u-boot/test/lib/lmb.c
Sughosh Ganu 9d37a3d6e8 lmb: replace lmb_reserve() and lmb_alloc_addr() API's
There currently are multiple allocation API's in the LMB module. There
are a couple of API's for allocating memory(lmb_alloc() and
lmb_alloc_base()), and then there are two for requesting a reservation
for a particular memory region (lmb_reserve() and
lmb_alloc_addr()). Introduce a single API lmb_alloc_mem() which will
cater to all types of allocation requests and replace lmb_reserve()
and lmb_alloc_addr() with the new API.

Moreover, the lmb_reserve() API is pretty similar to the
lmb_alloc_addr() API, with the one difference being that the
lmb_reserve() API allows for reserving any address passed to it --
the address need not be part of the LMB memory map. The
lmb_alloc_addr() does check that the address being requested is
actually part of the LMB memory map.

There is no need to support reserving memory regions which are outside
the LMB memory map. Remove the lmb_reserve() API functionality and use
the functionality provided by lmb_alloc_addr() instead. The
lmb_alloc_addr() will check if the requested address is part of the
LMB memory map and return an error if not.

Signed-off-by: Sughosh Ganu <sughosh.ganu@linaro.org>
Acked-by: Ilias Apalodimas <ilias.apalodimas@linaro.org>
2025-06-25 09:50:37 -06:00

945 lines
28 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2018 Simon Goldschmidt
*/
#include <alist.h>
#include <dm.h>
#include <lmb.h>
#include <log.h>
#include <malloc.h>
#include <dm/test.h>
#include <test/lib.h>
#include <test/test.h>
#include <test/ut.h>
static inline bool lmb_is_nomap(struct lmb_region *m)
{
return m->flags & LMB_NOMAP;
}
static int check_lmb(struct unit_test_state *uts, struct alist *mem_lst,
struct alist *used_lst, phys_addr_t ram_base,
phys_size_t ram_size, unsigned long num_reserved,
phys_addr_t base1, phys_size_t size1,
phys_addr_t base2, phys_size_t size2,
phys_addr_t base3, phys_size_t size3)
{
struct lmb_region *mem, *used;
mem = mem_lst->data;
used = used_lst->data;
if (ram_size) {
ut_asserteq(mem_lst->count, 1);
ut_asserteq(mem[0].base, ram_base);
ut_asserteq(mem[0].size, ram_size);
}
ut_asserteq(used_lst->count, num_reserved);
if (num_reserved > 0) {
ut_asserteq(used[0].base, base1);
ut_asserteq(used[0].size, size1);
}
if (num_reserved > 1) {
ut_asserteq(used[1].base, base2);
ut_asserteq(used[1].size, size2);
}
if (num_reserved > 2) {
ut_asserteq(used[2].base, base3);
ut_asserteq(used[2].size, size3);
}
return 0;
}
#define ASSERT_LMB(mem_lst, used_lst, ram_base, ram_size, num_reserved, base1, size1, \
base2, size2, base3, size3) \
ut_assert(!check_lmb(uts, mem_lst, used_lst, ram_base, ram_size, \
num_reserved, base1, size1, base2, size2, base3, \
size3))
static int setup_lmb_test(struct unit_test_state *uts, struct lmb *store,
struct alist **mem_lstp, struct alist **used_lstp)
{
struct lmb *lmb;
ut_assertok(lmb_push(store));
lmb = lmb_get();
*mem_lstp = &lmb->available_mem;
*used_lstp = &lmb->used_mem;
return 0;
}
static int lmb_reserve(phys_addr_t addr, phys_size_t size, u32 flags)
{
int err;
err = lmb_alloc_mem(LMB_MEM_ALLOC_ADDR, 0, &addr, size, flags);
if (err)
return err;
return 0;
}
#define lmb_alloc_addr(addr, size, flags) lmb_reserve(addr, size, flags)
static int test_multi_alloc(struct unit_test_state *uts, const phys_addr_t ram,
const phys_size_t ram_size, const phys_addr_t ram0,
const phys_size_t ram0_size,
const phys_addr_t alloc_64k_addr)
{
const phys_addr_t ram_end = ram + ram_size;
const phys_addr_t alloc_64k_end = alloc_64k_addr + 0x10000;
long ret;
struct alist *mem_lst, *used_lst;
struct lmb_region *mem, *used;
phys_addr_t a, a2, b, b2, c, d;
struct lmb store;
/* check for overflow */
ut_assert(ram_end == 0 || ram_end > ram);
ut_assert(alloc_64k_end > alloc_64k_addr);
/* check input addresses + size */
ut_assert(alloc_64k_addr >= ram + 8);
ut_assert(alloc_64k_end <= ram_end - 8);
ut_assertok(setup_lmb_test(uts, &store, &mem_lst, &used_lst));
mem = mem_lst->data;
used = used_lst->data;
if (ram0_size) {
ret = lmb_add(ram0, ram0_size);
ut_asserteq(ret, 0);
}
ret = lmb_add(ram, ram_size);
ut_asserteq(ret, 0);
if (ram0_size) {
ut_asserteq(mem_lst->count, 2);
ut_asserteq(mem[0].base, ram0);
ut_asserteq(mem[0].size, ram0_size);
ut_asserteq(mem[1].base, ram);
ut_asserteq(mem[1].size, ram_size);
} else {
ut_asserteq(mem_lst->count, 1);
ut_asserteq(mem[0].base, ram);
ut_asserteq(mem[0].size, ram_size);
}
/* reserve 64KiB somewhere */
ret = lmb_reserve(alloc_64k_addr, 0x10000, LMB_NONE);
ut_asserteq(ret, 0);
ASSERT_LMB(mem_lst, used_lst, 0, 0, 1, alloc_64k_addr, 0x10000,
0, 0, 0, 0);
/* allocate somewhere, should be at the end of RAM */
a = lmb_alloc(4, 1);
ut_asserteq(a, ram_end - 4);
ASSERT_LMB(mem_lst, used_lst, 0, 0, 2, alloc_64k_addr, 0x10000,
ram_end - 4, 4, 0, 0);
/* alloc below end of reserved region -> below reserved region */
b = lmb_alloc_base(4, 1, alloc_64k_end, LMB_NONE);
ut_asserteq(b, alloc_64k_addr - 4);
ASSERT_LMB(mem_lst, used_lst, 0, 0, 2,
alloc_64k_addr - 4, 0x10000 + 4, ram_end - 4, 4, 0, 0);
/* 2nd time */
c = lmb_alloc(4, 1);
ut_asserteq(c, ram_end - 8);
ASSERT_LMB(mem_lst, used_lst, 0, 0, 2,
alloc_64k_addr - 4, 0x10000 + 4, ram_end - 8, 8, 0, 0);
d = lmb_alloc_base(4, 1, alloc_64k_end, LMB_NONE);
ut_asserteq(d, alloc_64k_addr - 8);
ASSERT_LMB(mem_lst, used_lst, 0, 0, 2,
alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 8, 0, 0);
ret = lmb_free(a, 4);
ut_asserteq(ret, 0);
ASSERT_LMB(mem_lst, used_lst, 0, 0, 2,
alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0);
/* allocate again to ensure we get the same address */
a2 = lmb_alloc(4, 1);
ut_asserteq(a, a2);
ASSERT_LMB(mem_lst, used_lst, 0, 0, 2,
alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 8, 0, 0);
ret = lmb_free(a2, 4);
ut_asserteq(ret, 0);
ASSERT_LMB(mem_lst, used_lst, 0, 0, 2,
alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0);
ret = lmb_free(b, 4);
ut_asserteq(ret, 0);
ASSERT_LMB(mem_lst, used_lst, 0, 0, 3,
alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000,
ram_end - 8, 4);
/* allocate again to ensure we get the same address */
b2 = lmb_alloc_base(4, 1, alloc_64k_end, LMB_NONE);
ut_asserteq(b, b2);
ASSERT_LMB(mem_lst, used_lst, 0, 0, 2,
alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0);
ret = lmb_free(b2, 4);
ut_asserteq(ret, 0);
ASSERT_LMB(mem_lst, used_lst, 0, 0, 3,
alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000,
ram_end - 8, 4);
ret = lmb_free(c, 4);
ut_asserteq(ret, 0);
ASSERT_LMB(mem_lst, used_lst, 0, 0, 2,
alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000, 0, 0);
ret = lmb_free(d, 4);
ut_asserteq(ret, 0);
ASSERT_LMB(mem_lst, used_lst, 0, 0, 1, alloc_64k_addr, 0x10000,
0, 0, 0, 0);
if (ram0_size) {
ut_asserteq(mem_lst->count, 2);
ut_asserteq(mem[0].base, ram0);
ut_asserteq(mem[0].size, ram0_size);
ut_asserteq(mem[1].base, ram);
ut_asserteq(mem[1].size, ram_size);
} else {
ut_asserteq(mem_lst->count, 1);
ut_asserteq(mem[0].base, ram);
ut_asserteq(mem[0].size, ram_size);
}
lmb_pop(&store);
return 0;
}
static int test_multi_alloc_512mb(struct unit_test_state *uts,
const phys_addr_t ram)
{
return test_multi_alloc(uts, ram, 0x20000000, 0, 0, ram + 0x10000000);
}
static int test_multi_alloc_512mb_x2(struct unit_test_state *uts,
const phys_addr_t ram,
const phys_addr_t ram0)
{
return test_multi_alloc(uts, ram, 0x20000000, ram0, 0x20000000,
ram + 0x10000000);
}
/* Create a memory region with one reserved region and allocate */
static int lib_test_lmb_simple(struct unit_test_state *uts)
{
int ret;
/* simulate 512 MiB RAM beginning at 1GiB */
ret = test_multi_alloc_512mb(uts, 0x40000000);
if (ret)
return ret;
/* simulate 512 MiB RAM beginning at 1.5GiB */
return test_multi_alloc_512mb(uts, 0xE0000000);
}
LIB_TEST(lib_test_lmb_simple, 0);
/* Create two memory regions with one reserved region and allocate */
static int lib_test_lmb_simple_x2(struct unit_test_state *uts)
{
int ret;
/* simulate 512 MiB RAM beginning at 2GiB and 1 GiB */
ret = test_multi_alloc_512mb_x2(uts, 0x80000000, 0x40000000);
if (ret)
return ret;
/* simulate 512 MiB RAM beginning at 3.5GiB and 1 GiB */
return test_multi_alloc_512mb_x2(uts, 0xE0000000, 0x40000000);
}
LIB_TEST(lib_test_lmb_simple_x2, 0);
/* Simulate 512 MiB RAM, allocate some blocks that fit/don't fit */
static int test_bigblock(struct unit_test_state *uts, const phys_addr_t ram)
{
const phys_size_t ram_size = 0x20000000;
const phys_size_t big_block_size = 0x10000000;
const phys_addr_t ram_end = ram + ram_size;
const phys_addr_t alloc_64k_addr = ram + 0x10000000;
struct alist *mem_lst, *used_lst;
long ret;
phys_addr_t a, b;
struct lmb store;
/* check for overflow */
ut_assert(ram_end == 0 || ram_end > ram);
ut_assertok(setup_lmb_test(uts, &store, &mem_lst, &used_lst));
ret = lmb_add(ram, ram_size);
ut_asserteq(ret, 0);
/* reserve 64KiB in the middle of RAM */
ret = lmb_reserve(alloc_64k_addr, 0x10000, LMB_NONE);
ut_asserteq(ret, 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, alloc_64k_addr, 0x10000,
0, 0, 0, 0);
/* allocate a big block, should be below reserved */
a = lmb_alloc(big_block_size, 1);
ut_asserteq(a, ram);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, a,
big_block_size + 0x10000, 0, 0, 0, 0);
/* allocate 2nd big block */
/* This should fail, printing an error */
b = lmb_alloc(big_block_size, 1);
ut_asserteq(b, 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, a,
big_block_size + 0x10000, 0, 0, 0, 0);
ret = lmb_free(a, big_block_size);
ut_asserteq(ret, 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, alloc_64k_addr, 0x10000,
0, 0, 0, 0);
/* allocate too big block */
/* This should fail, printing an error */
a = lmb_alloc(ram_size, 1);
ut_asserteq(a, 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, alloc_64k_addr, 0x10000,
0, 0, 0, 0);
lmb_pop(&store);
return 0;
}
static int lib_test_lmb_big(struct unit_test_state *uts)
{
int ret;
/* simulate 512 MiB RAM beginning at 1GiB */
ret = test_bigblock(uts, 0x40000000);
if (ret)
return ret;
/* simulate 512 MiB RAM beginning at 1.5GiB */
return test_bigblock(uts, 0xE0000000);
}
LIB_TEST(lib_test_lmb_big, 0);
/* Simulate 512 MiB RAM, allocate a block without previous reservation */
static int test_noreserved(struct unit_test_state *uts, const phys_addr_t ram,
const phys_addr_t alloc_size, const ulong align)
{
const phys_size_t ram_size = 0x20000000;
const phys_addr_t ram_end = ram + ram_size;
long ret;
phys_addr_t a, b;
struct lmb store;
struct alist *mem_lst, *used_lst;
const phys_addr_t alloc_size_aligned = (alloc_size + align - 1) &
~(align - 1);
/* check for overflow */
ut_assert(ram_end == 0 || ram_end > ram);
ut_assertok(setup_lmb_test(uts, &store, &mem_lst, &used_lst));
ret = lmb_add(ram, ram_size);
ut_asserteq(ret, 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 0, 0, 0, 0, 0, 0, 0);
/* allocate a block */
a = lmb_alloc(alloc_size, align);
ut_assert(a != 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1,
ram + ram_size - alloc_size_aligned, alloc_size, 0, 0, 0, 0);
/* allocate another block */
b = lmb_alloc(alloc_size, align);
ut_assert(b != 0);
if (alloc_size == alloc_size_aligned) {
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, ram + ram_size -
(alloc_size_aligned * 2), alloc_size * 2, 0, 0, 0,
0);
} else {
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 2, ram + ram_size -
(alloc_size_aligned * 2), alloc_size, ram + ram_size
- alloc_size_aligned, alloc_size, 0, 0);
}
/* and free them */
ret = lmb_free(b, alloc_size);
ut_asserteq(ret, 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1,
ram + ram_size - alloc_size_aligned,
alloc_size, 0, 0, 0, 0);
ret = lmb_free(a, alloc_size);
ut_asserteq(ret, 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 0, 0, 0, 0, 0, 0, 0);
/* allocate a block with base*/
b = lmb_alloc_base(alloc_size, align, ram_end, LMB_NONE);
ut_assert(a == b);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1,
ram + ram_size - alloc_size_aligned,
alloc_size, 0, 0, 0, 0);
/* and free it */
ret = lmb_free(b, alloc_size);
ut_asserteq(ret, 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 0, 0, 0, 0, 0, 0, 0);
lmb_pop(&store);
return 0;
}
static int lib_test_lmb_noreserved(struct unit_test_state *uts)
{
int ret;
/* simulate 512 MiB RAM beginning at 1GiB */
ret = test_noreserved(uts, 0x40000000, 4, 1);
if (ret)
return ret;
/* simulate 512 MiB RAM beginning at 1.5GiB */
return test_noreserved(uts, 0xE0000000, 4, 1);
}
LIB_TEST(lib_test_lmb_noreserved, 0);
static int lib_test_lmb_unaligned_size(struct unit_test_state *uts)
{
int ret;
/* simulate 512 MiB RAM beginning at 1GiB */
ret = test_noreserved(uts, 0x40000000, 5, 8);
if (ret)
return ret;
/* simulate 512 MiB RAM beginning at 1.5GiB */
return test_noreserved(uts, 0xE0000000, 5, 8);
}
LIB_TEST(lib_test_lmb_unaligned_size, 0);
/*
* Simulate a RAM that starts at 0 and allocate down to address 0, which must
* fail as '0' means failure for the lmb_alloc functions.
*/
static int lib_test_lmb_at_0(struct unit_test_state *uts)
{
const phys_addr_t ram = 0;
const phys_size_t ram_size = 0x20000000;
struct lmb store;
struct alist *mem_lst, *used_lst;
long ret;
phys_addr_t a, b;
ut_assertok(setup_lmb_test(uts, &store, &mem_lst, &used_lst));
ret = lmb_add(ram, ram_size);
ut_asserteq(ret, 0);
/* allocate nearly everything */
a = lmb_alloc(ram_size - 4, 1);
ut_asserteq(a, ram + 4);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, a, ram_size - 4,
0, 0, 0, 0);
/* allocate the rest */
/* This should fail as the allocated address would be 0 */
b = lmb_alloc(4, 1);
ut_asserteq(b, 0);
/* check that this was an error by checking lmb */
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, a, ram_size - 4,
0, 0, 0, 0);
/* check that this was an error by freeing b */
ret = lmb_free(b, 4);
ut_asserteq(ret, -1);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, a, ram_size - 4,
0, 0, 0, 0);
ret = lmb_free(a, ram_size - 4);
ut_asserteq(ret, 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 0, 0, 0, 0, 0, 0, 0);
lmb_pop(&store);
return 0;
}
LIB_TEST(lib_test_lmb_at_0, 0);
/* Check that calling lmb_reserve with overlapping regions fails. */
static int lib_test_lmb_overlapping_reserve(struct unit_test_state *uts)
{
const phys_addr_t ram = 0x40000000;
const phys_size_t ram_size = 0x20000000;
struct lmb store;
struct alist *mem_lst, *used_lst;
long ret;
ut_assertok(setup_lmb_test(uts, &store, &mem_lst, &used_lst));
ret = lmb_add(ram, ram_size);
ut_asserteq(ret, 0);
ret = lmb_reserve(0x40010000, 0x10000, LMB_NONE);
ut_asserteq(ret, 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, 0x40010000, 0x10000,
0, 0, 0, 0);
/* allocate overlapping region */
ret = lmb_reserve(0x40011000, 0x10000, LMB_NONE);
ut_asserteq(ret, 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, 0x40010000, 0x11000,
0, 0, 0, 0);
/* allocate 2nd region */
ret = lmb_reserve(0x40030000, 0x10000, LMB_NONE);
ut_asserteq(ret, 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 2, 0x40010000, 0x11000,
0x40030000, 0x10000, 0, 0);
/* allocate 3rd region , This should coalesce all regions into one */
ret = lmb_reserve(0x40020000, 0x10000, LMB_NONE);
ut_assert(ret >= 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, 0x40010000, 0x30000,
0, 0, 0, 0);
/* allocate 2nd region, which should be added as first region */
ret = lmb_reserve(0x40000000, 0x8000, LMB_NONE);
ut_assert(ret >= 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 2, 0x40000000, 0x8000,
0x40010000, 0x30000, 0, 0);
/* allocate 3rd region, coalesce with first and overlap with second */
ret = lmb_reserve(0x40008000, 0x10000, LMB_NONE);
ut_assert(ret >= 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, 0x40000000, 0x40000,
0, 0, 0, 0);
/* try to allocate overlapping region with a different flag, should fail */
ret = lmb_reserve(0x40008000, 0x1000, LMB_NOOVERWRITE);
ut_asserteq(ret, -EEXIST);
/* allocate another region at 0x40050000 with a different flag */
ret = lmb_reserve(0x40050000, 0x10000, LMB_NOOVERWRITE);
ut_asserteq(ret, 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 2, 0x40000000, 0x40000,
0x40050000, 0x10000, 0, 0);
/*
* try to reserve a region adjacent to region 1 overlapping the 2nd region,
* should fail
*/
ret = lmb_reserve(0x40040000, 0x20000, LMB_NONE);
ut_asserteq(ret, -EEXIST);
/*
* try to reserve a region between the two regions, but without an overlap,
* should succeed. this added region coalesces with the region 1
*/
ret = lmb_reserve(0x40040000, 0x10000, LMB_NONE);
ut_asserteq(ret, 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 2, 0x40000000, 0x50000,
0x40050000, 0x10000, 0, 0);
/*
* try to reserve a region which overlaps with both the regions,
* should fail as the flags do not match
*/
ret = lmb_reserve(0x40020000, 0x80000, LMB_NONE);
ut_asserteq(ret, -EEXIST);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 2, 0x40000000, 0x50000,
0x40050000, 0x10000, 0, 0);
lmb_pop(&store);
return 0;
}
LIB_TEST(lib_test_lmb_overlapping_reserve, 0);
/*
* Simulate 512 MiB RAM, reserve 3 blocks, allocate addresses in between.
* Expect addresses outside the memory range to fail.
*/
static int test_alloc_addr(struct unit_test_state *uts, const phys_addr_t ram)
{
struct lmb store;
struct alist *mem_lst, *used_lst;
const phys_size_t ram_size = 0x20000000;
const phys_addr_t ram_end = ram + ram_size;
const phys_size_t alloc_addr_a = ram + 0x8000000;
const phys_size_t alloc_addr_b = ram + 0x8000000 * 2;
const phys_size_t alloc_addr_c = ram + 0x8000000 * 3;
long ret;
phys_addr_t a, b, c, d, e;
/* check for overflow */
ut_assert(ram_end == 0 || ram_end > ram);
ut_assertok(setup_lmb_test(uts, &store, &mem_lst, &used_lst));
ret = lmb_add(ram, ram_size);
ut_asserteq(ret, 0);
/* Try to allocate a page twice */
b = lmb_alloc_addr(alloc_addr_a, 0x1000, LMB_NONE);
ut_asserteq(b, 0);
b = lmb_alloc_addr(alloc_addr_a, 0x1000, LMB_NOOVERWRITE);
ut_asserteq(b, -EEXIST);
b = lmb_alloc_addr(alloc_addr_a, 0x1000, LMB_NONE);
ut_asserteq(b, 0);
b = lmb_alloc_addr(alloc_addr_a, 0x2000, LMB_NONE);
ut_asserteq(b, 0);
ret = lmb_free(alloc_addr_a, 0x2000);
ut_asserteq(ret, 0);
b = lmb_alloc_addr(alloc_addr_a, 0x1000, LMB_NOOVERWRITE);
ut_asserteq(b, 0);
b = lmb_alloc_addr(alloc_addr_a, 0x1000, LMB_NONE);
ut_asserteq(b, -EEXIST);
b = lmb_alloc_addr(alloc_addr_a, 0x1000, LMB_NOOVERWRITE);
ut_asserteq(b, -EEXIST);
ret = lmb_free(alloc_addr_a, 0x1000);
ut_asserteq(ret, 0);
/*
* Add two regions with different flags, region1 and region2 with
* a gap between them.
* Try adding another region, adjacent to region 1 and overlapping
* region 2. Should fail.
*/
a = lmb_alloc_addr(alloc_addr_a, 0x1000, LMB_NONE);
ut_asserteq(a, 0);
b = lmb_alloc_addr(alloc_addr_a + 0x4000, 0x1000, LMB_NOOVERWRITE);
ut_asserteq(b, 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 2, alloc_addr_a, 0x1000,
alloc_addr_a + 0x4000, 0x1000, 0, 0);
c = lmb_alloc_addr(alloc_addr_a + 0x1000, 0x5000, LMB_NONE);
ut_asserteq(c, -EEXIST);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 2, alloc_addr_a, 0x1000,
alloc_addr_a + 0x4000, 0x1000, 0, 0);
ret = lmb_free(alloc_addr_a, 0x1000);
ut_asserteq(ret, 0);
ret = lmb_free(alloc_addr_a + 0x4000, 0x1000);
ut_asserteq(ret, 0);
/*
* Add two regions with same flags(LMB_NONE), region1 and region2
* with a gap between them.
* Try adding another region, adjacent to region 1 and overlapping
* region 2. Should succeed. All regions should coalesce into a
* single region.
*/
a = lmb_alloc_addr(alloc_addr_a, 0x1000, LMB_NONE);
ut_asserteq(a, 0);
b = lmb_alloc_addr(alloc_addr_a + 0x4000, 0x1000, LMB_NONE);
ut_asserteq(b, 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 2, alloc_addr_a, 0x1000,
alloc_addr_a + 0x4000, 0x1000, 0, 0);
c = lmb_alloc_addr(alloc_addr_a + 0x1000, 0x5000, LMB_NONE);
ut_asserteq(c, 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, alloc_addr_a, 0x6000,
0, 0, 0, 0);
ret = lmb_free(alloc_addr_a, 0x6000);
ut_asserteq(ret, 0);
/*
* Add two regions with same flags(LMB_NOOVERWRITE), region1 and
* region2 with a gap between them.
* Try adding another region, adjacent to region 1 and overlapping
* region 2. Should fail.
*/
a = lmb_alloc_addr(alloc_addr_a, 0x1000, LMB_NOOVERWRITE);
ut_asserteq(a, 0);
b = lmb_alloc_addr(alloc_addr_a + 0x4000, 0x1000, LMB_NOOVERWRITE);
ut_asserteq(b, 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 2, alloc_addr_a, 0x1000,
alloc_addr_a + 0x4000, 0x1000, 0, 0);
c = lmb_alloc_addr(alloc_addr_a + 0x1000, 0x5000, LMB_NOOVERWRITE);
ut_asserteq(c, -EEXIST);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 2, alloc_addr_a, 0x1000,
alloc_addr_a + 0x4000, 0x1000, 0, 0);
ret = lmb_free(alloc_addr_a, 0x1000);
ut_asserteq(ret, 0);
ret = lmb_free(alloc_addr_a + 0x4000, 0x1000);
ut_asserteq(ret, 0);
/* reserve 3 blocks */
ret = lmb_reserve(alloc_addr_a, 0x10000, LMB_NONE);
ut_asserteq(ret, 0);
ret = lmb_reserve(alloc_addr_b, 0x10000, LMB_NONE);
ut_asserteq(ret, 0);
ret = lmb_reserve(alloc_addr_c, 0x10000, LMB_NONE);
ut_asserteq(ret, 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 3, alloc_addr_a, 0x10000,
alloc_addr_b, 0x10000, alloc_addr_c, 0x10000);
/* allocate blocks */
a = lmb_alloc_addr(ram, alloc_addr_a - ram, LMB_NONE);
ut_asserteq(a, 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 3, ram, 0x8010000,
alloc_addr_b, 0x10000, alloc_addr_c, 0x10000);
b = lmb_alloc_addr(alloc_addr_a + 0x10000,
alloc_addr_b - alloc_addr_a - 0x10000, LMB_NONE);
ut_asserteq(b, 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 2, ram, 0x10010000,
alloc_addr_c, 0x10000, 0, 0);
c = lmb_alloc_addr(alloc_addr_b + 0x10000,
alloc_addr_c - alloc_addr_b - 0x10000, LMB_NONE);
ut_asserteq(c, 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, ram, 0x18010000,
0, 0, 0, 0);
d = lmb_alloc_addr(alloc_addr_c + 0x10000,
ram_end - alloc_addr_c - 0x10000, LMB_NONE);
ut_asserteq(d, 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, ram, ram_size,
0, 0, 0, 0);
/* allocating anything else should fail */
e = lmb_alloc(1, 1);
ut_asserteq(e, 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, ram, ram_size,
0, 0, 0, 0);
/* free thge allocation from d */
ret = lmb_free(alloc_addr_c + 0x10000, ram_end - alloc_addr_c - 0x10000);
ut_asserteq(ret, 0);
/* allocate at 3 points in free range */
d = lmb_alloc_addr(ram_end - 4, 4, LMB_NONE);
ut_asserteq(d, 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 2, ram, 0x18010000,
ram_end - 4, 4, 0, 0);
ret = lmb_free(ram_end - 4, 4);
ut_asserteq(ret, 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, ram, 0x18010000,
0, 0, 0, 0);
d = lmb_alloc_addr(ram_end - 128, 4, LMB_NONE);
ut_asserteq(d, 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 2, ram, 0x18010000,
ram_end - 128, 4, 0, 0);
ret = lmb_free(ram_end - 128, 4);
ut_asserteq(ret, 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, ram, 0x18010000,
0, 0, 0, 0);
d = lmb_alloc_addr(alloc_addr_c + 0x10000, 4, LMB_NONE);
ut_asserteq(d, 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, ram, 0x18010004,
0, 0, 0, 0);
ret = lmb_free(alloc_addr_c + 0x10000, 4);
ut_asserteq(ret, 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, ram, 0x18010000,
0, 0, 0, 0);
/* allocate at the bottom a was assigned to ram at the top */
ret = lmb_free(ram, alloc_addr_a - ram);
ut_asserteq(ret, 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, ram + 0x8000000,
0x10010000, 0, 0, 0, 0);
d = lmb_alloc_addr(ram, 4, LMB_NONE);
ut_asserteq(d, 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 2, ram, 4,
ram + 0x8000000, 0x10010000, 0, 0);
/* check that allocating outside memory fails */
if (ram_end != 0) {
ret = lmb_alloc_addr(ram_end, 1, LMB_NONE);
ut_asserteq(ret, -EINVAL);
}
if (ram != 0) {
ret = lmb_alloc_addr(ram - 1, 1, LMB_NONE);
ut_asserteq(ret, -EINVAL);
}
lmb_pop(&store);
return 0;
}
static int lib_test_lmb_alloc_addr(struct unit_test_state *uts)
{
int ret;
/* simulate 512 MiB RAM beginning at 1GiB */
ret = test_alloc_addr(uts, 0x40000000);
if (ret)
return ret;
/* simulate 512 MiB RAM beginning at 1.5GiB */
return test_alloc_addr(uts, 0xE0000000);
}
LIB_TEST(lib_test_lmb_alloc_addr, 0);
/* Simulate 512 MiB RAM, reserve 3 blocks, check addresses in between */
static int test_get_unreserved_size(struct unit_test_state *uts,
const phys_addr_t ram)
{
struct lmb store;
struct alist *mem_lst, *used_lst;
const phys_size_t ram_size = 0x20000000;
const phys_addr_t ram_end = ram + ram_size;
const phys_size_t alloc_addr_a = ram + 0x8000000;
const phys_size_t alloc_addr_b = ram + 0x8000000 * 2;
const phys_size_t alloc_addr_c = ram + 0x8000000 * 3;
long ret;
phys_size_t s;
/* check for overflow */
ut_assert(ram_end == 0 || ram_end > ram);
ut_assertok(setup_lmb_test(uts, &store, &mem_lst, &used_lst));
ret = lmb_add(ram, ram_size);
ut_asserteq(ret, 0);
/* reserve 3 blocks */
ret = lmb_reserve(alloc_addr_a, 0x10000, LMB_NONE);
ut_asserteq(ret, 0);
ret = lmb_reserve(alloc_addr_b, 0x10000, LMB_NONE);
ut_asserteq(ret, 0);
ret = lmb_reserve(alloc_addr_c, 0x10000, LMB_NONE);
ut_asserteq(ret, 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 3, alloc_addr_a, 0x10000,
alloc_addr_b, 0x10000, alloc_addr_c, 0x10000);
/* check addresses in between blocks */
s = lmb_get_free_size(ram);
ut_asserteq(s, alloc_addr_a - ram);
s = lmb_get_free_size(ram + 0x10000);
ut_asserteq(s, alloc_addr_a - ram - 0x10000);
s = lmb_get_free_size(alloc_addr_a - 4);
ut_asserteq(s, 4);
s = lmb_get_free_size(alloc_addr_a + 0x10000);
ut_asserteq(s, alloc_addr_b - alloc_addr_a - 0x10000);
s = lmb_get_free_size(alloc_addr_a + 0x20000);
ut_asserteq(s, alloc_addr_b - alloc_addr_a - 0x20000);
s = lmb_get_free_size(alloc_addr_b - 4);
ut_asserteq(s, 4);
s = lmb_get_free_size(alloc_addr_c + 0x10000);
ut_asserteq(s, ram_end - alloc_addr_c - 0x10000);
s = lmb_get_free_size(alloc_addr_c + 0x20000);
ut_asserteq(s, ram_end - alloc_addr_c - 0x20000);
s = lmb_get_free_size(ram_end - 4);
ut_asserteq(s, 4);
lmb_pop(&store);
return 0;
}
static int lib_test_lmb_get_free_size(struct unit_test_state *uts)
{
int ret;
/* simulate 512 MiB RAM beginning at 1GiB */
ret = test_get_unreserved_size(uts, 0x40000000);
if (ret)
return ret;
/* simulate 512 MiB RAM beginning at 1.5GiB */
return test_get_unreserved_size(uts, 0xE0000000);
}
LIB_TEST(lib_test_lmb_get_free_size, 0);
static int lib_test_lmb_flags(struct unit_test_state *uts)
{
struct lmb store;
struct lmb_region *mem, *used;
struct alist *mem_lst, *used_lst;
const phys_addr_t ram = 0x40000000;
const phys_size_t ram_size = 0x20000000;
long ret;
ut_assertok(setup_lmb_test(uts, &store, &mem_lst, &used_lst));
mem = mem_lst->data;
used = used_lst->data;
ret = lmb_add(ram, ram_size);
ut_asserteq(ret, 0);
/* reserve, same flag */
ret = lmb_reserve(0x40010000, 0x10000, LMB_NOMAP);
ut_asserteq(ret, 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, 0x40010000, 0x10000,
0, 0, 0, 0);
/* reserve again, same flag */
ret = lmb_reserve(0x40010000, 0x10000, LMB_NOMAP);
ut_asserteq(ret, -EEXIST);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, 0x40010000, 0x10000,
0, 0, 0, 0);
/* reserve again, new flag */
ret = lmb_reserve(0x40010000, 0x10000, LMB_NONE);
ut_asserteq(ret, -EEXIST);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, 0x40010000, 0x10000,
0, 0, 0, 0);
ut_asserteq(lmb_is_nomap(&used[0]), 1);
/* merge after */
ret = lmb_reserve(0x40020000, 0x10000, LMB_NOMAP);
ut_asserteq(ret, 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, 0x40010000, 0x20000,
0, 0, 0, 0);
/* merge before */
ret = lmb_reserve(0x40000000, 0x10000, LMB_NOMAP);
ut_asserteq(ret, 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 1, 0x40000000, 0x30000,
0, 0, 0, 0);
ut_asserteq(lmb_is_nomap(&used[0]), 1);
ret = lmb_reserve(0x40030000, 0x10000, LMB_NONE);
ut_asserteq(ret, 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 2, 0x40000000, 0x30000,
0x40030000, 0x10000, 0, 0);
ut_asserteq(lmb_is_nomap(&used[0]), 1);
ut_asserteq(lmb_is_nomap(&used[1]), 0);
/* test that old API use LMB_NONE */
ret = lmb_reserve(0x40040000, 0x10000, LMB_NONE);
ut_asserteq(ret, 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 2, 0x40000000, 0x30000,
0x40030000, 0x20000, 0, 0);
ut_asserteq(lmb_is_nomap(&used[0]), 1);
ut_asserteq(lmb_is_nomap(&used[1]), 0);
ret = lmb_reserve(0x40070000, 0x10000, LMB_NOMAP);
ut_asserteq(ret, 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 3, 0x40000000, 0x30000,
0x40030000, 0x20000, 0x40070000, 0x10000);
ret = lmb_reserve(0x40050000, 0x10000, LMB_NOMAP);
ut_asserteq(ret, 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 4, 0x40000000, 0x30000,
0x40030000, 0x20000, 0x40050000, 0x10000);
/* merge with 2 adjacent regions */
ret = lmb_reserve(0x40060000, 0x10000, LMB_NOMAP);
ut_asserteq(ret, 0);
ASSERT_LMB(mem_lst, used_lst, ram, ram_size, 3, 0x40000000, 0x30000,
0x40030000, 0x20000, 0x40050000, 0x30000);
ut_asserteq(lmb_is_nomap(&used[0]), 1);
ut_asserteq(lmb_is_nomap(&used[1]), 0);
ut_asserteq(lmb_is_nomap(&used[2]), 1);
lmb_pop(&store);
return 0;
}
LIB_TEST(lib_test_lmb_flags, 0);