u-boot/arch/arm/mach-sunxi/clock_sun9i.c
Andre Przywara 192c5c9e51 sunxi: sun9i: make more clock functions SPL only
In clock_sun9i.c, responsible for (mostly early) clock setup on the
Allwinner A80 SoC, many functions are only needed by the SPL, and are
thus already guarded by CONFIG_SPL_BUILD.

Over the years drivers like for the UART or I2C were converted to DM, and
they care about clock setup themselves now, by using a proper DM clock
driver.

This means those devices need the clock setup functions here for the SPL
only. Move some functions around, to group all SPL-only function within
one #ifdef guard. Some functions were exported, but never used outside
of this file, so remove their prototypes from the header file and mark
them as static.

This avoids unnecessary code in U-Boot proper and helps further
refactoring. Add some comments on the way to help understanding of the
file.

Signed-off-by: Andre Przywara <andre.przywara@arm.com>
2024-04-22 01:12:26 +01:00

208 lines
5.5 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* sun9i specific clock code
*
* (C) Copyright 2015 Hans de Goede <hdegoede@redhat.com>
*
* (C) Copyright 2016 Theobroma Systems Design und Consulting GmbH
* Philipp Tomsich <philipp.tomsich@theobroma-systems.com>
*/
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/prcm.h>
#include <asm/arch/sys_proto.h>
#ifdef CONFIG_SPL_BUILD
static void clock_set_pll2(unsigned int clk)
{
struct sunxi_ccm_reg * const ccm =
(struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
const int p = 0;
/* Switch cluster 1 to 24MHz clock while changing PLL2 */
clrsetbits_le32(&ccm->cpu_clk_source, C1_CPUX_CLK_SRC_MASK,
C1_CPUX_CLK_SRC_OSC24M);
writel(CCM_PLL2_CTRL_EN | CCM_PLL2_CTRL_P(p) |
CCM_PLL2_CLOCK_TIME_2 | CCM_PLL2_CTRL_N(clk / 24000000),
&ccm->pll2_c1_cfg);
sdelay(2000);
/* Switch cluster 1 back to PLL2 */
clrsetbits_le32(&ccm->cpu_clk_source, C1_CPUX_CLK_SRC_MASK,
C1_CPUX_CLK_SRC_PLL2);
}
static void clock_set_pll4(unsigned int clk)
{
struct sunxi_ccm_reg * const ccm =
(struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
writel(CCM_PLL4_CTRL_EN | CCM_PLL4_CTRL_N(clk / 24000000),
&ccm->pll4_periph0_cfg);
sdelay(2000);
}
static void clock_set_pll12(unsigned int clk)
{
struct sunxi_ccm_reg * const ccm =
(struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
if (readl(&ccm->pll12_periph1_cfg) & CCM_PLL12_CTRL_EN)
return;
writel(CCM_PLL12_CTRL_EN | CCM_PLL12_CTRL_N(clk / 24000000),
&ccm->pll12_periph1_cfg);
sdelay(2000);
}
void clock_init_safe(void)
{
struct sunxi_ccm_reg * const ccm =
(struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
/* Set up PLL12 (peripheral 1) */
clock_set_pll12(1200000000);
/* Set up PLL1 (cluster 0) and PLL2 (cluster 1) */
clock_set_pll1(408000000);
clock_set_pll2(408000000);
/* Set up PLL4 (peripheral 0) */
clock_set_pll4(960000000);
/* Set up dividers for AXI0 and APB0 on cluster 0: PLL1 / 2 = 204MHz */
writel(C0_CFG_AXI0_CLK_DIV_RATIO(2) |
C0_CFG_APB0_CLK_DIV_RATIO(2), &ccm->c0_cfg);
/* AHB0: 120 MHz (PLL_PERIPH0 / 8) */
writel(AHBx_SRC_PLL_PERIPH0 | AHBx_CLK_DIV_RATIO(8),
&ccm->ahb0_cfg);
/* AHB1: 240 MHz (PLL_PERIPH0 / 4) */
writel(AHBx_SRC_PLL_PERIPH0 | AHBx_CLK_DIV_RATIO(4),
&ccm->ahb1_cfg);
/* AHB2: 120 MHz (PLL_PERIPH0 / 8) */
writel(AHBx_SRC_PLL_PERIPH0 | AHBx_CLK_DIV_RATIO(8),
&ccm->ahb2_cfg);
/* APB0: 120 MHz (PLL_PERIPH0 / 8) */
writel(APB0_SRC_PLL_PERIPH0 | APB0_CLK_DIV_RATIO(8),
&ccm->apb0_cfg);
/* GTBUS: 400MHz (PERIPH0 div 3) */
writel(GTBUS_SRC_PLL_PERIPH1 | GTBUS_CLK_DIV_RATIO(3),
&ccm->gtbus_cfg);
/* CCI400: 480MHz (PERIPH1 div 2) */
writel(CCI400_SRC_PLL_PERIPH0 | CCI400_CLK_DIV_RATIO(2),
&ccm->cci400_cfg);
/* Deassert DMA reset and open clock gating for DMA */
setbits_le32(&ccm->ahb_reset1_cfg, (1 << 24));
setbits_le32(&ccm->apb1_gate, (1 << 24));
/* set enable-bit in TSTAMP_CTRL_REG */
writel(1, 0x01720000);
}
void clock_init_uart(void)
{
struct sunxi_ccm_reg *const ccm =
(struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
/* open the clock for uart */
setbits_le32(&ccm->apb1_gate,
CLK_GATE_OPEN << (APB1_GATE_UART_SHIFT +
CONFIG_CONS_INDEX - 1));
/* deassert uart reset */
setbits_le32(&ccm->apb1_reset_cfg,
1 << (APB1_RESET_UART_SHIFT +
CONFIG_CONS_INDEX - 1));
}
void clock_set_pll1(unsigned int clk)
{
struct sunxi_ccm_reg * const ccm =
(struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
const int p = 0;
/* Switch cluster 0 to 24MHz clock while changing PLL1 */
clrsetbits_le32(&ccm->cpu_clk_source, C0_CPUX_CLK_SRC_MASK,
C0_CPUX_CLK_SRC_OSC24M);
writel(CCM_PLL1_CTRL_EN | CCM_PLL1_CTRL_P(p) |
CCM_PLL1_CLOCK_TIME_2 |
CCM_PLL1_CTRL_N(clk / 24000000),
&ccm->pll1_c0_cfg);
/*
* Don't bother with the stable-time registers, as it doesn't
* wait until the PLL is stable. Note, that even Allwinner
* just uses a delay loop (or rather the AVS timer) for this
* instead of the PLL_STABLE_STATUS register.
*/
sdelay(2000);
/* Switch cluster 0 back to PLL1 */
clrsetbits_le32(&ccm->cpu_clk_source, C0_CPUX_CLK_SRC_MASK,
C0_CPUX_CLK_SRC_PLL1);
}
void clock_set_pll6(unsigned int clk)
{
struct sunxi_ccm_reg * const ccm =
(struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
const int p = 0;
writel(CCM_PLL6_CTRL_EN | CCM_PLL6_CFG_UPDATE | CCM_PLL6_CTRL_P(p)
| CCM_PLL6_CTRL_N(clk / 24000000),
&ccm->pll6_ddr_cfg);
do { } while (!(readl(&ccm->pll_stable_status) & PLL_DDR_STATUS));
sdelay(2000);
}
int clock_twi_onoff(int port, int state)
{
struct sunxi_ccm_reg *const ccm =
(struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
if (port > 4)
return -1;
/* set the apb reset and clock gate for twi */
if (state) {
setbits_le32(&ccm->apb1_gate,
CLK_GATE_OPEN << (APB1_GATE_TWI_SHIFT + port));
setbits_le32(&ccm->apb1_reset_cfg,
1 << (APB1_RESET_TWI_SHIFT + port));
} else {
clrbits_le32(&ccm->apb1_reset_cfg,
1 << (APB1_RESET_TWI_SHIFT + port));
clrbits_le32(&ccm->apb1_gate,
CLK_GATE_OPEN << (APB1_GATE_TWI_SHIFT + port));
}
return 0;
}
#endif /* CONFIG_SPL_BUILD */
/* PLL_PERIPH0 clock (used by the MMC driver) */
unsigned int clock_get_pll4_periph0(void)
{
struct sunxi_ccm_reg *const ccm =
(struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
uint32_t rval = readl(&ccm->pll4_periph0_cfg);
int n = ((rval & CCM_PLL4_CTRL_N_MASK) >> CCM_PLL4_CTRL_N_SHIFT);
int p = ((rval & CCM_PLL4_CTRL_P_MASK) >> CCM_PLL4_CTRL_P_SHIFT);
int m = ((rval & CCM_PLL4_CTRL_M_MASK) >> CCM_PLL4_CTRL_M_SHIFT) + 1;
const int k = 1;
return ((24000000 * n * k) >> p) / m;
}