
WALKER_STATE_START = 0,
WALKER_STATE_TABLE,
WALKER_STATE_REGION, /* block or page, depending on level */
};
/**
* __pagetable_walk() - Walk through the pagetable and call cb() for each memory region
*
* This is a software implementation of the ARMv8-A MMU translation table walk. As per
* section D5.4 of the ARMv8-A Architecture Reference Manual. It recursively walks the
* 4 or 3 levels of the page table and calls the callback function for each discrete
* region of memory (that being the discovery of a new table, a collection of blocks
* with the same attributes, or of pages with the same attributes).
*
* U-Boot picks the smallest number of virtual address (VA) bits that it can based on the
* memory map configured by the board. If this is less than 39 then the MMU will only use
* 3 levels of translation instead of 3 - skipping level 0.
*
* Each level has 512 entries of 64-bits each. Each entry includes attribute bits and
* an address. When the attribute bits indicate a table, the address is the physical
* address of the table, so we can recursively call _pagetable_walk() on it (after calling
* @cb). If instead they indicate a block or page, we record the start address and attributes
* and continue walking until we find a region with different attributes, or the end of the
* table, in either case we call @cb with the start and end address of the region.
*
* This approach can be used to fully emulate the MMU's translation table walk, as per
* Figure D5-25 of the ARMv8-A Architecture Reference Manual.
*
* @addr: The address of the table to walk
* @tcr: The TCR register value
* @level: The current level of the table
* @cb: The callback function to call for each region
* @priv: Private data to pass to the callback function
*/
static void __pagetable_walk(u64 addr, u64 tcr, int level, pte_walker_cb_t cb, void *priv)
{
u64 *table = (u64 *)addr;
u64 attrs, last_attrs = 0, last_addr = 0, entry_start = 0;
int i;
u64 va_bits = 64 - (tcr & (BIT(6) - 1));
static enum walker_state state[4] = { 0 };
static bool exit;
if (!level) {
exit = false;
if (va_bits < 39)
level = 1;
}
state[level] = WALKER_STATE_START;
/* Walk through the table entries */
for (i = 0; i < MAX_PTE_ENTRIES; i++) {
u64 pte = table[i];
u64 _addr = pte & GENMASK_ULL(va_bits, PAGE_SHIFT);
if (exit)
return;
if (pte_type(&pte) == PTE_TYPE_FAULT)
continue;
attrs = pte & ALL_ATTRS;
/* If we're currently inside a block or set of pages */
if (state[level] > WALKER_STATE_START && state[level] != WALKER_STATE_TABLE) {
/*
* Continue walking if this entry has the same attributes as the last and
* is one page/block away -- it's a contiguous region.
*/
if (attrs == last_attrs && _addr == last_addr + (1 << level2shift(level))) {
last_attrs = attrs;
last_addr = _addr;
continue;
} else {
/* We either hit a table or a new region */
exit = cb(entry_start, last_addr + (1 << level2shift(level)),
va_bits, level, priv);
if (exit)
return;
state[level] = WALKER_STATE_START;
}
}
last_attrs = attrs;
last_addr = _addr;
if (PTE_IS_TABLE(pte, level)) {
/* After the end of the table might be corrupted data */
if (!_addr || (pte & 0xfff) > 0x3ff)
return;
state[level] = WALKER_STATE_TABLE;
/* Signify the start of a table */
exit = cb(pte, 0, va_bits, level, priv);
if (exit)
return;
/* Go down a level */
__pagetable_walk(_addr, tcr, level + 1, cb, priv);
state[level] = WALKER_STATE_START;
} else if (pte_type(&pte) == PTE_TYPE_BLOCK || pte_type(&pte) == PTE_TYPE_PAGE) {
/* We foud a block or page, start walking */
entry_start = pte;
state[level] = WALKER_STATE_REGION;
}
}
if (state[level] > WALKER_STATE_START)
exit = cb(entry_start, last_addr + (1 << level2shift(level)), va_bits, level, priv);
}
static void pretty_print_pte_type(u64 pte)
{
switch (pte_type(&pte)) {
case PTE_TYPE_FAULT:
printf(" %-5s", "Fault");
break;
case PTE_TYPE_BLOCK:
printf(" %-5s", "Block");
break;
case PTE_TYPE_PAGE:
printf(" %-5s", "Pages");
break;
default:
printf(" %-5s", "Unk");
}
}
static void pretty_print_table_attrs(u64 pte)
{
int ap = (pte & PTE_TABLE_AP) >> 61;
printf(" | %2s %10s",
(ap & 2) ? "RO" : "",
(ap & 1) ? "!EL0" : "");
printf(" | %3s %2s %2s",
(pte & PTE_TABLE_PXN) ? "PXN" : "",
(pte & PTE_TABLE_XN) ? "XN" : "",
(pte & PTE_TABLE_NS) ? "NS" : "");
}
static void pretty_print_block_attrs(u64 pte)
{
u64 attrs = pte & PMD_ATTRINDX_MASK;
u64 perm_attrs = pte & PMD_ATTRMASK;
char mem_attrs[16] = { 0 };
int cnt = 0;
if (perm_attrs & PTE_BLOCK_PXN)
cnt += snprintf(mem_attrs + cnt, sizeof(mem_attrs) - cnt, "PXN ");
if (perm_attrs & PTE_BLOCK_UXN) {
if (get_effective_el() == 1)
cnt += snprintf(mem_attrs + cnt, sizeof(mem_attrs) - cnt, "UXN ");
else
cnt += snprintf(mem_attrs + cnt, sizeof(mem_attrs) - cnt, "XN ");
}
if (perm_attrs & PTE_BLOCK_RO)
cnt += snprintf(mem_attrs + cnt, sizeof(mem_attrs) - cnt, "RO");
if (!mem_attrs[0])
snprintf(mem_attrs, sizeof(mem_attrs), "RWX ");
printf(" | %-10s", mem_attrs);
switch (attrs) {
case PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE):
printf(" | %-13s", "Device-nGnRnE");
break;
case PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRE):
printf(" | %-13s", "Device-nGnRE");
break;
case PTE_BLOCK_MEMTYPE(MT_DEVICE_GRE):
printf(" | %-13s", "Device-GRE");
break;
case PTE_BLOCK_MEMTYPE(MT_NORMAL_NC):
printf(" | %-13s", "Normal-NC");
break;
case PTE_BLOCK_MEMTYPE(MT_NORMAL):
printf(" | %-13s", "Normal");
break;
default:
printf(" | %-13s", "Unknown");
}
}
static void pretty_print_block_memtype(u64 pte)
{
u64 share = pte & (3 << 8);
switch (share) {
case PTE_BLOCK_NON_SHARE:
printf(" | %-16s", "Non-shareable");
break;
case PTE_BLOCK_OUTER_SHARE:
printf(" | %-16s", "Outer-shareable");
break;
case PTE_BLOCK_INNER_SHARE:
printf(" | %-16s", "Inner-shareable");
break;
default:
printf(" | %-16s", "Unknown");
}
}
static void print_pte(u64 pte, int level)
{
if (PTE_IS_TABLE(pte, level)) {
printf(" %-5s", "Table");
printf(" %-12s", "|");
pretty_print_table_attrs(pte);
} else {
pretty_print_pte_type(pte);
pretty_print_block_attrs(pte);
pretty_print_block_memtype(pte);
}
printf("\n");
}
/**
* pagetable_print_entry() - Callback function to print a single pagetable region
*
* This is the default callback used by @dump_pagetable(). It does some basic pretty
* printing (see example in the U-Boot arm64 documentation). It can be replaced by
* a custom callback function if more detailed information is needed.
*
* @start_attrs: The start address and attributes of the region (or table address)
* @end: The end address of the region (or 0 if it's a table)
* @va_bits: The number of bits used for the virtual address
* @level: The level of the region
* @priv: Private data for the callback (unused)
*/
static bool pagetable_print_entry(u64 start_attrs, u64 end, int va_bits, int level, void *priv)
{
u64 _addr = start_attrs & GENMASK_ULL(va_bits, PAGE_SHIFT);
int indent = va_bits < 39 ? level - 1 : level;
printf("%*s", indent * 2, "");
if (PTE_IS_TABLE(start_attrs, level))
printf("[%#016llx]%19s", _addr, "");
else
printf("[%#016llx - %#016llx]", _addr, end);
printf("%*s | ", (3 - level) * 2, "");
print_pte(start_attrs, level);
return false;
}
void walk_pagetable(u64 ttbr, u64 tcr, pte_walker_cb_t cb, void *priv)
{
__pagetable_walk(ttbr, tcr, 0, cb, priv);
}
void dump_pagetable(u64 ttbr, u64 tcr)
{
u64 va_bits = 64 - (tcr & (BIT(6) - 1));
printf("Walking pagetable at %p, va_bits: %lld. Using %d levels\n", (void *)ttbr,
va_bits, va_bits < 39 ? 3 : 4);
walk_pagetable(ttbr, tcr, pagetable_print_entry, NULL);
}
/* Returns the estimated required size of all page tables */
__weak u64 get_page_table_size(void)
{
u64 one_pt = MAX_PTE_ENTRIES * sizeof(u64);
u64 size;
/* Account for all page tables we would need to cover our memory map */
size = one_pt * count_ranges();
/*
* We need to duplicate our page table once to have an emergency pt to
* resort to when splitting page tables later on
*/
size *= 2;
/*
* We may need to split page tables later on if dcache settings change,
* so reserve up to 4 (random pick) page tables for that.
*/
size += one_pt * 4;
return size;
}
void setup_pgtables(void)
{
int i;
if (!gd->arch.tlb_fillptr || !gd->arch.tlb_addr)
panic("Page table pointer not setup.");
/*
* Allocate the first level we're on with invalidate entries.
* If the starting level is 0 (va_bits >= 39), then this is our
* Lv0 page table, otherwise it's the entry Lv1 page table.
*/
create_table();
/* Now add all MMU table entries one after another to the table */
for (i = 0; mem_map[i].size || mem_map[i].attrs; i++)
add_map(&mem_map[i]);
}
static void setup_all_pgtables(void)
{
u64 tlb_addr = gd->arch.tlb_addr;
u64 tlb_size = gd->arch.tlb_size;
/* Reset the fill ptr */
gd->arch.tlb_fillptr = tlb_addr;
/* Create normal system page tables */
setup_pgtables();
/* Create emergency page tables */
gd->arch.tlb_size -= (uintptr_t)gd->arch.tlb_fillptr -
(uintptr_t)gd->arch.tlb_addr;
gd->arch.tlb_addr = gd->arch.tlb_fillptr;
setup_pgtables();
gd->arch.tlb_emerg = gd->arch.tlb_addr;
gd->arch.tlb_addr = tlb_addr;
gd->arch.tlb_size = tlb_size;
}
/* to activate the MMU we need to set up virtual memory */
__weak void mmu_setup(void)
{
int el;
/* Set up page tables only once */
if (!gd->arch.tlb_fillptr)
setup_all_pgtables();
el = current_el();
set_ttbr_tcr_mair(el, gd->arch.tlb_addr, get_tcr(NULL, NULL),
MEMORY_ATTRIBUTES);
/* enable the mmu */
set_sctlr(get_sctlr() | CR_M);
}
/*
* Performs a invalidation of the entire data cache at all levels
*/
void invalidate_dcache_all(void)
{
#ifndef CONFIG_CMO_BY_VA_ONLY
__asm_invalidate_dcache_all();
__asm_invalidate_l3_dcache();
#else
apply_cmo_to_mappings(invalidate_dcache_range);
#endif
}
/*
* Performs a clean & invalidation of the entire data cache at all levels.
* This function needs to be inline to avoid using stack.
* __asm_flush_l3_dcache return status of timeout
*/
inline void flush_dcache_all(void)
{
#ifndef CONFIG_CMO_BY_VA_ONLY
int ret;
__asm_flush_dcache_all();
ret = __asm_flush_l3_dcache();
if (ret)
debug("flushing dcache returns 0x%x\n", ret);
else
debug("flushing dcache successfully.\n");
#else
apply_cmo_to_mappings(flush_dcache_range);
#endif
}
#ifndef CONFIG_SYS_DISABLE_DCACHE_OPS
/*
* Invalidates range in all levels of D-cache/unified cache
*/
void invalidate_dcache_range(unsigned long start, unsigned long stop)
{
__asm_invalidate_dcache_range(start, stop);
}
/*
* Flush range(clean & invalidate) from all levels of D-cache/unified cache
*/
void flush_dcache_range(unsigned long start, unsigned long stop)
{
__asm_flush_dcache_range(start, stop);
}
#else
void invalidate_dcache_range(unsigned long start, unsigned long stop)
{
}
void flush_dcache_range(unsigned long start, unsigned long stop)
{
}
#endif /* CONFIG_SYS_DISABLE_DCACHE_OPS */
void dcache_enable(void)
{
/* The data cache is not active unless the mmu is enabled */
if (!(get_sctlr() & CR_M)) {
invalidate_dcache_all();
__asm_invalidate_tlb_all();
mmu_setup();
}
/* Set up page tables only once (it is done also by mmu_setup()) */
if (!gd->arch.tlb_fillptr)
setup_all_pgtables();
set_sctlr(get_sctlr() | CR_C);
}
void dcache_disable(void)
{
unsigned long sctlr;
sctlr = get_sctlr();
/* if cache isn't enabled no need to disable */
if (!(sctlr & CR_C))
return;
if (IS_ENABLED(CONFIG_CMO_BY_VA_ONLY)) {
/*
* When invalidating by VA, do it *before* turning the MMU
* off, so that at least our stack is coherent.
*/
flush_dcache_all();
}
set_sctlr(sctlr & ~(CR_C|CR_M));
if (!IS_ENABLED(CONFIG_CMO_BY_VA_ONLY))
flush_dcache_all();
__asm_invalidate_tlb_all();
}
int dcache_status(void)
{
return (get_sctlr() & CR_C) != 0;
}
u64 *__weak arch_get_page_table(void) {
puts("No page table offset defined\n");
return NULL;
}
static bool is_aligned(u64 addr, u64 size, u64 align)
{
return !(addr & (align - 1)) && !(size & (align - 1));
}
/* Use flag to indicate if attrs has more than d-cache attributes */
static u64 set_one_region(u64 start, u64 size, u64 attrs, bool flag, int level)
{
int levelshift = level2shift(level);
u64 levelsize = 1ULL << levelshift;
u64 *pte = find_pte(start, level);
/* Can we can just modify the current level block PTE? */
if (is_aligned(start, size, levelsize)) {
if (flag) {
*pte &= ~PMD_ATTRMASK;
*pte |= attrs & PMD_ATTRMASK;
} else {
*pte &= ~PMD_ATTRINDX_MASK;
*pte |= attrs & PMD_ATTRINDX_MASK;
}
debug("Set attrs=%llx pte=%p level=%d\n", attrs, pte, level);
return levelsize;
}
/* Unaligned or doesn't fit, maybe split block into table */
debug("addr=%llx level=%d pte=%p (%llx)\n", start, level, pte, *pte);
/* Maybe we need to split the block into a table */
if (pte_type(pte) == PTE_TYPE_BLOCK)
split_block(pte, level);
/* And then double-check it became a table or already is one */
if (pte_type(pte) != PTE_TYPE_TABLE)
panic("PTE %p (%llx) for addr=%llx should be a table",
pte, *pte, start);
/* Roll on to the next page table level */
return 0;
}
void mmu_set_region_dcache_behaviour(phys_addr_t start, size_t size,
enum dcache_option option)
{
u64 attrs = PMD_ATTRINDX(option >> 2);
u64 real_start = start;
u64 real_size = size;
debug("start=%lx size=%lx\n", (ulong)start, (ulong)size);
if (!gd->arch.tlb_emerg)
panic("Emergency page table not setup.");
/*
* We can not modify page tables that we're currently running on,
* so we first need to switch to the "emergency" page tables where
* we can safely modify our primary page tables and then switch back
*/
__asm_switch_ttbr(gd->arch.tlb_emerg);
/*
* Loop through the address range until we find a page granule that fits
* our alignment constraints, then set it to the new cache attributes
*/
while (size > 0) {
int level;
u64 r;
for (level = 1; level < 4; level++) {
/* Set d-cache attributes only */
r = set_one_region(start, size, attrs, false, level);
if (r) {
/* PTE successfully replaced */
size -= r;
start += r;
break;
}
}
}
/* We're done modifying page tables, switch back to our primary ones */
__asm_switch_ttbr(gd->arch.tlb_addr);
/*
* Make sure there's nothing stale in dcache for a region that might
* have caches off now
*/
flush_dcache_range(real_start, real_start + real_size);
}
void mmu_change_region_attr_nobreak(phys_addr_t addr, size_t siz, u64 attrs)
{
int level;
u64 r, size, start;
/*
* Loop through the address range until we find a page granule that fits
* our alignment constraints and set the new permissions
*/
start = addr;
size = siz;
while (size > 0) {
for (level = 1; level < 4; level++) {
/* Set PTE to new attributes */
r = set_one_region(start, size, attrs, true, level);
if (r) {
/* PTE successfully updated */
size -= r;
start += r;
break;
}
}
}
flush_dcache_range(gd->arch.tlb_addr,
gd->arch.tlb_addr + gd->arch.tlb_size);
__asm_invalidate_tlb_all();
}
/*
* Modify MMU table for a region with updated PXN/UXN/Memory type/valid bits.
* The procecess is break-before-make. The target region will be marked as
* invalid during the process of changing.
*/
void mmu_change_region_attr(phys_addr_t addr, size_t siz, u64 attrs)
{
int level;
u64 r, size, start;
start = addr;
size = siz;
/*
* Loop through the address range until we find a page granule that fits
* our alignment constraints, then set it to "invalid".
*/
while (size > 0) {
for (level = 1; level < 4; level++) {
/* Set PTE to fault */
r = set_one_region(start, size, PTE_TYPE_FAULT, true,
level);
if (r) {
/* PTE successfully invalidated */
size -= r;
start += r;
break;
}
}
}
flush_dcache_range(gd->arch.tlb_addr,
gd->arch.tlb_addr + gd->arch.tlb_size);
__asm_invalidate_tlb_all();
mmu_change_region_attr_nobreak(addr, siz, attrs);
}
int pgprot_set_attrs(phys_addr_t addr, size_t size, enum pgprot_attrs perm)
{
u64 attrs = PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_INNER_SHARE | PTE_TYPE_VALID;
switch (perm) {
case MMU_ATTR_RO:
/*
* get_effective_el() will return 1 if
* - Running in EL1 so we assume an EL1 translation regime
* with HCR_EL2.{NV, NV1} != {1,1}
* - Running in EL2 with HCR_EL2.E2H = 1 so we assume an
* EL2&0 translation regime. Since we don't have accesses
* from EL0 we don't have to check HCR_EL2.TGE
*
* Both of these requires PXN to be set
*/
if (get_effective_el() == 1)
attrs |= PTE_BLOCK_PXN | PTE_BLOCK_UXN | PTE_BLOCK_RO;
else
attrs |= PTE_BLOCK_UXN | PTE_BLOCK_RO;
break;
case MMU_ATTR_RX:
attrs |= PTE_BLOCK_RO;
break;
case MMU_ATTR_RW:
if (get_effective_el() == 1)
attrs |= PTE_BLOCK_PXN | PTE_BLOCK_UXN;
else
attrs |= PTE_BLOCK_UXN;
break;
default:
log_err("Unknown attribute %d\n", perm);
return -EINVAL;
}
mmu_change_region_attr_nobreak(addr, size, attrs);
return 0;
}
#else /* !CONFIG_IS_ENABLED(SYS_DCACHE_OFF) */
/*
* For SPL builds, we may want to not have dcache enabled. Any real U-Boot
* running however really wants to have dcache and the MMU active. Check that
* everything is sane and give the developer a hint if it isn't.
*/
#ifndef CONFIG_XPL_BUILD
#error Please describe your MMU layout in CONFIG_SYS_MEM_MAP and enable dcache.
#endif
void invalidate_dcache_all(void)
{
}
void flush_dcache_all(void)
{
}
void dcache_enable(void)
{
}
void dcache_disable(void)
{
}
int dcache_status(void)
{
return 0;
}
void mmu_set_region_dcache_behaviour(phys_addr_t start, size_t size,
enum dcache_option option)
{
}
#endif /* !CONFIG_IS_ENABLED(SYS_DCACHE_OFF) */
#if !CONFIG_IS_ENABLED(SYS_ICACHE_OFF)
void icache_enable(void)
{
invalidate_icache_all();
set_sctlr(get_sctlr() | CR_I);
}
void icache_disable(void)
{
set_sctlr(get_sctlr() & ~CR_I);
}
int icache_status(void)
{
return (get_sctlr() & CR_I) != 0;
}
int mmu_status(void)
{
return (get_sctlr() & CR_M) != 0;
}
void invalidate_icache_all(void)
{
__asm_invalidate_icache_all();
__asm_invalidate_l3_icache();
}
#else /* !CONFIG_IS_ENABLED(SYS_ICACHE_OFF) */
void icache_enable(void)
{
}
void icache_disable(void)
{
}
int icache_status(void)
{
return 0;
}
int mmu_status(void)
{
return 0;
}
void invalidate_icache_all(void)
{
}
#endif /* !CONFIG_IS_ENABLED(SYS_ICACHE_OFF) */
/*
* Enable dCache & iCache, whether cache is actually enabled
* depend on CONFIG_SYS_DCACHE_OFF and CONFIG_SYS_ICACHE_OFF
*/
void __weak enable_caches(void)
{
icache_enable();
dcache_enable();
}
void arch_dump_mem_attrs(void)
{
dump_pagetable(gd->arch.tlb_addr, get_tcr(NULL, NULL));
}