mirror of
				https://source.denx.de/u-boot/u-boot.git
				synced 2025-10-27 06:21:25 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			5680 lines
		
	
	
		
			163 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			5680 lines
		
	
	
		
			163 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /**************************************************************************
 | |
| Intel Pro 1000 for ppcboot/das-u-boot
 | |
| Drivers are port from Intel's Linux driver e1000-4.3.15
 | |
| and from Etherboot pro 1000 driver by mrakes at vivato dot net
 | |
| tested on both gig copper and gig fiber boards
 | |
| ***************************************************************************/
 | |
| /*******************************************************************************
 | |
| 
 | |
| 
 | |
|   Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
 | |
| 
 | |
|  * SPDX-License-Identifier:	GPL-2.0+
 | |
| 
 | |
|   Contact Information:
 | |
|   Linux NICS <linux.nics@intel.com>
 | |
|   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 | |
| 
 | |
| *******************************************************************************/
 | |
| /*
 | |
|  *  Copyright (C) Archway Digital Solutions.
 | |
|  *
 | |
|  *  written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
 | |
|  *  2/9/2002
 | |
|  *
 | |
|  *  Copyright (C) Linux Networx.
 | |
|  *  Massive upgrade to work with the new intel gigabit NICs.
 | |
|  *  <ebiederman at lnxi dot com>
 | |
|  *
 | |
|  *  Copyright 2011 Freescale Semiconductor, Inc.
 | |
|  */
 | |
| 
 | |
| #include <common.h>
 | |
| #include <dm.h>
 | |
| #include <errno.h>
 | |
| #include <memalign.h>
 | |
| #include <pci.h>
 | |
| #include "e1000.h"
 | |
| 
 | |
| #define TOUT_LOOP   100000
 | |
| 
 | |
| #ifdef CONFIG_DM_ETH
 | |
| #define virt_to_bus(devno, v)	dm_pci_virt_to_mem(devno, (void *) (v))
 | |
| #define bus_to_phys(devno, a)	dm_pci_mem_to_phys(devno, a)
 | |
| #else
 | |
| #define virt_to_bus(devno, v)	pci_virt_to_mem(devno, (void *) (v))
 | |
| #define bus_to_phys(devno, a)	pci_mem_to_phys(devno, a)
 | |
| #endif
 | |
| 
 | |
| #define E1000_DEFAULT_PCI_PBA	0x00000030
 | |
| #define E1000_DEFAULT_PCIE_PBA	0x000a0026
 | |
| 
 | |
| /* NIC specific static variables go here */
 | |
| 
 | |
| /* Intel i210 needs the DMA descriptor rings aligned to 128b */
 | |
| #define E1000_BUFFER_ALIGN	128
 | |
| 
 | |
| /*
 | |
|  * TODO(sjg@chromium.org): Even with driver model we share these buffers.
 | |
|  * Concurrent receiving on multiple active Ethernet devices will not work.
 | |
|  * Normally U-Boot does not support this anyway. To fix it in this driver,
 | |
|  * move these buffers and the tx/rx pointers to struct e1000_hw.
 | |
|  */
 | |
| DEFINE_ALIGN_BUFFER(struct e1000_tx_desc, tx_base, 16, E1000_BUFFER_ALIGN);
 | |
| DEFINE_ALIGN_BUFFER(struct e1000_rx_desc, rx_base, 16, E1000_BUFFER_ALIGN);
 | |
| DEFINE_ALIGN_BUFFER(unsigned char, packet, 4096, E1000_BUFFER_ALIGN);
 | |
| 
 | |
| static int tx_tail;
 | |
| static int rx_tail, rx_last;
 | |
| #ifdef CONFIG_DM_ETH
 | |
| static int num_cards;	/* Number of E1000 devices seen so far */
 | |
| #endif
 | |
| 
 | |
| static struct pci_device_id e1000_supported[] = {
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF) },
 | |
| 	/* E1000 PCIe card */
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_COPPER) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS) },
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_1000BASEKX) },
 | |
| 
 | |
| 	{}
 | |
| };
 | |
| 
 | |
| /* Function forward declarations */
 | |
| static int e1000_setup_link(struct e1000_hw *hw);
 | |
| static int e1000_setup_fiber_link(struct e1000_hw *hw);
 | |
| static int e1000_setup_copper_link(struct e1000_hw *hw);
 | |
| static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
 | |
| static void e1000_config_collision_dist(struct e1000_hw *hw);
 | |
| static int e1000_config_mac_to_phy(struct e1000_hw *hw);
 | |
| static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
 | |
| static int e1000_check_for_link(struct e1000_hw *hw);
 | |
| static int e1000_wait_autoneg(struct e1000_hw *hw);
 | |
| static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
 | |
| 				       uint16_t * duplex);
 | |
| static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
 | |
| 			      uint16_t * phy_data);
 | |
| static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
 | |
| 			       uint16_t phy_data);
 | |
| static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
 | |
| static int e1000_phy_reset(struct e1000_hw *hw);
 | |
| static int e1000_detect_gig_phy(struct e1000_hw *hw);
 | |
| static void e1000_set_media_type(struct e1000_hw *hw);
 | |
| 
 | |
| static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
 | |
| static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask);
 | |
| static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
 | |
| 
 | |
| #ifndef CONFIG_E1000_NO_NVM
 | |
| static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
 | |
| static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
 | |
| 		uint16_t words,
 | |
| 		uint16_t *data);
 | |
| /******************************************************************************
 | |
|  * Raises the EEPROM's clock input.
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  * eecd - EECD's current value
 | |
|  *****************************************************************************/
 | |
| void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
 | |
| {
 | |
| 	/* Raise the clock input to the EEPROM (by setting the SK bit), and then
 | |
| 	 * wait 50 microseconds.
 | |
| 	 */
 | |
| 	*eecd = *eecd | E1000_EECD_SK;
 | |
| 	E1000_WRITE_REG(hw, EECD, *eecd);
 | |
| 	E1000_WRITE_FLUSH(hw);
 | |
| 	udelay(50);
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Lowers the EEPROM's clock input.
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  * eecd - EECD's current value
 | |
|  *****************************************************************************/
 | |
| void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
 | |
| {
 | |
| 	/* Lower the clock input to the EEPROM (by clearing the SK bit), and then
 | |
| 	 * wait 50 microseconds.
 | |
| 	 */
 | |
| 	*eecd = *eecd & ~E1000_EECD_SK;
 | |
| 	E1000_WRITE_REG(hw, EECD, *eecd);
 | |
| 	E1000_WRITE_FLUSH(hw);
 | |
| 	udelay(50);
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Shift data bits out to the EEPROM.
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  * data - data to send to the EEPROM
 | |
|  * count - number of bits to shift out
 | |
|  *****************************************************************************/
 | |
| static void
 | |
| e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
 | |
| {
 | |
| 	uint32_t eecd;
 | |
| 	uint32_t mask;
 | |
| 
 | |
| 	/* We need to shift "count" bits out to the EEPROM. So, value in the
 | |
| 	 * "data" parameter will be shifted out to the EEPROM one bit at a time.
 | |
| 	 * In order to do this, "data" must be broken down into bits.
 | |
| 	 */
 | |
| 	mask = 0x01 << (count - 1);
 | |
| 	eecd = E1000_READ_REG(hw, EECD);
 | |
| 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
 | |
| 	do {
 | |
| 		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
 | |
| 		 * and then raising and then lowering the clock (the SK bit controls
 | |
| 		 * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
 | |
| 		 * by setting "DI" to "0" and then raising and then lowering the clock.
 | |
| 		 */
 | |
| 		eecd &= ~E1000_EECD_DI;
 | |
| 
 | |
| 		if (data & mask)
 | |
| 			eecd |= E1000_EECD_DI;
 | |
| 
 | |
| 		E1000_WRITE_REG(hw, EECD, eecd);
 | |
| 		E1000_WRITE_FLUSH(hw);
 | |
| 
 | |
| 		udelay(50);
 | |
| 
 | |
| 		e1000_raise_ee_clk(hw, &eecd);
 | |
| 		e1000_lower_ee_clk(hw, &eecd);
 | |
| 
 | |
| 		mask = mask >> 1;
 | |
| 
 | |
| 	} while (mask);
 | |
| 
 | |
| 	/* We leave the "DI" bit set to "0" when we leave this routine. */
 | |
| 	eecd &= ~E1000_EECD_DI;
 | |
| 	E1000_WRITE_REG(hw, EECD, eecd);
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Shift data bits in from the EEPROM
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  *****************************************************************************/
 | |
| static uint16_t
 | |
| e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
 | |
| {
 | |
| 	uint32_t eecd;
 | |
| 	uint32_t i;
 | |
| 	uint16_t data;
 | |
| 
 | |
| 	/* In order to read a register from the EEPROM, we need to shift 'count'
 | |
| 	 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
 | |
| 	 * input to the EEPROM (setting the SK bit), and then reading the
 | |
| 	 * value of the "DO" bit.  During this "shifting in" process the
 | |
| 	 * "DI" bit should always be clear.
 | |
| 	 */
 | |
| 
 | |
| 	eecd = E1000_READ_REG(hw, EECD);
 | |
| 
 | |
| 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
 | |
| 	data = 0;
 | |
| 
 | |
| 	for (i = 0; i < count; i++) {
 | |
| 		data = data << 1;
 | |
| 		e1000_raise_ee_clk(hw, &eecd);
 | |
| 
 | |
| 		eecd = E1000_READ_REG(hw, EECD);
 | |
| 
 | |
| 		eecd &= ~(E1000_EECD_DI);
 | |
| 		if (eecd & E1000_EECD_DO)
 | |
| 			data |= 1;
 | |
| 
 | |
| 		e1000_lower_ee_clk(hw, &eecd);
 | |
| 	}
 | |
| 
 | |
| 	return data;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Returns EEPROM to a "standby" state
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  *****************************************************************************/
 | |
| void e1000_standby_eeprom(struct e1000_hw *hw)
 | |
| {
 | |
| 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
 | |
| 	uint32_t eecd;
 | |
| 
 | |
| 	eecd = E1000_READ_REG(hw, EECD);
 | |
| 
 | |
| 	if (eeprom->type == e1000_eeprom_microwire) {
 | |
| 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
 | |
| 		E1000_WRITE_REG(hw, EECD, eecd);
 | |
| 		E1000_WRITE_FLUSH(hw);
 | |
| 		udelay(eeprom->delay_usec);
 | |
| 
 | |
| 		/* Clock high */
 | |
| 		eecd |= E1000_EECD_SK;
 | |
| 		E1000_WRITE_REG(hw, EECD, eecd);
 | |
| 		E1000_WRITE_FLUSH(hw);
 | |
| 		udelay(eeprom->delay_usec);
 | |
| 
 | |
| 		/* Select EEPROM */
 | |
| 		eecd |= E1000_EECD_CS;
 | |
| 		E1000_WRITE_REG(hw, EECD, eecd);
 | |
| 		E1000_WRITE_FLUSH(hw);
 | |
| 		udelay(eeprom->delay_usec);
 | |
| 
 | |
| 		/* Clock low */
 | |
| 		eecd &= ~E1000_EECD_SK;
 | |
| 		E1000_WRITE_REG(hw, EECD, eecd);
 | |
| 		E1000_WRITE_FLUSH(hw);
 | |
| 		udelay(eeprom->delay_usec);
 | |
| 	} else if (eeprom->type == e1000_eeprom_spi) {
 | |
| 		/* Toggle CS to flush commands */
 | |
| 		eecd |= E1000_EECD_CS;
 | |
| 		E1000_WRITE_REG(hw, EECD, eecd);
 | |
| 		E1000_WRITE_FLUSH(hw);
 | |
| 		udelay(eeprom->delay_usec);
 | |
| 		eecd &= ~E1000_EECD_CS;
 | |
| 		E1000_WRITE_REG(hw, EECD, eecd);
 | |
| 		E1000_WRITE_FLUSH(hw);
 | |
| 		udelay(eeprom->delay_usec);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /***************************************************************************
 | |
| * Description:     Determines if the onboard NVM is FLASH or EEPROM.
 | |
| *
 | |
| * hw - Struct containing variables accessed by shared code
 | |
| ****************************************************************************/
 | |
| static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
 | |
| {
 | |
| 	uint32_t eecd = 0;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	if (hw->mac_type == e1000_ich8lan)
 | |
| 		return false;
 | |
| 
 | |
| 	if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
 | |
| 		eecd = E1000_READ_REG(hw, EECD);
 | |
| 
 | |
| 		/* Isolate bits 15 & 16 */
 | |
| 		eecd = ((eecd >> 15) & 0x03);
 | |
| 
 | |
| 		/* If both bits are set, device is Flash type */
 | |
| 		if (eecd == 0x03)
 | |
| 			return false;
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Prepares EEPROM for access
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  *
 | |
|  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
 | |
|  * function should be called before issuing a command to the EEPROM.
 | |
|  *****************************************************************************/
 | |
| int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
 | |
| {
 | |
| 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
 | |
| 	uint32_t eecd, i = 0;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
 | |
| 		return -E1000_ERR_SWFW_SYNC;
 | |
| 	eecd = E1000_READ_REG(hw, EECD);
 | |
| 
 | |
| 	if (hw->mac_type != e1000_82573 && hw->mac_type != e1000_82574) {
 | |
| 		/* Request EEPROM Access */
 | |
| 		if (hw->mac_type > e1000_82544) {
 | |
| 			eecd |= E1000_EECD_REQ;
 | |
| 			E1000_WRITE_REG(hw, EECD, eecd);
 | |
| 			eecd = E1000_READ_REG(hw, EECD);
 | |
| 			while ((!(eecd & E1000_EECD_GNT)) &&
 | |
| 				(i < E1000_EEPROM_GRANT_ATTEMPTS)) {
 | |
| 				i++;
 | |
| 				udelay(5);
 | |
| 				eecd = E1000_READ_REG(hw, EECD);
 | |
| 			}
 | |
| 			if (!(eecd & E1000_EECD_GNT)) {
 | |
| 				eecd &= ~E1000_EECD_REQ;
 | |
| 				E1000_WRITE_REG(hw, EECD, eecd);
 | |
| 				DEBUGOUT("Could not acquire EEPROM grant\n");
 | |
| 				return -E1000_ERR_EEPROM;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Setup EEPROM for Read/Write */
 | |
| 
 | |
| 	if (eeprom->type == e1000_eeprom_microwire) {
 | |
| 		/* Clear SK and DI */
 | |
| 		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
 | |
| 		E1000_WRITE_REG(hw, EECD, eecd);
 | |
| 
 | |
| 		/* Set CS */
 | |
| 		eecd |= E1000_EECD_CS;
 | |
| 		E1000_WRITE_REG(hw, EECD, eecd);
 | |
| 	} else if (eeprom->type == e1000_eeprom_spi) {
 | |
| 		/* Clear SK and CS */
 | |
| 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
 | |
| 		E1000_WRITE_REG(hw, EECD, eecd);
 | |
| 		udelay(1);
 | |
| 	}
 | |
| 
 | |
| 	return E1000_SUCCESS;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Sets up eeprom variables in the hw struct.  Must be called after mac_type
 | |
|  * is configured.  Additionally, if this is ICH8, the flash controller GbE
 | |
|  * registers must be mapped, or this will crash.
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  *****************************************************************************/
 | |
| static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
 | |
| {
 | |
| 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
 | |
| 	uint32_t eecd;
 | |
| 	int32_t ret_val = E1000_SUCCESS;
 | |
| 	uint16_t eeprom_size;
 | |
| 
 | |
| 	if (hw->mac_type == e1000_igb)
 | |
| 		eecd = E1000_READ_REG(hw, I210_EECD);
 | |
| 	else
 | |
| 		eecd = E1000_READ_REG(hw, EECD);
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	switch (hw->mac_type) {
 | |
| 	case e1000_82542_rev2_0:
 | |
| 	case e1000_82542_rev2_1:
 | |
| 	case e1000_82543:
 | |
| 	case e1000_82544:
 | |
| 		eeprom->type = e1000_eeprom_microwire;
 | |
| 		eeprom->word_size = 64;
 | |
| 		eeprom->opcode_bits = 3;
 | |
| 		eeprom->address_bits = 6;
 | |
| 		eeprom->delay_usec = 50;
 | |
| 		eeprom->use_eerd = false;
 | |
| 		eeprom->use_eewr = false;
 | |
| 	break;
 | |
| 	case e1000_82540:
 | |
| 	case e1000_82545:
 | |
| 	case e1000_82545_rev_3:
 | |
| 	case e1000_82546:
 | |
| 	case e1000_82546_rev_3:
 | |
| 		eeprom->type = e1000_eeprom_microwire;
 | |
| 		eeprom->opcode_bits = 3;
 | |
| 		eeprom->delay_usec = 50;
 | |
| 		if (eecd & E1000_EECD_SIZE) {
 | |
| 			eeprom->word_size = 256;
 | |
| 			eeprom->address_bits = 8;
 | |
| 		} else {
 | |
| 			eeprom->word_size = 64;
 | |
| 			eeprom->address_bits = 6;
 | |
| 		}
 | |
| 		eeprom->use_eerd = false;
 | |
| 		eeprom->use_eewr = false;
 | |
| 		break;
 | |
| 	case e1000_82541:
 | |
| 	case e1000_82541_rev_2:
 | |
| 	case e1000_82547:
 | |
| 	case e1000_82547_rev_2:
 | |
| 		if (eecd & E1000_EECD_TYPE) {
 | |
| 			eeprom->type = e1000_eeprom_spi;
 | |
| 			eeprom->opcode_bits = 8;
 | |
| 			eeprom->delay_usec = 1;
 | |
| 			if (eecd & E1000_EECD_ADDR_BITS) {
 | |
| 				eeprom->page_size = 32;
 | |
| 				eeprom->address_bits = 16;
 | |
| 			} else {
 | |
| 				eeprom->page_size = 8;
 | |
| 				eeprom->address_bits = 8;
 | |
| 			}
 | |
| 		} else {
 | |
| 			eeprom->type = e1000_eeprom_microwire;
 | |
| 			eeprom->opcode_bits = 3;
 | |
| 			eeprom->delay_usec = 50;
 | |
| 			if (eecd & E1000_EECD_ADDR_BITS) {
 | |
| 				eeprom->word_size = 256;
 | |
| 				eeprom->address_bits = 8;
 | |
| 			} else {
 | |
| 				eeprom->word_size = 64;
 | |
| 				eeprom->address_bits = 6;
 | |
| 			}
 | |
| 		}
 | |
| 		eeprom->use_eerd = false;
 | |
| 		eeprom->use_eewr = false;
 | |
| 		break;
 | |
| 	case e1000_82571:
 | |
| 	case e1000_82572:
 | |
| 		eeprom->type = e1000_eeprom_spi;
 | |
| 		eeprom->opcode_bits = 8;
 | |
| 		eeprom->delay_usec = 1;
 | |
| 		if (eecd & E1000_EECD_ADDR_BITS) {
 | |
| 			eeprom->page_size = 32;
 | |
| 			eeprom->address_bits = 16;
 | |
| 		} else {
 | |
| 			eeprom->page_size = 8;
 | |
| 			eeprom->address_bits = 8;
 | |
| 		}
 | |
| 		eeprom->use_eerd = false;
 | |
| 		eeprom->use_eewr = false;
 | |
| 		break;
 | |
| 	case e1000_82573:
 | |
| 	case e1000_82574:
 | |
| 		eeprom->type = e1000_eeprom_spi;
 | |
| 		eeprom->opcode_bits = 8;
 | |
| 		eeprom->delay_usec = 1;
 | |
| 		if (eecd & E1000_EECD_ADDR_BITS) {
 | |
| 			eeprom->page_size = 32;
 | |
| 			eeprom->address_bits = 16;
 | |
| 		} else {
 | |
| 			eeprom->page_size = 8;
 | |
| 			eeprom->address_bits = 8;
 | |
| 		}
 | |
| 		if (e1000_is_onboard_nvm_eeprom(hw) == false) {
 | |
| 			eeprom->use_eerd = true;
 | |
| 			eeprom->use_eewr = true;
 | |
| 
 | |
| 			eeprom->type = e1000_eeprom_flash;
 | |
| 			eeprom->word_size = 2048;
 | |
| 
 | |
| 		/* Ensure that the Autonomous FLASH update bit is cleared due to
 | |
| 		 * Flash update issue on parts which use a FLASH for NVM. */
 | |
| 			eecd &= ~E1000_EECD_AUPDEN;
 | |
| 			E1000_WRITE_REG(hw, EECD, eecd);
 | |
| 		}
 | |
| 		break;
 | |
| 	case e1000_80003es2lan:
 | |
| 		eeprom->type = e1000_eeprom_spi;
 | |
| 		eeprom->opcode_bits = 8;
 | |
| 		eeprom->delay_usec = 1;
 | |
| 		if (eecd & E1000_EECD_ADDR_BITS) {
 | |
| 			eeprom->page_size = 32;
 | |
| 			eeprom->address_bits = 16;
 | |
| 		} else {
 | |
| 			eeprom->page_size = 8;
 | |
| 			eeprom->address_bits = 8;
 | |
| 		}
 | |
| 		eeprom->use_eerd = true;
 | |
| 		eeprom->use_eewr = false;
 | |
| 		break;
 | |
| 	case e1000_igb:
 | |
| 		/* i210 has 4k of iNVM mapped as EEPROM */
 | |
| 		eeprom->type = e1000_eeprom_invm;
 | |
| 		eeprom->opcode_bits = 8;
 | |
| 		eeprom->delay_usec = 1;
 | |
| 		eeprom->page_size = 32;
 | |
| 		eeprom->address_bits = 16;
 | |
| 		eeprom->use_eerd = true;
 | |
| 		eeprom->use_eewr = false;
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (eeprom->type == e1000_eeprom_spi ||
 | |
| 	    eeprom->type == e1000_eeprom_invm) {
 | |
| 		/* eeprom_size will be an enum [0..8] that maps
 | |
| 		 * to eeprom sizes 128B to
 | |
| 		 * 32KB (incremented by powers of 2).
 | |
| 		 */
 | |
| 		if (hw->mac_type <= e1000_82547_rev_2) {
 | |
| 			/* Set to default value for initial eeprom read. */
 | |
| 			eeprom->word_size = 64;
 | |
| 			ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
 | |
| 					&eeprom_size);
 | |
| 			if (ret_val)
 | |
| 				return ret_val;
 | |
| 			eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
 | |
| 				>> EEPROM_SIZE_SHIFT;
 | |
| 			/* 256B eeprom size was not supported in earlier
 | |
| 			 * hardware, so we bump eeprom_size up one to
 | |
| 			 * ensure that "1" (which maps to 256B) is never
 | |
| 			 * the result used in the shifting logic below. */
 | |
| 			if (eeprom_size)
 | |
| 				eeprom_size++;
 | |
| 		} else {
 | |
| 			eeprom_size = (uint16_t)((eecd &
 | |
| 				E1000_EECD_SIZE_EX_MASK) >>
 | |
| 				E1000_EECD_SIZE_EX_SHIFT);
 | |
| 		}
 | |
| 
 | |
| 		eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
 | |
| 	}
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Polls the status bit (bit 1) of the EERD to determine when the read is done.
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  *****************************************************************************/
 | |
| static int32_t
 | |
| e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
 | |
| {
 | |
| 	uint32_t attempts = 100000;
 | |
| 	uint32_t i, reg = 0;
 | |
| 	int32_t done = E1000_ERR_EEPROM;
 | |
| 
 | |
| 	for (i = 0; i < attempts; i++) {
 | |
| 		if (eerd == E1000_EEPROM_POLL_READ) {
 | |
| 			if (hw->mac_type == e1000_igb)
 | |
| 				reg = E1000_READ_REG(hw, I210_EERD);
 | |
| 			else
 | |
| 				reg = E1000_READ_REG(hw, EERD);
 | |
| 		} else {
 | |
| 			if (hw->mac_type == e1000_igb)
 | |
| 				reg = E1000_READ_REG(hw, I210_EEWR);
 | |
| 			else
 | |
| 				reg = E1000_READ_REG(hw, EEWR);
 | |
| 		}
 | |
| 
 | |
| 		if (reg & E1000_EEPROM_RW_REG_DONE) {
 | |
| 			done = E1000_SUCCESS;
 | |
| 			break;
 | |
| 		}
 | |
| 		udelay(5);
 | |
| 	}
 | |
| 
 | |
| 	return done;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Reads a 16 bit word from the EEPROM using the EERD register.
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  * offset - offset of  word in the EEPROM to read
 | |
|  * data - word read from the EEPROM
 | |
|  * words - number of words to read
 | |
|  *****************************************************************************/
 | |
| static int32_t
 | |
| e1000_read_eeprom_eerd(struct e1000_hw *hw,
 | |
| 			uint16_t offset,
 | |
| 			uint16_t words,
 | |
| 			uint16_t *data)
 | |
| {
 | |
| 	uint32_t i, eerd = 0;
 | |
| 	int32_t error = 0;
 | |
| 
 | |
| 	for (i = 0; i < words; i++) {
 | |
| 		eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
 | |
| 			E1000_EEPROM_RW_REG_START;
 | |
| 
 | |
| 		if (hw->mac_type == e1000_igb)
 | |
| 			E1000_WRITE_REG(hw, I210_EERD, eerd);
 | |
| 		else
 | |
| 			E1000_WRITE_REG(hw, EERD, eerd);
 | |
| 
 | |
| 		error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
 | |
| 
 | |
| 		if (error)
 | |
| 			break;
 | |
| 
 | |
| 		if (hw->mac_type == e1000_igb) {
 | |
| 			data[i] = (E1000_READ_REG(hw, I210_EERD) >>
 | |
| 				E1000_EEPROM_RW_REG_DATA);
 | |
| 		} else {
 | |
| 			data[i] = (E1000_READ_REG(hw, EERD) >>
 | |
| 				E1000_EEPROM_RW_REG_DATA);
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| void e1000_release_eeprom(struct e1000_hw *hw)
 | |
| {
 | |
| 	uint32_t eecd;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	eecd = E1000_READ_REG(hw, EECD);
 | |
| 
 | |
| 	if (hw->eeprom.type == e1000_eeprom_spi) {
 | |
| 		eecd |= E1000_EECD_CS;  /* Pull CS high */
 | |
| 		eecd &= ~E1000_EECD_SK; /* Lower SCK */
 | |
| 
 | |
| 		E1000_WRITE_REG(hw, EECD, eecd);
 | |
| 
 | |
| 		udelay(hw->eeprom.delay_usec);
 | |
| 	} else if (hw->eeprom.type == e1000_eeprom_microwire) {
 | |
| 		/* cleanup eeprom */
 | |
| 
 | |
| 		/* CS on Microwire is active-high */
 | |
| 		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
 | |
| 
 | |
| 		E1000_WRITE_REG(hw, EECD, eecd);
 | |
| 
 | |
| 		/* Rising edge of clock */
 | |
| 		eecd |= E1000_EECD_SK;
 | |
| 		E1000_WRITE_REG(hw, EECD, eecd);
 | |
| 		E1000_WRITE_FLUSH(hw);
 | |
| 		udelay(hw->eeprom.delay_usec);
 | |
| 
 | |
| 		/* Falling edge of clock */
 | |
| 		eecd &= ~E1000_EECD_SK;
 | |
| 		E1000_WRITE_REG(hw, EECD, eecd);
 | |
| 		E1000_WRITE_FLUSH(hw);
 | |
| 		udelay(hw->eeprom.delay_usec);
 | |
| 	}
 | |
| 
 | |
| 	/* Stop requesting EEPROM access */
 | |
| 	if (hw->mac_type > e1000_82544) {
 | |
| 		eecd &= ~E1000_EECD_REQ;
 | |
| 		E1000_WRITE_REG(hw, EECD, eecd);
 | |
| 	}
 | |
| 
 | |
| 	e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Reads a 16 bit word from the EEPROM.
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  *****************************************************************************/
 | |
| static int32_t
 | |
| e1000_spi_eeprom_ready(struct e1000_hw *hw)
 | |
| {
 | |
| 	uint16_t retry_count = 0;
 | |
| 	uint8_t spi_stat_reg;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	/* Read "Status Register" repeatedly until the LSB is cleared.  The
 | |
| 	 * EEPROM will signal that the command has been completed by clearing
 | |
| 	 * bit 0 of the internal status register.  If it's not cleared within
 | |
| 	 * 5 milliseconds, then error out.
 | |
| 	 */
 | |
| 	retry_count = 0;
 | |
| 	do {
 | |
| 		e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
 | |
| 			hw->eeprom.opcode_bits);
 | |
| 		spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
 | |
| 		if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
 | |
| 			break;
 | |
| 
 | |
| 		udelay(5);
 | |
| 		retry_count += 5;
 | |
| 
 | |
| 		e1000_standby_eeprom(hw);
 | |
| 	} while (retry_count < EEPROM_MAX_RETRY_SPI);
 | |
| 
 | |
| 	/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
 | |
| 	 * only 0-5mSec on 5V devices)
 | |
| 	 */
 | |
| 	if (retry_count >= EEPROM_MAX_RETRY_SPI) {
 | |
| 		DEBUGOUT("SPI EEPROM Status error\n");
 | |
| 		return -E1000_ERR_EEPROM;
 | |
| 	}
 | |
| 
 | |
| 	return E1000_SUCCESS;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Reads a 16 bit word from the EEPROM.
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  * offset - offset of  word in the EEPROM to read
 | |
|  * data - word read from the EEPROM
 | |
|  *****************************************************************************/
 | |
| static int32_t
 | |
| e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
 | |
| 		uint16_t words, uint16_t *data)
 | |
| {
 | |
| 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
 | |
| 	uint32_t i = 0;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	/* If eeprom is not yet detected, do so now */
 | |
| 	if (eeprom->word_size == 0)
 | |
| 		e1000_init_eeprom_params(hw);
 | |
| 
 | |
| 	/* A check for invalid values:  offset too large, too many words,
 | |
| 	 * and not enough words.
 | |
| 	 */
 | |
| 	if ((offset >= eeprom->word_size) ||
 | |
| 		(words > eeprom->word_size - offset) ||
 | |
| 		(words == 0)) {
 | |
| 		DEBUGOUT("\"words\" parameter out of bounds."
 | |
| 			"Words = %d, size = %d\n", offset, eeprom->word_size);
 | |
| 		return -E1000_ERR_EEPROM;
 | |
| 	}
 | |
| 
 | |
| 	/* EEPROM's that don't use EERD to read require us to bit-bang the SPI
 | |
| 	 * directly. In this case, we need to acquire the EEPROM so that
 | |
| 	 * FW or other port software does not interrupt.
 | |
| 	 */
 | |
| 	if (e1000_is_onboard_nvm_eeprom(hw) == true &&
 | |
| 		hw->eeprom.use_eerd == false) {
 | |
| 
 | |
| 		/* Prepare the EEPROM for bit-bang reading */
 | |
| 		if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
 | |
| 			return -E1000_ERR_EEPROM;
 | |
| 	}
 | |
| 
 | |
| 	/* Eerd register EEPROM access requires no eeprom aquire/release */
 | |
| 	if (eeprom->use_eerd == true)
 | |
| 		return e1000_read_eeprom_eerd(hw, offset, words, data);
 | |
| 
 | |
| 	/* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
 | |
| 	 * acquired the EEPROM at this point, so any returns should relase it */
 | |
| 	if (eeprom->type == e1000_eeprom_spi) {
 | |
| 		uint16_t word_in;
 | |
| 		uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
 | |
| 
 | |
| 		if (e1000_spi_eeprom_ready(hw)) {
 | |
| 			e1000_release_eeprom(hw);
 | |
| 			return -E1000_ERR_EEPROM;
 | |
| 		}
 | |
| 
 | |
| 		e1000_standby_eeprom(hw);
 | |
| 
 | |
| 		/* Some SPI eeproms use the 8th address bit embedded in
 | |
| 		 * the opcode */
 | |
| 		if ((eeprom->address_bits == 8) && (offset >= 128))
 | |
| 			read_opcode |= EEPROM_A8_OPCODE_SPI;
 | |
| 
 | |
| 		/* Send the READ command (opcode + addr)  */
 | |
| 		e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
 | |
| 		e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
 | |
| 				eeprom->address_bits);
 | |
| 
 | |
| 		/* Read the data.  The address of the eeprom internally
 | |
| 		 * increments with each byte (spi) being read, saving on the
 | |
| 		 * overhead of eeprom setup and tear-down.  The address
 | |
| 		 * counter will roll over if reading beyond the size of
 | |
| 		 * the eeprom, thus allowing the entire memory to be read
 | |
| 		 * starting from any offset. */
 | |
| 		for (i = 0; i < words; i++) {
 | |
| 			word_in = e1000_shift_in_ee_bits(hw, 16);
 | |
| 			data[i] = (word_in >> 8) | (word_in << 8);
 | |
| 		}
 | |
| 	} else if (eeprom->type == e1000_eeprom_microwire) {
 | |
| 		for (i = 0; i < words; i++) {
 | |
| 			/* Send the READ command (opcode + addr)  */
 | |
| 			e1000_shift_out_ee_bits(hw,
 | |
| 				EEPROM_READ_OPCODE_MICROWIRE,
 | |
| 				eeprom->opcode_bits);
 | |
| 			e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
 | |
| 				eeprom->address_bits);
 | |
| 
 | |
| 			/* Read the data.  For microwire, each word requires
 | |
| 			 * the overhead of eeprom setup and tear-down. */
 | |
| 			data[i] = e1000_shift_in_ee_bits(hw, 16);
 | |
| 			e1000_standby_eeprom(hw);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* End this read operation */
 | |
| 	e1000_release_eeprom(hw);
 | |
| 
 | |
| 	return E1000_SUCCESS;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Verifies that the EEPROM has a valid checksum
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  *
 | |
|  * Reads the first 64 16 bit words of the EEPROM and sums the values read.
 | |
|  * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
 | |
|  * valid.
 | |
|  *****************************************************************************/
 | |
| static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
 | |
| {
 | |
| 	uint16_t i, checksum, checksum_reg, *buf;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	/* Allocate a temporary buffer */
 | |
| 	buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1));
 | |
| 	if (!buf) {
 | |
| 		E1000_ERR(hw, "Unable to allocate EEPROM buffer!\n");
 | |
| 		return -E1000_ERR_EEPROM;
 | |
| 	}
 | |
| 
 | |
| 	/* Read the EEPROM */
 | |
| 	if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
 | |
| 		E1000_ERR(hw, "Unable to read EEPROM!\n");
 | |
| 		return -E1000_ERR_EEPROM;
 | |
| 	}
 | |
| 
 | |
| 	/* Compute the checksum */
 | |
| 	checksum = 0;
 | |
| 	for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
 | |
| 		checksum += buf[i];
 | |
| 	checksum = ((uint16_t)EEPROM_SUM) - checksum;
 | |
| 	checksum_reg = buf[i];
 | |
| 
 | |
| 	/* Verify it! */
 | |
| 	if (checksum == checksum_reg)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Hrm, verification failed, print an error */
 | |
| 	E1000_ERR(hw, "EEPROM checksum is incorrect!\n");
 | |
| 	E1000_ERR(hw, "  ...register was 0x%04hx, calculated 0x%04hx\n",
 | |
| 		  checksum_reg, checksum);
 | |
| 
 | |
| 	return -E1000_ERR_EEPROM;
 | |
| }
 | |
| #endif /* CONFIG_E1000_NO_NVM */
 | |
| 
 | |
| /*****************************************************************************
 | |
|  * Set PHY to class A mode
 | |
|  * Assumes the following operations will follow to enable the new class mode.
 | |
|  *  1. Do a PHY soft reset
 | |
|  *  2. Restart auto-negotiation or force link.
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  ****************************************************************************/
 | |
| static int32_t
 | |
| e1000_set_phy_mode(struct e1000_hw *hw)
 | |
| {
 | |
| #ifndef CONFIG_E1000_NO_NVM
 | |
| 	int32_t ret_val;
 | |
| 	uint16_t eeprom_data;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	if ((hw->mac_type == e1000_82545_rev_3) &&
 | |
| 		(hw->media_type == e1000_media_type_copper)) {
 | |
| 		ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
 | |
| 				1, &eeprom_data);
 | |
| 		if (ret_val)
 | |
| 			return ret_val;
 | |
| 
 | |
| 		if ((eeprom_data != EEPROM_RESERVED_WORD) &&
 | |
| 			(eeprom_data & EEPROM_PHY_CLASS_A)) {
 | |
| 			ret_val = e1000_write_phy_reg(hw,
 | |
| 					M88E1000_PHY_PAGE_SELECT, 0x000B);
 | |
| 			if (ret_val)
 | |
| 				return ret_val;
 | |
| 			ret_val = e1000_write_phy_reg(hw,
 | |
| 					M88E1000_PHY_GEN_CONTROL, 0x8104);
 | |
| 			if (ret_val)
 | |
| 				return ret_val;
 | |
| 
 | |
| 			hw->phy_reset_disable = false;
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 	return E1000_SUCCESS;
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_E1000_NO_NVM
 | |
| /***************************************************************************
 | |
|  *
 | |
|  * Obtaining software semaphore bit (SMBI) before resetting PHY.
 | |
|  *
 | |
|  * hw: Struct containing variables accessed by shared code
 | |
|  *
 | |
|  * returns: - E1000_ERR_RESET if fail to obtain semaphore.
 | |
|  *            E1000_SUCCESS at any other case.
 | |
|  *
 | |
|  ***************************************************************************/
 | |
| static int32_t
 | |
| e1000_get_software_semaphore(struct e1000_hw *hw)
 | |
| {
 | |
| 	 int32_t timeout = hw->eeprom.word_size + 1;
 | |
| 	 uint32_t swsm;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	if (hw->mac_type != e1000_80003es2lan)
 | |
| 		return E1000_SUCCESS;
 | |
| 
 | |
| 	while (timeout) {
 | |
| 		swsm = E1000_READ_REG(hw, SWSM);
 | |
| 		/* If SMBI bit cleared, it is now set and we hold
 | |
| 		 * the semaphore */
 | |
| 		if (!(swsm & E1000_SWSM_SMBI))
 | |
| 			break;
 | |
| 		mdelay(1);
 | |
| 		timeout--;
 | |
| 	}
 | |
| 
 | |
| 	if (!timeout) {
 | |
| 		DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
 | |
| 		return -E1000_ERR_RESET;
 | |
| 	}
 | |
| 
 | |
| 	return E1000_SUCCESS;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /***************************************************************************
 | |
|  * This function clears HW semaphore bits.
 | |
|  *
 | |
|  * hw: Struct containing variables accessed by shared code
 | |
|  *
 | |
|  * returns: - None.
 | |
|  *
 | |
|  ***************************************************************************/
 | |
| static void
 | |
| e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
 | |
| {
 | |
| #ifndef CONFIG_E1000_NO_NVM
 | |
| 	 uint32_t swsm;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	if (!hw->eeprom_semaphore_present)
 | |
| 		return;
 | |
| 
 | |
| 	swsm = E1000_READ_REG(hw, SWSM);
 | |
| 	if (hw->mac_type == e1000_80003es2lan) {
 | |
| 		/* Release both semaphores. */
 | |
| 		swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
 | |
| 	} else
 | |
| 		swsm &= ~(E1000_SWSM_SWESMBI);
 | |
| 	E1000_WRITE_REG(hw, SWSM, swsm);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /***************************************************************************
 | |
|  *
 | |
|  * Using the combination of SMBI and SWESMBI semaphore bits when resetting
 | |
|  * adapter or Eeprom access.
 | |
|  *
 | |
|  * hw: Struct containing variables accessed by shared code
 | |
|  *
 | |
|  * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
 | |
|  *            E1000_SUCCESS at any other case.
 | |
|  *
 | |
|  ***************************************************************************/
 | |
| static int32_t
 | |
| e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
 | |
| {
 | |
| #ifndef CONFIG_E1000_NO_NVM
 | |
| 	int32_t timeout;
 | |
| 	uint32_t swsm;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	if (!hw->eeprom_semaphore_present)
 | |
| 		return E1000_SUCCESS;
 | |
| 
 | |
| 	if (hw->mac_type == e1000_80003es2lan) {
 | |
| 		/* Get the SW semaphore. */
 | |
| 		if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
 | |
| 			return -E1000_ERR_EEPROM;
 | |
| 	}
 | |
| 
 | |
| 	/* Get the FW semaphore. */
 | |
| 	timeout = hw->eeprom.word_size + 1;
 | |
| 	while (timeout) {
 | |
| 		swsm = E1000_READ_REG(hw, SWSM);
 | |
| 		swsm |= E1000_SWSM_SWESMBI;
 | |
| 		E1000_WRITE_REG(hw, SWSM, swsm);
 | |
| 		/* if we managed to set the bit we got the semaphore. */
 | |
| 		swsm = E1000_READ_REG(hw, SWSM);
 | |
| 		if (swsm & E1000_SWSM_SWESMBI)
 | |
| 			break;
 | |
| 
 | |
| 		udelay(50);
 | |
| 		timeout--;
 | |
| 	}
 | |
| 
 | |
| 	if (!timeout) {
 | |
| 		/* Release semaphores */
 | |
| 		e1000_put_hw_eeprom_semaphore(hw);
 | |
| 		DEBUGOUT("Driver can't access the Eeprom - "
 | |
| 				"SWESMBI bit is set.\n");
 | |
| 		return -E1000_ERR_EEPROM;
 | |
| 	}
 | |
| #endif
 | |
| 	return E1000_SUCCESS;
 | |
| }
 | |
| 
 | |
| /* Take ownership of the PHY */
 | |
| static int32_t
 | |
| e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
 | |
| {
 | |
| 	uint32_t swfw_sync = 0;
 | |
| 	uint32_t swmask = mask;
 | |
| 	uint32_t fwmask = mask << 16;
 | |
| 	int32_t timeout = 200;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 	while (timeout) {
 | |
| 		if (e1000_get_hw_eeprom_semaphore(hw))
 | |
| 			return -E1000_ERR_SWFW_SYNC;
 | |
| 
 | |
| 		swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
 | |
| 		if (!(swfw_sync & (fwmask | swmask)))
 | |
| 			break;
 | |
| 
 | |
| 		/* firmware currently using resource (fwmask) */
 | |
| 		/* or other software thread currently using resource (swmask) */
 | |
| 		e1000_put_hw_eeprom_semaphore(hw);
 | |
| 		mdelay(5);
 | |
| 		timeout--;
 | |
| 	}
 | |
| 
 | |
| 	if (!timeout) {
 | |
| 		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
 | |
| 		return -E1000_ERR_SWFW_SYNC;
 | |
| 	}
 | |
| 
 | |
| 	swfw_sync |= swmask;
 | |
| 	E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
 | |
| 
 | |
| 	e1000_put_hw_eeprom_semaphore(hw);
 | |
| 	return E1000_SUCCESS;
 | |
| }
 | |
| 
 | |
| static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask)
 | |
| {
 | |
| 	uint32_t swfw_sync = 0;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 	while (e1000_get_hw_eeprom_semaphore(hw))
 | |
| 		; /* Empty */
 | |
| 
 | |
| 	swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
 | |
| 	swfw_sync &= ~mask;
 | |
| 	E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
 | |
| 
 | |
| 	e1000_put_hw_eeprom_semaphore(hw);
 | |
| }
 | |
| 
 | |
| static bool e1000_is_second_port(struct e1000_hw *hw)
 | |
| {
 | |
| 	switch (hw->mac_type) {
 | |
| 	case e1000_80003es2lan:
 | |
| 	case e1000_82546:
 | |
| 	case e1000_82571:
 | |
| 		if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
 | |
| 			return true;
 | |
| 		/* Fallthrough */
 | |
| 	default:
 | |
| 		return false;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_E1000_NO_NVM
 | |
| /******************************************************************************
 | |
|  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
 | |
|  * second function of dual function devices
 | |
|  *
 | |
|  * nic - Struct containing variables accessed by shared code
 | |
|  *****************************************************************************/
 | |
| static int
 | |
| e1000_read_mac_addr(struct e1000_hw *hw, unsigned char enetaddr[6])
 | |
| {
 | |
| 	uint16_t offset;
 | |
| 	uint16_t eeprom_data;
 | |
| 	uint32_t reg_data = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
 | |
| 		offset = i >> 1;
 | |
| 		if (hw->mac_type == e1000_igb) {
 | |
| 			/* i210 preloads MAC address into RAL/RAH registers */
 | |
| 			if (offset == 0)
 | |
| 				reg_data = E1000_READ_REG_ARRAY(hw, RA, 0);
 | |
| 			else if (offset == 1)
 | |
| 				reg_data >>= 16;
 | |
| 			else if (offset == 2)
 | |
| 				reg_data = E1000_READ_REG_ARRAY(hw, RA, 1);
 | |
| 			eeprom_data = reg_data & 0xffff;
 | |
| 		} else if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
 | |
| 			DEBUGOUT("EEPROM Read Error\n");
 | |
| 			return -E1000_ERR_EEPROM;
 | |
| 		}
 | |
| 		enetaddr[i] = eeprom_data & 0xff;
 | |
| 		enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
 | |
| 	}
 | |
| 
 | |
| 	/* Invert the last bit if this is the second device */
 | |
| 	if (e1000_is_second_port(hw))
 | |
| 		enetaddr[5] ^= 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Initializes receive address filters.
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  *
 | |
|  * Places the MAC address in receive address register 0 and clears the rest
 | |
|  * of the receive addresss registers. Clears the multicast table. Assumes
 | |
|  * the receiver is in reset when the routine is called.
 | |
|  *****************************************************************************/
 | |
| static void
 | |
| e1000_init_rx_addrs(struct e1000_hw *hw, unsigned char enetaddr[6])
 | |
| {
 | |
| 	uint32_t i;
 | |
| 	uint32_t addr_low;
 | |
| 	uint32_t addr_high;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	/* Setup the receive address. */
 | |
| 	DEBUGOUT("Programming MAC Address into RAR[0]\n");
 | |
| 	addr_low = (enetaddr[0] |
 | |
| 		    (enetaddr[1] << 8) |
 | |
| 		    (enetaddr[2] << 16) | (enetaddr[3] << 24));
 | |
| 
 | |
| 	addr_high = (enetaddr[4] | (enetaddr[5] << 8) | E1000_RAH_AV);
 | |
| 
 | |
| 	E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
 | |
| 	E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
 | |
| 
 | |
| 	/* Zero out the other 15 receive addresses. */
 | |
| 	DEBUGOUT("Clearing RAR[1-15]\n");
 | |
| 	for (i = 1; i < E1000_RAR_ENTRIES; i++) {
 | |
| 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
 | |
| 		E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Clears the VLAN filer table
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  *****************************************************************************/
 | |
| static void
 | |
| e1000_clear_vfta(struct e1000_hw *hw)
 | |
| {
 | |
| 	uint32_t offset;
 | |
| 
 | |
| 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
 | |
| 		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Set the mac type member in the hw struct.
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  *****************************************************************************/
 | |
| int32_t
 | |
| e1000_set_mac_type(struct e1000_hw *hw)
 | |
| {
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	switch (hw->device_id) {
 | |
| 	case E1000_DEV_ID_82542:
 | |
| 		switch (hw->revision_id) {
 | |
| 		case E1000_82542_2_0_REV_ID:
 | |
| 			hw->mac_type = e1000_82542_rev2_0;
 | |
| 			break;
 | |
| 		case E1000_82542_2_1_REV_ID:
 | |
| 			hw->mac_type = e1000_82542_rev2_1;
 | |
| 			break;
 | |
| 		default:
 | |
| 			/* Invalid 82542 revision ID */
 | |
| 			return -E1000_ERR_MAC_TYPE;
 | |
| 		}
 | |
| 		break;
 | |
| 	case E1000_DEV_ID_82543GC_FIBER:
 | |
| 	case E1000_DEV_ID_82543GC_COPPER:
 | |
| 		hw->mac_type = e1000_82543;
 | |
| 		break;
 | |
| 	case E1000_DEV_ID_82544EI_COPPER:
 | |
| 	case E1000_DEV_ID_82544EI_FIBER:
 | |
| 	case E1000_DEV_ID_82544GC_COPPER:
 | |
| 	case E1000_DEV_ID_82544GC_LOM:
 | |
| 		hw->mac_type = e1000_82544;
 | |
| 		break;
 | |
| 	case E1000_DEV_ID_82540EM:
 | |
| 	case E1000_DEV_ID_82540EM_LOM:
 | |
| 	case E1000_DEV_ID_82540EP:
 | |
| 	case E1000_DEV_ID_82540EP_LOM:
 | |
| 	case E1000_DEV_ID_82540EP_LP:
 | |
| 		hw->mac_type = e1000_82540;
 | |
| 		break;
 | |
| 	case E1000_DEV_ID_82545EM_COPPER:
 | |
| 	case E1000_DEV_ID_82545EM_FIBER:
 | |
| 		hw->mac_type = e1000_82545;
 | |
| 		break;
 | |
| 	case E1000_DEV_ID_82545GM_COPPER:
 | |
| 	case E1000_DEV_ID_82545GM_FIBER:
 | |
| 	case E1000_DEV_ID_82545GM_SERDES:
 | |
| 		hw->mac_type = e1000_82545_rev_3;
 | |
| 		break;
 | |
| 	case E1000_DEV_ID_82546EB_COPPER:
 | |
| 	case E1000_DEV_ID_82546EB_FIBER:
 | |
| 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
 | |
| 		hw->mac_type = e1000_82546;
 | |
| 		break;
 | |
| 	case E1000_DEV_ID_82546GB_COPPER:
 | |
| 	case E1000_DEV_ID_82546GB_FIBER:
 | |
| 	case E1000_DEV_ID_82546GB_SERDES:
 | |
| 	case E1000_DEV_ID_82546GB_PCIE:
 | |
| 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
 | |
| 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
 | |
| 		hw->mac_type = e1000_82546_rev_3;
 | |
| 		break;
 | |
| 	case E1000_DEV_ID_82541EI:
 | |
| 	case E1000_DEV_ID_82541EI_MOBILE:
 | |
| 	case E1000_DEV_ID_82541ER_LOM:
 | |
| 		hw->mac_type = e1000_82541;
 | |
| 		break;
 | |
| 	case E1000_DEV_ID_82541ER:
 | |
| 	case E1000_DEV_ID_82541GI:
 | |
| 	case E1000_DEV_ID_82541GI_LF:
 | |
| 	case E1000_DEV_ID_82541GI_MOBILE:
 | |
| 		hw->mac_type = e1000_82541_rev_2;
 | |
| 		break;
 | |
| 	case E1000_DEV_ID_82547EI:
 | |
| 	case E1000_DEV_ID_82547EI_MOBILE:
 | |
| 		hw->mac_type = e1000_82547;
 | |
| 		break;
 | |
| 	case E1000_DEV_ID_82547GI:
 | |
| 		hw->mac_type = e1000_82547_rev_2;
 | |
| 		break;
 | |
| 	case E1000_DEV_ID_82571EB_COPPER:
 | |
| 	case E1000_DEV_ID_82571EB_FIBER:
 | |
| 	case E1000_DEV_ID_82571EB_SERDES:
 | |
| 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
 | |
| 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
 | |
| 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
 | |
| 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
 | |
| 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
 | |
| 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
 | |
| 		hw->mac_type = e1000_82571;
 | |
| 		break;
 | |
| 	case E1000_DEV_ID_82572EI_COPPER:
 | |
| 	case E1000_DEV_ID_82572EI_FIBER:
 | |
| 	case E1000_DEV_ID_82572EI_SERDES:
 | |
| 	case E1000_DEV_ID_82572EI:
 | |
| 		hw->mac_type = e1000_82572;
 | |
| 		break;
 | |
| 	case E1000_DEV_ID_82573E:
 | |
| 	case E1000_DEV_ID_82573E_IAMT:
 | |
| 	case E1000_DEV_ID_82573L:
 | |
| 		hw->mac_type = e1000_82573;
 | |
| 		break;
 | |
| 	case E1000_DEV_ID_82574L:
 | |
| 		hw->mac_type = e1000_82574;
 | |
| 		break;
 | |
| 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
 | |
| 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
 | |
| 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
 | |
| 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
 | |
| 		hw->mac_type = e1000_80003es2lan;
 | |
| 		break;
 | |
| 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
 | |
| 	case E1000_DEV_ID_ICH8_IGP_AMT:
 | |
| 	case E1000_DEV_ID_ICH8_IGP_C:
 | |
| 	case E1000_DEV_ID_ICH8_IFE:
 | |
| 	case E1000_DEV_ID_ICH8_IFE_GT:
 | |
| 	case E1000_DEV_ID_ICH8_IFE_G:
 | |
| 	case E1000_DEV_ID_ICH8_IGP_M:
 | |
| 		hw->mac_type = e1000_ich8lan;
 | |
| 		break;
 | |
| 	case PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED:
 | |
| 	case PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED:
 | |
| 	case PCI_DEVICE_ID_INTEL_I210_COPPER:
 | |
| 	case PCI_DEVICE_ID_INTEL_I211_COPPER:
 | |
| 	case PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS:
 | |
| 	case PCI_DEVICE_ID_INTEL_I210_SERDES:
 | |
| 	case PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS:
 | |
| 	case PCI_DEVICE_ID_INTEL_I210_1000BASEKX:
 | |
| 		hw->mac_type = e1000_igb;
 | |
| 		break;
 | |
| 	default:
 | |
| 		/* Should never have loaded on this device */
 | |
| 		return -E1000_ERR_MAC_TYPE;
 | |
| 	}
 | |
| 	return E1000_SUCCESS;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Reset the transmit and receive units; mask and clear all interrupts.
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  *****************************************************************************/
 | |
| void
 | |
| e1000_reset_hw(struct e1000_hw *hw)
 | |
| {
 | |
| 	uint32_t ctrl;
 | |
| 	uint32_t ctrl_ext;
 | |
| 	uint32_t manc;
 | |
| 	uint32_t pba = 0;
 | |
| 	uint32_t reg;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	/* get the correct pba value for both PCI and PCIe*/
 | |
| 	if (hw->mac_type <  e1000_82571)
 | |
| 		pba = E1000_DEFAULT_PCI_PBA;
 | |
| 	else
 | |
| 		pba = E1000_DEFAULT_PCIE_PBA;
 | |
| 
 | |
| 	/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
 | |
| 	if (hw->mac_type == e1000_82542_rev2_0) {
 | |
| 		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
 | |
| #ifdef CONFIG_DM_ETH
 | |
| 		dm_pci_write_config16(hw->pdev, PCI_COMMAND,
 | |
| 				hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
 | |
| #else
 | |
| 		pci_write_config_word(hw->pdev, PCI_COMMAND,
 | |
| 				hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	/* Clear interrupt mask to stop board from generating interrupts */
 | |
| 	DEBUGOUT("Masking off all interrupts\n");
 | |
| 	if (hw->mac_type == e1000_igb)
 | |
| 		E1000_WRITE_REG(hw, I210_IAM, 0);
 | |
| 	E1000_WRITE_REG(hw, IMC, 0xffffffff);
 | |
| 
 | |
| 	/* Disable the Transmit and Receive units.  Then delay to allow
 | |
| 	 * any pending transactions to complete before we hit the MAC with
 | |
| 	 * the global reset.
 | |
| 	 */
 | |
| 	E1000_WRITE_REG(hw, RCTL, 0);
 | |
| 	E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
 | |
| 	E1000_WRITE_FLUSH(hw);
 | |
| 
 | |
| 	/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
 | |
| 	hw->tbi_compatibility_on = false;
 | |
| 
 | |
| 	/* Delay to allow any outstanding PCI transactions to complete before
 | |
| 	 * resetting the device
 | |
| 	 */
 | |
| 	mdelay(10);
 | |
| 
 | |
| 	/* Issue a global reset to the MAC.  This will reset the chip's
 | |
| 	 * transmit, receive, DMA, and link units.  It will not effect
 | |
| 	 * the current PCI configuration.  The global reset bit is self-
 | |
| 	 * clearing, and should clear within a microsecond.
 | |
| 	 */
 | |
| 	DEBUGOUT("Issuing a global reset to MAC\n");
 | |
| 	ctrl = E1000_READ_REG(hw, CTRL);
 | |
| 
 | |
| 	E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
 | |
| 
 | |
| 	/* Force a reload from the EEPROM if necessary */
 | |
| 	if (hw->mac_type == e1000_igb) {
 | |
| 		mdelay(20);
 | |
| 		reg = E1000_READ_REG(hw, STATUS);
 | |
| 		if (reg & E1000_STATUS_PF_RST_DONE)
 | |
| 			DEBUGOUT("PF OK\n");
 | |
| 		reg = E1000_READ_REG(hw, I210_EECD);
 | |
| 		if (reg & E1000_EECD_AUTO_RD)
 | |
| 			DEBUGOUT("EEC OK\n");
 | |
| 	} else if (hw->mac_type < e1000_82540) {
 | |
| 		/* Wait for reset to complete */
 | |
| 		udelay(10);
 | |
| 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
 | |
| 		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
 | |
| 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
 | |
| 		E1000_WRITE_FLUSH(hw);
 | |
| 		/* Wait for EEPROM reload */
 | |
| 		mdelay(2);
 | |
| 	} else {
 | |
| 		/* Wait for EEPROM reload (it happens automatically) */
 | |
| 		mdelay(4);
 | |
| 		/* Dissable HW ARPs on ASF enabled adapters */
 | |
| 		manc = E1000_READ_REG(hw, MANC);
 | |
| 		manc &= ~(E1000_MANC_ARP_EN);
 | |
| 		E1000_WRITE_REG(hw, MANC, manc);
 | |
| 	}
 | |
| 
 | |
| 	/* Clear interrupt mask to stop board from generating interrupts */
 | |
| 	DEBUGOUT("Masking off all interrupts\n");
 | |
| 	if (hw->mac_type == e1000_igb)
 | |
| 		E1000_WRITE_REG(hw, I210_IAM, 0);
 | |
| 	E1000_WRITE_REG(hw, IMC, 0xffffffff);
 | |
| 
 | |
| 	/* Clear any pending interrupt events. */
 | |
| 	E1000_READ_REG(hw, ICR);
 | |
| 
 | |
| 	/* If MWI was previously enabled, reenable it. */
 | |
| 	if (hw->mac_type == e1000_82542_rev2_0) {
 | |
| #ifdef CONFIG_DM_ETH
 | |
| 		dm_pci_write_config16(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
 | |
| #else
 | |
| 		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
 | |
| #endif
 | |
| 	}
 | |
| 	if (hw->mac_type != e1000_igb)
 | |
| 		E1000_WRITE_REG(hw, PBA, pba);
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  *
 | |
|  * Initialize a number of hardware-dependent bits
 | |
|  *
 | |
|  * hw: Struct containing variables accessed by shared code
 | |
|  *
 | |
|  * This function contains hardware limitation workarounds for PCI-E adapters
 | |
|  *
 | |
|  *****************************************************************************/
 | |
| static void
 | |
| e1000_initialize_hardware_bits(struct e1000_hw *hw)
 | |
| {
 | |
| 	if ((hw->mac_type >= e1000_82571) &&
 | |
| 			(!hw->initialize_hw_bits_disable)) {
 | |
| 		/* Settings common to all PCI-express silicon */
 | |
| 		uint32_t reg_ctrl, reg_ctrl_ext;
 | |
| 		uint32_t reg_tarc0, reg_tarc1;
 | |
| 		uint32_t reg_tctl;
 | |
| 		uint32_t reg_txdctl, reg_txdctl1;
 | |
| 
 | |
| 		/* link autonegotiation/sync workarounds */
 | |
| 		reg_tarc0 = E1000_READ_REG(hw, TARC0);
 | |
| 		reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
 | |
| 
 | |
| 		/* Enable not-done TX descriptor counting */
 | |
| 		reg_txdctl = E1000_READ_REG(hw, TXDCTL);
 | |
| 		reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
 | |
| 		E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
 | |
| 
 | |
| 		reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
 | |
| 		reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
 | |
| 		E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
 | |
| 
 | |
| 	/* IGB is cool */
 | |
| 	if (hw->mac_type == e1000_igb)
 | |
| 		return;
 | |
| 
 | |
| 		switch (hw->mac_type) {
 | |
| 		case e1000_82571:
 | |
| 		case e1000_82572:
 | |
| 			/* Clear PHY TX compatible mode bits */
 | |
| 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
 | |
| 			reg_tarc1 &= ~((1 << 30)|(1 << 29));
 | |
| 
 | |
| 			/* link autonegotiation/sync workarounds */
 | |
| 			reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
 | |
| 
 | |
| 			/* TX ring control fixes */
 | |
| 			reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
 | |
| 
 | |
| 			/* Multiple read bit is reversed polarity */
 | |
| 			reg_tctl = E1000_READ_REG(hw, TCTL);
 | |
| 			if (reg_tctl & E1000_TCTL_MULR)
 | |
| 				reg_tarc1 &= ~(1 << 28);
 | |
| 			else
 | |
| 				reg_tarc1 |= (1 << 28);
 | |
| 
 | |
| 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
 | |
| 			break;
 | |
| 		case e1000_82573:
 | |
| 		case e1000_82574:
 | |
| 			reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
 | |
| 			reg_ctrl_ext &= ~(1 << 23);
 | |
| 			reg_ctrl_ext |= (1 << 22);
 | |
| 
 | |
| 			/* TX byte count fix */
 | |
| 			reg_ctrl = E1000_READ_REG(hw, CTRL);
 | |
| 			reg_ctrl &= ~(1 << 29);
 | |
| 
 | |
| 			E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
 | |
| 			E1000_WRITE_REG(hw, CTRL, reg_ctrl);
 | |
| 			break;
 | |
| 		case e1000_80003es2lan:
 | |
| 	/* improve small packet performace for fiber/serdes */
 | |
| 			if ((hw->media_type == e1000_media_type_fiber)
 | |
| 			|| (hw->media_type ==
 | |
| 				e1000_media_type_internal_serdes)) {
 | |
| 				reg_tarc0 &= ~(1 << 20);
 | |
| 			}
 | |
| 
 | |
| 		/* Multiple read bit is reversed polarity */
 | |
| 			reg_tctl = E1000_READ_REG(hw, TCTL);
 | |
| 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
 | |
| 			if (reg_tctl & E1000_TCTL_MULR)
 | |
| 				reg_tarc1 &= ~(1 << 28);
 | |
| 			else
 | |
| 				reg_tarc1 |= (1 << 28);
 | |
| 
 | |
| 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
 | |
| 			break;
 | |
| 		case e1000_ich8lan:
 | |
| 			/* Reduce concurrent DMA requests to 3 from 4 */
 | |
| 			if ((hw->revision_id < 3) ||
 | |
| 			((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
 | |
| 				(hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
 | |
| 				reg_tarc0 |= ((1 << 29)|(1 << 28));
 | |
| 
 | |
| 			reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
 | |
| 			reg_ctrl_ext |= (1 << 22);
 | |
| 			E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
 | |
| 
 | |
| 			/* workaround TX hang with TSO=on */
 | |
| 			reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
 | |
| 
 | |
| 			/* Multiple read bit is reversed polarity */
 | |
| 			reg_tctl = E1000_READ_REG(hw, TCTL);
 | |
| 			reg_tarc1 = E1000_READ_REG(hw, TARC1);
 | |
| 			if (reg_tctl & E1000_TCTL_MULR)
 | |
| 				reg_tarc1 &= ~(1 << 28);
 | |
| 			else
 | |
| 				reg_tarc1 |= (1 << 28);
 | |
| 
 | |
| 			/* workaround TX hang with TSO=on */
 | |
| 			reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
 | |
| 
 | |
| 			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
 | |
| 			break;
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		E1000_WRITE_REG(hw, TARC0, reg_tarc0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Performs basic configuration of the adapter.
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  *
 | |
|  * Assumes that the controller has previously been reset and is in a
 | |
|  * post-reset uninitialized state. Initializes the receive address registers,
 | |
|  * multicast table, and VLAN filter table. Calls routines to setup link
 | |
|  * configuration and flow control settings. Clears all on-chip counters. Leaves
 | |
|  * the transmit and receive units disabled and uninitialized.
 | |
|  *****************************************************************************/
 | |
| static int
 | |
| e1000_init_hw(struct e1000_hw *hw, unsigned char enetaddr[6])
 | |
| {
 | |
| 	uint32_t ctrl;
 | |
| 	uint32_t i;
 | |
| 	int32_t ret_val;
 | |
| 	uint16_t pcix_cmd_word;
 | |
| 	uint16_t pcix_stat_hi_word;
 | |
| 	uint16_t cmd_mmrbc;
 | |
| 	uint16_t stat_mmrbc;
 | |
| 	uint32_t mta_size;
 | |
| 	uint32_t reg_data;
 | |
| 	uint32_t ctrl_ext;
 | |
| 	DEBUGFUNC();
 | |
| 	/* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
 | |
| 	if ((hw->mac_type == e1000_ich8lan) &&
 | |
| 		((hw->revision_id < 3) ||
 | |
| 		((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
 | |
| 		(hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
 | |
| 			reg_data = E1000_READ_REG(hw, STATUS);
 | |
| 			reg_data &= ~0x80000000;
 | |
| 			E1000_WRITE_REG(hw, STATUS, reg_data);
 | |
| 	}
 | |
| 	/* Do not need initialize Identification LED */
 | |
| 
 | |
| 	/* Set the media type and TBI compatibility */
 | |
| 	e1000_set_media_type(hw);
 | |
| 
 | |
| 	/* Must be called after e1000_set_media_type
 | |
| 	 * because media_type is used */
 | |
| 	e1000_initialize_hardware_bits(hw);
 | |
| 
 | |
| 	/* Disabling VLAN filtering. */
 | |
| 	DEBUGOUT("Initializing the IEEE VLAN\n");
 | |
| 	/* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
 | |
| 	if (hw->mac_type != e1000_ich8lan) {
 | |
| 		if (hw->mac_type < e1000_82545_rev_3)
 | |
| 			E1000_WRITE_REG(hw, VET, 0);
 | |
| 		e1000_clear_vfta(hw);
 | |
| 	}
 | |
| 
 | |
| 	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
 | |
| 	if (hw->mac_type == e1000_82542_rev2_0) {
 | |
| 		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
 | |
| #ifdef CONFIG_DM_ETH
 | |
| 		dm_pci_write_config16(hw->pdev, PCI_COMMAND,
 | |
| 				      hw->
 | |
| 				      pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
 | |
| #else
 | |
| 		pci_write_config_word(hw->pdev, PCI_COMMAND,
 | |
| 				      hw->
 | |
| 				      pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
 | |
| #endif
 | |
| 		E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
 | |
| 		E1000_WRITE_FLUSH(hw);
 | |
| 		mdelay(5);
 | |
| 	}
 | |
| 
 | |
| 	/* Setup the receive address. This involves initializing all of the Receive
 | |
| 	 * Address Registers (RARs 0 - 15).
 | |
| 	 */
 | |
| 	e1000_init_rx_addrs(hw, enetaddr);
 | |
| 
 | |
| 	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
 | |
| 	if (hw->mac_type == e1000_82542_rev2_0) {
 | |
| 		E1000_WRITE_REG(hw, RCTL, 0);
 | |
| 		E1000_WRITE_FLUSH(hw);
 | |
| 		mdelay(1);
 | |
| #ifdef CONFIG_DM_ETH
 | |
| 		dm_pci_write_config16(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
 | |
| #else
 | |
| 		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	/* Zero out the Multicast HASH table */
 | |
| 	DEBUGOUT("Zeroing the MTA\n");
 | |
| 	mta_size = E1000_MC_TBL_SIZE;
 | |
| 	if (hw->mac_type == e1000_ich8lan)
 | |
| 		mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
 | |
| 	for (i = 0; i < mta_size; i++) {
 | |
| 		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
 | |
| 		/* use write flush to prevent Memory Write Block (MWB) from
 | |
| 		 * occuring when accessing our register space */
 | |
| 		E1000_WRITE_FLUSH(hw);
 | |
| 	}
 | |
| 
 | |
| 	switch (hw->mac_type) {
 | |
| 	case e1000_82545_rev_3:
 | |
| 	case e1000_82546_rev_3:
 | |
| 	case e1000_igb:
 | |
| 		break;
 | |
| 	default:
 | |
| 	/* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
 | |
| 	if (hw->bus_type == e1000_bus_type_pcix) {
 | |
| #ifdef CONFIG_DM_ETH
 | |
| 		dm_pci_read_config16(hw->pdev, PCIX_COMMAND_REGISTER,
 | |
| 				     &pcix_cmd_word);
 | |
| 		dm_pci_read_config16(hw->pdev, PCIX_STATUS_REGISTER_HI,
 | |
| 				     &pcix_stat_hi_word);
 | |
| #else
 | |
| 		pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
 | |
| 				     &pcix_cmd_word);
 | |
| 		pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
 | |
| 				     &pcix_stat_hi_word);
 | |
| #endif
 | |
| 		cmd_mmrbc =
 | |
| 		    (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
 | |
| 		    PCIX_COMMAND_MMRBC_SHIFT;
 | |
| 		stat_mmrbc =
 | |
| 		    (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
 | |
| 		    PCIX_STATUS_HI_MMRBC_SHIFT;
 | |
| 		if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
 | |
| 			stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
 | |
| 		if (cmd_mmrbc > stat_mmrbc) {
 | |
| 			pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
 | |
| 			pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
 | |
| #ifdef CONFIG_DM_ETH
 | |
| 			dm_pci_write_config16(hw->pdev, PCIX_COMMAND_REGISTER,
 | |
| 					      pcix_cmd_word);
 | |
| #else
 | |
| 			pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
 | |
| 					      pcix_cmd_word);
 | |
| #endif
 | |
| 		}
 | |
| 	}
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* More time needed for PHY to initialize */
 | |
| 	if (hw->mac_type == e1000_ich8lan)
 | |
| 		mdelay(15);
 | |
| 	if (hw->mac_type == e1000_igb)
 | |
| 		mdelay(15);
 | |
| 
 | |
| 	/* Call a subroutine to configure the link and setup flow control. */
 | |
| 	ret_val = e1000_setup_link(hw);
 | |
| 
 | |
| 	/* Set the transmit descriptor write-back policy */
 | |
| 	if (hw->mac_type > e1000_82544) {
 | |
| 		ctrl = E1000_READ_REG(hw, TXDCTL);
 | |
| 		ctrl =
 | |
| 		    (ctrl & ~E1000_TXDCTL_WTHRESH) |
 | |
| 		    E1000_TXDCTL_FULL_TX_DESC_WB;
 | |
| 		E1000_WRITE_REG(hw, TXDCTL, ctrl);
 | |
| 	}
 | |
| 
 | |
| 	/* Set the receive descriptor write back policy */
 | |
| 	if (hw->mac_type >= e1000_82571) {
 | |
| 		ctrl = E1000_READ_REG(hw, RXDCTL);
 | |
| 		ctrl =
 | |
| 		    (ctrl & ~E1000_RXDCTL_WTHRESH) |
 | |
| 		    E1000_RXDCTL_FULL_RX_DESC_WB;
 | |
| 		E1000_WRITE_REG(hw, RXDCTL, ctrl);
 | |
| 	}
 | |
| 
 | |
| 	switch (hw->mac_type) {
 | |
| 	default:
 | |
| 		break;
 | |
| 	case e1000_80003es2lan:
 | |
| 		/* Enable retransmit on late collisions */
 | |
| 		reg_data = E1000_READ_REG(hw, TCTL);
 | |
| 		reg_data |= E1000_TCTL_RTLC;
 | |
| 		E1000_WRITE_REG(hw, TCTL, reg_data);
 | |
| 
 | |
| 		/* Configure Gigabit Carry Extend Padding */
 | |
| 		reg_data = E1000_READ_REG(hw, TCTL_EXT);
 | |
| 		reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
 | |
| 		reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
 | |
| 		E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
 | |
| 
 | |
| 		/* Configure Transmit Inter-Packet Gap */
 | |
| 		reg_data = E1000_READ_REG(hw, TIPG);
 | |
| 		reg_data &= ~E1000_TIPG_IPGT_MASK;
 | |
| 		reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
 | |
| 		E1000_WRITE_REG(hw, TIPG, reg_data);
 | |
| 
 | |
| 		reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
 | |
| 		reg_data &= ~0x00100000;
 | |
| 		E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
 | |
| 		/* Fall through */
 | |
| 	case e1000_82571:
 | |
| 	case e1000_82572:
 | |
| 	case e1000_ich8lan:
 | |
| 		ctrl = E1000_READ_REG(hw, TXDCTL1);
 | |
| 		ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
 | |
| 			| E1000_TXDCTL_FULL_TX_DESC_WB;
 | |
| 		E1000_WRITE_REG(hw, TXDCTL1, ctrl);
 | |
| 		break;
 | |
| 	case e1000_82573:
 | |
| 	case e1000_82574:
 | |
| 		reg_data = E1000_READ_REG(hw, GCR);
 | |
| 		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
 | |
| 		E1000_WRITE_REG(hw, GCR, reg_data);
 | |
| 	case e1000_igb:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
 | |
| 		hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
 | |
| 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
 | |
| 		/* Relaxed ordering must be disabled to avoid a parity
 | |
| 		 * error crash in a PCI slot. */
 | |
| 		ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
 | |
| 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
 | |
| 	}
 | |
| 
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Configures flow control and link settings.
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  *
 | |
|  * Determines which flow control settings to use. Calls the apropriate media-
 | |
|  * specific link configuration function. Configures the flow control settings.
 | |
|  * Assuming the adapter has a valid link partner, a valid link should be
 | |
|  * established. Assumes the hardware has previously been reset and the
 | |
|  * transmitter and receiver are not enabled.
 | |
|  *****************************************************************************/
 | |
| static int
 | |
| e1000_setup_link(struct e1000_hw *hw)
 | |
| {
 | |
| 	int32_t ret_val;
 | |
| #ifndef CONFIG_E1000_NO_NVM
 | |
| 	uint32_t ctrl_ext;
 | |
| 	uint16_t eeprom_data;
 | |
| #endif
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	/* In the case of the phy reset being blocked, we already have a link.
 | |
| 	 * We do not have to set it up again. */
 | |
| 	if (e1000_check_phy_reset_block(hw))
 | |
| 		return E1000_SUCCESS;
 | |
| 
 | |
| #ifndef CONFIG_E1000_NO_NVM
 | |
| 	/* Read and store word 0x0F of the EEPROM. This word contains bits
 | |
| 	 * that determine the hardware's default PAUSE (flow control) mode,
 | |
| 	 * a bit that determines whether the HW defaults to enabling or
 | |
| 	 * disabling auto-negotiation, and the direction of the
 | |
| 	 * SW defined pins. If there is no SW over-ride of the flow
 | |
| 	 * control setting, then the variable hw->fc will
 | |
| 	 * be initialized based on a value in the EEPROM.
 | |
| 	 */
 | |
| 	if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
 | |
| 				&eeprom_data) < 0) {
 | |
| 		DEBUGOUT("EEPROM Read Error\n");
 | |
| 		return -E1000_ERR_EEPROM;
 | |
| 	}
 | |
| #endif
 | |
| 	if (hw->fc == e1000_fc_default) {
 | |
| 		switch (hw->mac_type) {
 | |
| 		case e1000_ich8lan:
 | |
| 		case e1000_82573:
 | |
| 		case e1000_82574:
 | |
| 		case e1000_igb:
 | |
| 			hw->fc = e1000_fc_full;
 | |
| 			break;
 | |
| 		default:
 | |
| #ifndef CONFIG_E1000_NO_NVM
 | |
| 			ret_val = e1000_read_eeprom(hw,
 | |
| 				EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
 | |
| 			if (ret_val) {
 | |
| 				DEBUGOUT("EEPROM Read Error\n");
 | |
| 				return -E1000_ERR_EEPROM;
 | |
| 			}
 | |
| 			if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
 | |
| 				hw->fc = e1000_fc_none;
 | |
| 			else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
 | |
| 				    EEPROM_WORD0F_ASM_DIR)
 | |
| 				hw->fc = e1000_fc_tx_pause;
 | |
| 			else
 | |
| #endif
 | |
| 				hw->fc = e1000_fc_full;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* We want to save off the original Flow Control configuration just
 | |
| 	 * in case we get disconnected and then reconnected into a different
 | |
| 	 * hub or switch with different Flow Control capabilities.
 | |
| 	 */
 | |
| 	if (hw->mac_type == e1000_82542_rev2_0)
 | |
| 		hw->fc &= (~e1000_fc_tx_pause);
 | |
| 
 | |
| 	if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
 | |
| 		hw->fc &= (~e1000_fc_rx_pause);
 | |
| 
 | |
| 	hw->original_fc = hw->fc;
 | |
| 
 | |
| 	DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
 | |
| 
 | |
| #ifndef CONFIG_E1000_NO_NVM
 | |
| 	/* Take the 4 bits from EEPROM word 0x0F that determine the initial
 | |
| 	 * polarity value for the SW controlled pins, and setup the
 | |
| 	 * Extended Device Control reg with that info.
 | |
| 	 * This is needed because one of the SW controlled pins is used for
 | |
| 	 * signal detection.  So this should be done before e1000_setup_pcs_link()
 | |
| 	 * or e1000_phy_setup() is called.
 | |
| 	 */
 | |
| 	if (hw->mac_type == e1000_82543) {
 | |
| 		ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
 | |
| 			    SWDPIO__EXT_SHIFT);
 | |
| 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/* Call the necessary subroutine to configure the link. */
 | |
| 	ret_val = (hw->media_type == e1000_media_type_fiber) ?
 | |
| 	    e1000_setup_fiber_link(hw) : e1000_setup_copper_link(hw);
 | |
| 	if (ret_val < 0) {
 | |
| 		return ret_val;
 | |
| 	}
 | |
| 
 | |
| 	/* Initialize the flow control address, type, and PAUSE timer
 | |
| 	 * registers to their default values.  This is done even if flow
 | |
| 	 * control is disabled, because it does not hurt anything to
 | |
| 	 * initialize these registers.
 | |
| 	 */
 | |
| 	DEBUGOUT("Initializing the Flow Control address, type"
 | |
| 			"and timer regs\n");
 | |
| 
 | |
| 	/* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
 | |
| 	if (hw->mac_type != e1000_ich8lan) {
 | |
| 		E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
 | |
| 		E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
 | |
| 		E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
 | |
| 	}
 | |
| 
 | |
| 	E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
 | |
| 
 | |
| 	/* Set the flow control receive threshold registers.  Normally,
 | |
| 	 * these registers will be set to a default threshold that may be
 | |
| 	 * adjusted later by the driver's runtime code.  However, if the
 | |
| 	 * ability to transmit pause frames in not enabled, then these
 | |
| 	 * registers will be set to 0.
 | |
| 	 */
 | |
| 	if (!(hw->fc & e1000_fc_tx_pause)) {
 | |
| 		E1000_WRITE_REG(hw, FCRTL, 0);
 | |
| 		E1000_WRITE_REG(hw, FCRTH, 0);
 | |
| 	} else {
 | |
| 		/* We need to set up the Receive Threshold high and low water marks
 | |
| 		 * as well as (optionally) enabling the transmission of XON frames.
 | |
| 		 */
 | |
| 		if (hw->fc_send_xon) {
 | |
| 			E1000_WRITE_REG(hw, FCRTL,
 | |
| 					(hw->fc_low_water | E1000_FCRTL_XONE));
 | |
| 			E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
 | |
| 		} else {
 | |
| 			E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
 | |
| 			E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
 | |
| 		}
 | |
| 	}
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Sets up link for a fiber based adapter
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  *
 | |
|  * Manipulates Physical Coding Sublayer functions in order to configure
 | |
|  * link. Assumes the hardware has been previously reset and the transmitter
 | |
|  * and receiver are not enabled.
 | |
|  *****************************************************************************/
 | |
| static int
 | |
| e1000_setup_fiber_link(struct e1000_hw *hw)
 | |
| {
 | |
| 	uint32_t ctrl;
 | |
| 	uint32_t status;
 | |
| 	uint32_t txcw = 0;
 | |
| 	uint32_t i;
 | |
| 	uint32_t signal;
 | |
| 	int32_t ret_val;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
 | |
| 	 * set when the optics detect a signal. On older adapters, it will be
 | |
| 	 * cleared when there is a signal
 | |
| 	 */
 | |
| 	ctrl = E1000_READ_REG(hw, CTRL);
 | |
| 	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
 | |
| 		signal = E1000_CTRL_SWDPIN1;
 | |
| 	else
 | |
| 		signal = 0;
 | |
| 
 | |
| 	printf("signal for %s is %x (ctrl %08x)!!!!\n", hw->name, signal,
 | |
| 	       ctrl);
 | |
| 	/* Take the link out of reset */
 | |
| 	ctrl &= ~(E1000_CTRL_LRST);
 | |
| 
 | |
| 	e1000_config_collision_dist(hw);
 | |
| 
 | |
| 	/* Check for a software override of the flow control settings, and setup
 | |
| 	 * the device accordingly.  If auto-negotiation is enabled, then software
 | |
| 	 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
 | |
| 	 * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
 | |
| 	 * auto-negotiation is disabled, then software will have to manually
 | |
| 	 * configure the two flow control enable bits in the CTRL register.
 | |
| 	 *
 | |
| 	 * The possible values of the "fc" parameter are:
 | |
| 	 *	0:  Flow control is completely disabled
 | |
| 	 *	1:  Rx flow control is enabled (we can receive pause frames, but
 | |
| 	 *	    not send pause frames).
 | |
| 	 *	2:  Tx flow control is enabled (we can send pause frames but we do
 | |
| 	 *	    not support receiving pause frames).
 | |
| 	 *	3:  Both Rx and TX flow control (symmetric) are enabled.
 | |
| 	 */
 | |
| 	switch (hw->fc) {
 | |
| 	case e1000_fc_none:
 | |
| 		/* Flow control is completely disabled by a software over-ride. */
 | |
| 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
 | |
| 		break;
 | |
| 	case e1000_fc_rx_pause:
 | |
| 		/* RX Flow control is enabled and TX Flow control is disabled by a
 | |
| 		 * software over-ride. Since there really isn't a way to advertise
 | |
| 		 * that we are capable of RX Pause ONLY, we will advertise that we
 | |
| 		 * support both symmetric and asymmetric RX PAUSE. Later, we will
 | |
| 		 *  disable the adapter's ability to send PAUSE frames.
 | |
| 		 */
 | |
| 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
 | |
| 		break;
 | |
| 	case e1000_fc_tx_pause:
 | |
| 		/* TX Flow control is enabled, and RX Flow control is disabled, by a
 | |
| 		 * software over-ride.
 | |
| 		 */
 | |
| 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
 | |
| 		break;
 | |
| 	case e1000_fc_full:
 | |
| 		/* Flow control (both RX and TX) is enabled by a software over-ride. */
 | |
| 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
 | |
| 		break;
 | |
| 	default:
 | |
| 		DEBUGOUT("Flow control param set incorrectly\n");
 | |
| 		return -E1000_ERR_CONFIG;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* Since auto-negotiation is enabled, take the link out of reset (the link
 | |
| 	 * will be in reset, because we previously reset the chip). This will
 | |
| 	 * restart auto-negotiation.  If auto-neogtiation is successful then the
 | |
| 	 * link-up status bit will be set and the flow control enable bits (RFCE
 | |
| 	 * and TFCE) will be set according to their negotiated value.
 | |
| 	 */
 | |
| 	DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
 | |
| 
 | |
| 	E1000_WRITE_REG(hw, TXCW, txcw);
 | |
| 	E1000_WRITE_REG(hw, CTRL, ctrl);
 | |
| 	E1000_WRITE_FLUSH(hw);
 | |
| 
 | |
| 	hw->txcw = txcw;
 | |
| 	mdelay(1);
 | |
| 
 | |
| 	/* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
 | |
| 	 * indication in the Device Status Register.  Time-out if a link isn't
 | |
| 	 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
 | |
| 	 * less than 500 milliseconds even if the other end is doing it in SW).
 | |
| 	 */
 | |
| 	if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
 | |
| 		DEBUGOUT("Looking for Link\n");
 | |
| 		for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
 | |
| 			mdelay(10);
 | |
| 			status = E1000_READ_REG(hw, STATUS);
 | |
| 			if (status & E1000_STATUS_LU)
 | |
| 				break;
 | |
| 		}
 | |
| 		if (i == (LINK_UP_TIMEOUT / 10)) {
 | |
| 			/* AutoNeg failed to achieve a link, so we'll call
 | |
| 			 * e1000_check_for_link. This routine will force the link up if we
 | |
| 			 * detect a signal. This will allow us to communicate with
 | |
| 			 * non-autonegotiating link partners.
 | |
| 			 */
 | |
| 			DEBUGOUT("Never got a valid link from auto-neg!!!\n");
 | |
| 			hw->autoneg_failed = 1;
 | |
| 			ret_val = e1000_check_for_link(hw);
 | |
| 			if (ret_val < 0) {
 | |
| 				DEBUGOUT("Error while checking for link\n");
 | |
| 				return ret_val;
 | |
| 			}
 | |
| 			hw->autoneg_failed = 0;
 | |
| 		} else {
 | |
| 			hw->autoneg_failed = 0;
 | |
| 			DEBUGOUT("Valid Link Found\n");
 | |
| 		}
 | |
| 	} else {
 | |
| 		DEBUGOUT("No Signal Detected\n");
 | |
| 		return -E1000_ERR_NOLINK;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
| * Make sure we have a valid PHY and change PHY mode before link setup.
 | |
| *
 | |
| * hw - Struct containing variables accessed by shared code
 | |
| ******************************************************************************/
 | |
| static int32_t
 | |
| e1000_copper_link_preconfig(struct e1000_hw *hw)
 | |
| {
 | |
| 	uint32_t ctrl;
 | |
| 	int32_t ret_val;
 | |
| 	uint16_t phy_data;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	ctrl = E1000_READ_REG(hw, CTRL);
 | |
| 	/* With 82543, we need to force speed and duplex on the MAC equal to what
 | |
| 	 * the PHY speed and duplex configuration is. In addition, we need to
 | |
| 	 * perform a hardware reset on the PHY to take it out of reset.
 | |
| 	 */
 | |
| 	if (hw->mac_type > e1000_82543) {
 | |
| 		ctrl |= E1000_CTRL_SLU;
 | |
| 		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
 | |
| 		E1000_WRITE_REG(hw, CTRL, ctrl);
 | |
| 	} else {
 | |
| 		ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
 | |
| 				| E1000_CTRL_SLU);
 | |
| 		E1000_WRITE_REG(hw, CTRL, ctrl);
 | |
| 		ret_val = e1000_phy_hw_reset(hw);
 | |
| 		if (ret_val)
 | |
| 			return ret_val;
 | |
| 	}
 | |
| 
 | |
| 	/* Make sure we have a valid PHY */
 | |
| 	ret_val = e1000_detect_gig_phy(hw);
 | |
| 	if (ret_val) {
 | |
| 		DEBUGOUT("Error, did not detect valid phy.\n");
 | |
| 		return ret_val;
 | |
| 	}
 | |
| 	DEBUGOUT("Phy ID = %x\n", hw->phy_id);
 | |
| 
 | |
| 	/* Set PHY to class A mode (if necessary) */
 | |
| 	ret_val = e1000_set_phy_mode(hw);
 | |
| 	if (ret_val)
 | |
| 		return ret_val;
 | |
| 	if ((hw->mac_type == e1000_82545_rev_3) ||
 | |
| 		(hw->mac_type == e1000_82546_rev_3)) {
 | |
| 		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
 | |
| 				&phy_data);
 | |
| 		phy_data |= 0x00000008;
 | |
| 		ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
 | |
| 				phy_data);
 | |
| 	}
 | |
| 
 | |
| 	if (hw->mac_type <= e1000_82543 ||
 | |
| 		hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
 | |
| 		hw->mac_type == e1000_82541_rev_2
 | |
| 		|| hw->mac_type == e1000_82547_rev_2)
 | |
| 			hw->phy_reset_disable = false;
 | |
| 
 | |
| 	return E1000_SUCCESS;
 | |
| }
 | |
| 
 | |
| /*****************************************************************************
 | |
|  *
 | |
|  * This function sets the lplu state according to the active flag.  When
 | |
|  * activating lplu this function also disables smart speed and vise versa.
 | |
|  * lplu will not be activated unless the device autonegotiation advertisment
 | |
|  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
 | |
|  * hw: Struct containing variables accessed by shared code
 | |
|  * active - true to enable lplu false to disable lplu.
 | |
|  *
 | |
|  * returns: - E1000_ERR_PHY if fail to read/write the PHY
 | |
|  *            E1000_SUCCESS at any other case.
 | |
|  *
 | |
|  ****************************************************************************/
 | |
| 
 | |
| static int32_t
 | |
| e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
 | |
| {
 | |
| 	uint32_t phy_ctrl = 0;
 | |
| 	int32_t ret_val;
 | |
| 	uint16_t phy_data;
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
 | |
| 	    && hw->phy_type != e1000_phy_igp_3)
 | |
| 		return E1000_SUCCESS;
 | |
| 
 | |
| 	/* During driver activity LPLU should not be used or it will attain link
 | |
| 	 * from the lowest speeds starting from 10Mbps. The capability is used
 | |
| 	 * for Dx transitions and states */
 | |
| 	if (hw->mac_type == e1000_82541_rev_2
 | |
| 			|| hw->mac_type == e1000_82547_rev_2) {
 | |
| 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
 | |
| 				&phy_data);
 | |
| 		if (ret_val)
 | |
| 			return ret_val;
 | |
| 	} else if (hw->mac_type == e1000_ich8lan) {
 | |
| 		/* MAC writes into PHY register based on the state transition
 | |
| 		 * and start auto-negotiation. SW driver can overwrite the
 | |
| 		 * settings in CSR PHY power control E1000_PHY_CTRL register. */
 | |
| 		phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
 | |
| 	} else {
 | |
| 		ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
 | |
| 				&phy_data);
 | |
| 		if (ret_val)
 | |
| 			return ret_val;
 | |
| 	}
 | |
| 
 | |
| 	if (!active) {
 | |
| 		if (hw->mac_type == e1000_82541_rev_2 ||
 | |
| 			hw->mac_type == e1000_82547_rev_2) {
 | |
| 			phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
 | |
| 			ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
 | |
| 					phy_data);
 | |
| 			if (ret_val)
 | |
| 				return ret_val;
 | |
| 		} else {
 | |
| 			if (hw->mac_type == e1000_ich8lan) {
 | |
| 				phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
 | |
| 				E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
 | |
| 			} else {
 | |
| 				phy_data &= ~IGP02E1000_PM_D3_LPLU;
 | |
| 				ret_val = e1000_write_phy_reg(hw,
 | |
| 					IGP02E1000_PHY_POWER_MGMT, phy_data);
 | |
| 				if (ret_val)
 | |
| 					return ret_val;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 	/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
 | |
| 	 * Dx states where the power conservation is most important.  During
 | |
| 	 * driver activity we should enable SmartSpeed, so performance is
 | |
| 	 * maintained. */
 | |
| 		if (hw->smart_speed == e1000_smart_speed_on) {
 | |
| 			ret_val = e1000_read_phy_reg(hw,
 | |
| 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
 | |
| 			if (ret_val)
 | |
| 				return ret_val;
 | |
| 
 | |
| 			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
 | |
| 			ret_val = e1000_write_phy_reg(hw,
 | |
| 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
 | |
| 			if (ret_val)
 | |
| 				return ret_val;
 | |
| 		} else if (hw->smart_speed == e1000_smart_speed_off) {
 | |
| 			ret_val = e1000_read_phy_reg(hw,
 | |
| 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
 | |
| 			if (ret_val)
 | |
| 				return ret_val;
 | |
| 
 | |
| 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 | |
| 			ret_val = e1000_write_phy_reg(hw,
 | |
| 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
 | |
| 			if (ret_val)
 | |
| 				return ret_val;
 | |
| 		}
 | |
| 
 | |
| 	} else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
 | |
| 		|| (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
 | |
| 		(hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
 | |
| 
 | |
| 		if (hw->mac_type == e1000_82541_rev_2 ||
 | |
| 		    hw->mac_type == e1000_82547_rev_2) {
 | |
| 			phy_data |= IGP01E1000_GMII_FLEX_SPD;
 | |
| 			ret_val = e1000_write_phy_reg(hw,
 | |
| 					IGP01E1000_GMII_FIFO, phy_data);
 | |
| 			if (ret_val)
 | |
| 				return ret_val;
 | |
| 		} else {
 | |
| 			if (hw->mac_type == e1000_ich8lan) {
 | |
| 				phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
 | |
| 				E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
 | |
| 			} else {
 | |
| 				phy_data |= IGP02E1000_PM_D3_LPLU;
 | |
| 				ret_val = e1000_write_phy_reg(hw,
 | |
| 					IGP02E1000_PHY_POWER_MGMT, phy_data);
 | |
| 				if (ret_val)
 | |
| 					return ret_val;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* When LPLU is enabled we should disable SmartSpeed */
 | |
| 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
 | |
| 				&phy_data);
 | |
| 		if (ret_val)
 | |
| 			return ret_val;
 | |
| 
 | |
| 		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 | |
| 		ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
 | |
| 				phy_data);
 | |
| 		if (ret_val)
 | |
| 			return ret_val;
 | |
| 	}
 | |
| 	return E1000_SUCCESS;
 | |
| }
 | |
| 
 | |
| /*****************************************************************************
 | |
|  *
 | |
|  * This function sets the lplu d0 state according to the active flag.  When
 | |
|  * activating lplu this function also disables smart speed and vise versa.
 | |
|  * lplu will not be activated unless the device autonegotiation advertisment
 | |
|  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
 | |
|  * hw: Struct containing variables accessed by shared code
 | |
|  * active - true to enable lplu false to disable lplu.
 | |
|  *
 | |
|  * returns: - E1000_ERR_PHY if fail to read/write the PHY
 | |
|  *            E1000_SUCCESS at any other case.
 | |
|  *
 | |
|  ****************************************************************************/
 | |
| 
 | |
| static int32_t
 | |
| e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
 | |
| {
 | |
| 	uint32_t phy_ctrl = 0;
 | |
| 	int32_t ret_val;
 | |
| 	uint16_t phy_data;
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	if (hw->mac_type <= e1000_82547_rev_2)
 | |
| 		return E1000_SUCCESS;
 | |
| 
 | |
| 	if (hw->mac_type == e1000_ich8lan) {
 | |
| 		phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
 | |
| 	} else if (hw->mac_type == e1000_igb) {
 | |
| 		phy_ctrl = E1000_READ_REG(hw, I210_PHY_CTRL);
 | |
| 	} else {
 | |
| 		ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
 | |
| 				&phy_data);
 | |
| 		if (ret_val)
 | |
| 			return ret_val;
 | |
| 	}
 | |
| 
 | |
| 	if (!active) {
 | |
| 		if (hw->mac_type == e1000_ich8lan) {
 | |
| 			phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
 | |
| 			E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
 | |
| 		} else if (hw->mac_type == e1000_igb) {
 | |
| 			phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
 | |
| 			E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
 | |
| 		} else {
 | |
| 			phy_data &= ~IGP02E1000_PM_D0_LPLU;
 | |
| 			ret_val = e1000_write_phy_reg(hw,
 | |
| 					IGP02E1000_PHY_POWER_MGMT, phy_data);
 | |
| 			if (ret_val)
 | |
| 				return ret_val;
 | |
| 		}
 | |
| 
 | |
| 		if (hw->mac_type == e1000_igb)
 | |
| 			return E1000_SUCCESS;
 | |
| 
 | |
| 	/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
 | |
| 	 * Dx states where the power conservation is most important.  During
 | |
| 	 * driver activity we should enable SmartSpeed, so performance is
 | |
| 	 * maintained. */
 | |
| 		if (hw->smart_speed == e1000_smart_speed_on) {
 | |
| 			ret_val = e1000_read_phy_reg(hw,
 | |
| 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
 | |
| 			if (ret_val)
 | |
| 				return ret_val;
 | |
| 
 | |
| 			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
 | |
| 			ret_val = e1000_write_phy_reg(hw,
 | |
| 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
 | |
| 			if (ret_val)
 | |
| 				return ret_val;
 | |
| 		} else if (hw->smart_speed == e1000_smart_speed_off) {
 | |
| 			ret_val = e1000_read_phy_reg(hw,
 | |
| 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
 | |
| 			if (ret_val)
 | |
| 				return ret_val;
 | |
| 
 | |
| 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 | |
| 			ret_val = e1000_write_phy_reg(hw,
 | |
| 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
 | |
| 			if (ret_val)
 | |
| 				return ret_val;
 | |
| 		}
 | |
| 
 | |
| 
 | |
| 	} else {
 | |
| 
 | |
| 		if (hw->mac_type == e1000_ich8lan) {
 | |
| 			phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
 | |
| 			E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
 | |
| 		} else if (hw->mac_type == e1000_igb) {
 | |
| 			phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
 | |
| 			E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
 | |
| 		} else {
 | |
| 			phy_data |= IGP02E1000_PM_D0_LPLU;
 | |
| 			ret_val = e1000_write_phy_reg(hw,
 | |
| 					IGP02E1000_PHY_POWER_MGMT, phy_data);
 | |
| 			if (ret_val)
 | |
| 				return ret_val;
 | |
| 		}
 | |
| 
 | |
| 		if (hw->mac_type == e1000_igb)
 | |
| 			return E1000_SUCCESS;
 | |
| 
 | |
| 		/* When LPLU is enabled we should disable SmartSpeed */
 | |
| 		ret_val = e1000_read_phy_reg(hw,
 | |
| 				IGP01E1000_PHY_PORT_CONFIG, &phy_data);
 | |
| 		if (ret_val)
 | |
| 			return ret_val;
 | |
| 
 | |
| 		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 | |
| 		ret_val = e1000_write_phy_reg(hw,
 | |
| 				IGP01E1000_PHY_PORT_CONFIG, phy_data);
 | |
| 		if (ret_val)
 | |
| 			return ret_val;
 | |
| 
 | |
| 	}
 | |
| 	return E1000_SUCCESS;
 | |
| }
 | |
| 
 | |
| /********************************************************************
 | |
| * Copper link setup for e1000_phy_igp series.
 | |
| *
 | |
| * hw - Struct containing variables accessed by shared code
 | |
| *********************************************************************/
 | |
| static int32_t
 | |
| e1000_copper_link_igp_setup(struct e1000_hw *hw)
 | |
| {
 | |
| 	uint32_t led_ctrl;
 | |
| 	int32_t ret_val;
 | |
| 	uint16_t phy_data;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	if (hw->phy_reset_disable)
 | |
| 		return E1000_SUCCESS;
 | |
| 
 | |
| 	ret_val = e1000_phy_reset(hw);
 | |
| 	if (ret_val) {
 | |
| 		DEBUGOUT("Error Resetting the PHY\n");
 | |
| 		return ret_val;
 | |
| 	}
 | |
| 
 | |
| 	/* Wait 15ms for MAC to configure PHY from eeprom settings */
 | |
| 	mdelay(15);
 | |
| 	if (hw->mac_type != e1000_ich8lan) {
 | |
| 		/* Configure activity LED after PHY reset */
 | |
| 		led_ctrl = E1000_READ_REG(hw, LEDCTL);
 | |
| 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
 | |
| 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
 | |
| 		E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
 | |
| 	}
 | |
| 
 | |
| 	/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
 | |
| 	if (hw->phy_type == e1000_phy_igp) {
 | |
| 		/* disable lplu d3 during driver init */
 | |
| 		ret_val = e1000_set_d3_lplu_state(hw, false);
 | |
| 		if (ret_val) {
 | |
| 			DEBUGOUT("Error Disabling LPLU D3\n");
 | |
| 			return ret_val;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* disable lplu d0 during driver init */
 | |
| 	ret_val = e1000_set_d0_lplu_state(hw, false);
 | |
| 	if (ret_val) {
 | |
| 		DEBUGOUT("Error Disabling LPLU D0\n");
 | |
| 		return ret_val;
 | |
| 	}
 | |
| 	/* Configure mdi-mdix settings */
 | |
| 	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
 | |
| 	if (ret_val)
 | |
| 		return ret_val;
 | |
| 
 | |
| 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
 | |
| 		hw->dsp_config_state = e1000_dsp_config_disabled;
 | |
| 		/* Force MDI for earlier revs of the IGP PHY */
 | |
| 		phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
 | |
| 				| IGP01E1000_PSCR_FORCE_MDI_MDIX);
 | |
| 		hw->mdix = 1;
 | |
| 
 | |
| 	} else {
 | |
| 		hw->dsp_config_state = e1000_dsp_config_enabled;
 | |
| 		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
 | |
| 
 | |
| 		switch (hw->mdix) {
 | |
| 		case 1:
 | |
| 			phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
 | |
| 			break;
 | |
| 		case 2:
 | |
| 			phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
 | |
| 			break;
 | |
| 		case 0:
 | |
| 		default:
 | |
| 			phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
 | |
| 	if (ret_val)
 | |
| 		return ret_val;
 | |
| 
 | |
| 	/* set auto-master slave resolution settings */
 | |
| 	if (hw->autoneg) {
 | |
| 		e1000_ms_type phy_ms_setting = hw->master_slave;
 | |
| 
 | |
| 		if (hw->ffe_config_state == e1000_ffe_config_active)
 | |
| 			hw->ffe_config_state = e1000_ffe_config_enabled;
 | |
| 
 | |
| 		if (hw->dsp_config_state == e1000_dsp_config_activated)
 | |
| 			hw->dsp_config_state = e1000_dsp_config_enabled;
 | |
| 
 | |
| 		/* when autonegotiation advertisment is only 1000Mbps then we
 | |
| 		  * should disable SmartSpeed and enable Auto MasterSlave
 | |
| 		  * resolution as hardware default. */
 | |
| 		if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
 | |
| 			/* Disable SmartSpeed */
 | |
| 			ret_val = e1000_read_phy_reg(hw,
 | |
| 					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
 | |
| 			if (ret_val)
 | |
| 				return ret_val;
 | |
| 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 | |
| 			ret_val = e1000_write_phy_reg(hw,
 | |
| 					IGP01E1000_PHY_PORT_CONFIG, phy_data);
 | |
| 			if (ret_val)
 | |
| 				return ret_val;
 | |
| 			/* Set auto Master/Slave resolution process */
 | |
| 			ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
 | |
| 					&phy_data);
 | |
| 			if (ret_val)
 | |
| 				return ret_val;
 | |
| 			phy_data &= ~CR_1000T_MS_ENABLE;
 | |
| 			ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
 | |
| 					phy_data);
 | |
| 			if (ret_val)
 | |
| 				return ret_val;
 | |
| 		}
 | |
| 
 | |
| 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
 | |
| 		if (ret_val)
 | |
| 			return ret_val;
 | |
| 
 | |
| 		/* load defaults for future use */
 | |
| 		hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
 | |
| 				((phy_data & CR_1000T_MS_VALUE) ?
 | |
| 				e1000_ms_force_master :
 | |
| 				e1000_ms_force_slave) :
 | |
| 				e1000_ms_auto;
 | |
| 
 | |
| 		switch (phy_ms_setting) {
 | |
| 		case e1000_ms_force_master:
 | |
| 			phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
 | |
| 			break;
 | |
| 		case e1000_ms_force_slave:
 | |
| 			phy_data |= CR_1000T_MS_ENABLE;
 | |
| 			phy_data &= ~(CR_1000T_MS_VALUE);
 | |
| 			break;
 | |
| 		case e1000_ms_auto:
 | |
| 			phy_data &= ~CR_1000T_MS_ENABLE;
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
 | |
| 		if (ret_val)
 | |
| 			return ret_val;
 | |
| 	}
 | |
| 
 | |
| 	return E1000_SUCCESS;
 | |
| }
 | |
| 
 | |
| /*****************************************************************************
 | |
|  * This function checks the mode of the firmware.
 | |
|  *
 | |
|  * returns  - true when the mode is IAMT or false.
 | |
|  ****************************************************************************/
 | |
| bool
 | |
| e1000_check_mng_mode(struct e1000_hw *hw)
 | |
| {
 | |
| 	uint32_t fwsm;
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	fwsm = E1000_READ_REG(hw, FWSM);
 | |
| 
 | |
| 	if (hw->mac_type == e1000_ich8lan) {
 | |
| 		if ((fwsm & E1000_FWSM_MODE_MASK) ==
 | |
| 		    (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
 | |
| 			return true;
 | |
| 	} else if ((fwsm & E1000_FWSM_MODE_MASK) ==
 | |
| 		       (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
 | |
| 			return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static int32_t
 | |
| e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
 | |
| {
 | |
| 	uint16_t swfw = E1000_SWFW_PHY0_SM;
 | |
| 	uint32_t reg_val;
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	if (e1000_is_second_port(hw))
 | |
| 		swfw = E1000_SWFW_PHY1_SM;
 | |
| 
 | |
| 	if (e1000_swfw_sync_acquire(hw, swfw))
 | |
| 		return -E1000_ERR_SWFW_SYNC;
 | |
| 
 | |
| 	reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
 | |
| 			& E1000_KUMCTRLSTA_OFFSET) | data;
 | |
| 	E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
 | |
| 	udelay(2);
 | |
| 
 | |
| 	return E1000_SUCCESS;
 | |
| }
 | |
| 
 | |
| static int32_t
 | |
| e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
 | |
| {
 | |
| 	uint16_t swfw = E1000_SWFW_PHY0_SM;
 | |
| 	uint32_t reg_val;
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	if (e1000_is_second_port(hw))
 | |
| 		swfw = E1000_SWFW_PHY1_SM;
 | |
| 
 | |
| 	if (e1000_swfw_sync_acquire(hw, swfw)) {
 | |
| 		debug("%s[%i]\n", __func__, __LINE__);
 | |
| 		return -E1000_ERR_SWFW_SYNC;
 | |
| 	}
 | |
| 
 | |
| 	/* Write register address */
 | |
| 	reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
 | |
| 			E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
 | |
| 	E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
 | |
| 	udelay(2);
 | |
| 
 | |
| 	/* Read the data returned */
 | |
| 	reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
 | |
| 	*data = (uint16_t)reg_val;
 | |
| 
 | |
| 	return E1000_SUCCESS;
 | |
| }
 | |
| 
 | |
| /********************************************************************
 | |
| * Copper link setup for e1000_phy_gg82563 series.
 | |
| *
 | |
| * hw - Struct containing variables accessed by shared code
 | |
| *********************************************************************/
 | |
| static int32_t
 | |
| e1000_copper_link_ggp_setup(struct e1000_hw *hw)
 | |
| {
 | |
| 	int32_t ret_val;
 | |
| 	uint16_t phy_data;
 | |
| 	uint32_t reg_data;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	if (!hw->phy_reset_disable) {
 | |
| 		/* Enable CRS on TX for half-duplex operation. */
 | |
| 		ret_val = e1000_read_phy_reg(hw,
 | |
| 				GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
 | |
| 		if (ret_val)
 | |
| 			return ret_val;
 | |
| 
 | |
| 		phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
 | |
| 		/* Use 25MHz for both link down and 1000BASE-T for Tx clock */
 | |
| 		phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
 | |
| 
 | |
| 		ret_val = e1000_write_phy_reg(hw,
 | |
| 				GG82563_PHY_MAC_SPEC_CTRL, phy_data);
 | |
| 		if (ret_val)
 | |
| 			return ret_val;
 | |
| 
 | |
| 		/* Options:
 | |
| 		 *   MDI/MDI-X = 0 (default)
 | |
| 		 *   0 - Auto for all speeds
 | |
| 		 *   1 - MDI mode
 | |
| 		 *   2 - MDI-X mode
 | |
| 		 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 | |
| 		 */
 | |
| 		ret_val = e1000_read_phy_reg(hw,
 | |
| 				GG82563_PHY_SPEC_CTRL, &phy_data);
 | |
| 		if (ret_val)
 | |
| 			return ret_val;
 | |
| 
 | |
| 		phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
 | |
| 
 | |
| 		switch (hw->mdix) {
 | |
| 		case 1:
 | |
| 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
 | |
| 			break;
 | |
| 		case 2:
 | |
| 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
 | |
| 			break;
 | |
| 		case 0:
 | |
| 		default:
 | |
| 			phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* Options:
 | |
| 		 *   disable_polarity_correction = 0 (default)
 | |
| 		 *       Automatic Correction for Reversed Cable Polarity
 | |
| 		 *   0 - Disabled
 | |
| 		 *   1 - Enabled
 | |
| 		 */
 | |
| 		phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
 | |
| 		ret_val = e1000_write_phy_reg(hw,
 | |
| 				GG82563_PHY_SPEC_CTRL, phy_data);
 | |
| 
 | |
| 		if (ret_val)
 | |
| 			return ret_val;
 | |
| 
 | |
| 		/* SW Reset the PHY so all changes take effect */
 | |
| 		ret_val = e1000_phy_reset(hw);
 | |
| 		if (ret_val) {
 | |
| 			DEBUGOUT("Error Resetting the PHY\n");
 | |
| 			return ret_val;
 | |
| 		}
 | |
| 	} /* phy_reset_disable */
 | |
| 
 | |
| 	if (hw->mac_type == e1000_80003es2lan) {
 | |
| 		/* Bypass RX and TX FIFO's */
 | |
| 		ret_val = e1000_write_kmrn_reg(hw,
 | |
| 				E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
 | |
| 				E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
 | |
| 				| E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
 | |
| 		if (ret_val)
 | |
| 			return ret_val;
 | |
| 
 | |
| 		ret_val = e1000_read_phy_reg(hw,
 | |
| 				GG82563_PHY_SPEC_CTRL_2, &phy_data);
 | |
| 		if (ret_val)
 | |
| 			return ret_val;
 | |
| 
 | |
| 		phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
 | |
| 		ret_val = e1000_write_phy_reg(hw,
 | |
| 				GG82563_PHY_SPEC_CTRL_2, phy_data);
 | |
| 
 | |
| 		if (ret_val)
 | |
| 			return ret_val;
 | |
| 
 | |
| 		reg_data = E1000_READ_REG(hw, CTRL_EXT);
 | |
| 		reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
 | |
| 		E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
 | |
| 
 | |
| 		ret_val = e1000_read_phy_reg(hw,
 | |
| 				GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
 | |
| 		if (ret_val)
 | |
| 			return ret_val;
 | |
| 
 | |
| 	/* Do not init these registers when the HW is in IAMT mode, since the
 | |
| 	 * firmware will have already initialized them.  We only initialize
 | |
| 	 * them if the HW is not in IAMT mode.
 | |
| 	 */
 | |
| 		if (e1000_check_mng_mode(hw) == false) {
 | |
| 			/* Enable Electrical Idle on the PHY */
 | |
| 			phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
 | |
| 			ret_val = e1000_write_phy_reg(hw,
 | |
| 					GG82563_PHY_PWR_MGMT_CTRL, phy_data);
 | |
| 			if (ret_val)
 | |
| 				return ret_val;
 | |
| 
 | |
| 			ret_val = e1000_read_phy_reg(hw,
 | |
| 					GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
 | |
| 			if (ret_val)
 | |
| 				return ret_val;
 | |
| 
 | |
| 			phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
 | |
| 			ret_val = e1000_write_phy_reg(hw,
 | |
| 					GG82563_PHY_KMRN_MODE_CTRL, phy_data);
 | |
| 
 | |
| 			if (ret_val)
 | |
| 				return ret_val;
 | |
| 		}
 | |
| 
 | |
| 		/* Workaround: Disable padding in Kumeran interface in the MAC
 | |
| 		 * and in the PHY to avoid CRC errors.
 | |
| 		 */
 | |
| 		ret_val = e1000_read_phy_reg(hw,
 | |
| 				GG82563_PHY_INBAND_CTRL, &phy_data);
 | |
| 		if (ret_val)
 | |
| 			return ret_val;
 | |
| 		phy_data |= GG82563_ICR_DIS_PADDING;
 | |
| 		ret_val = e1000_write_phy_reg(hw,
 | |
| 				GG82563_PHY_INBAND_CTRL, phy_data);
 | |
| 		if (ret_val)
 | |
| 			return ret_val;
 | |
| 	}
 | |
| 	return E1000_SUCCESS;
 | |
| }
 | |
| 
 | |
| /********************************************************************
 | |
| * Copper link setup for e1000_phy_m88 series.
 | |
| *
 | |
| * hw - Struct containing variables accessed by shared code
 | |
| *********************************************************************/
 | |
| static int32_t
 | |
| e1000_copper_link_mgp_setup(struct e1000_hw *hw)
 | |
| {
 | |
| 	int32_t ret_val;
 | |
| 	uint16_t phy_data;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	if (hw->phy_reset_disable)
 | |
| 		return E1000_SUCCESS;
 | |
| 
 | |
| 	/* Enable CRS on TX. This must be set for half-duplex operation. */
 | |
| 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 | |
| 	if (ret_val)
 | |
| 		return ret_val;
 | |
| 
 | |
| 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
 | |
| 
 | |
| 	/* Options:
 | |
| 	 *   MDI/MDI-X = 0 (default)
 | |
| 	 *   0 - Auto for all speeds
 | |
| 	 *   1 - MDI mode
 | |
| 	 *   2 - MDI-X mode
 | |
| 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 | |
| 	 */
 | |
| 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
 | |
| 
 | |
| 	switch (hw->mdix) {
 | |
| 	case 1:
 | |
| 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
 | |
| 		break;
 | |
| 	case 3:
 | |
| 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
 | |
| 		break;
 | |
| 	case 0:
 | |
| 	default:
 | |
| 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* Options:
 | |
| 	 *   disable_polarity_correction = 0 (default)
 | |
| 	 *       Automatic Correction for Reversed Cable Polarity
 | |
| 	 *   0 - Disabled
 | |
| 	 *   1 - Enabled
 | |
| 	 */
 | |
| 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
 | |
| 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 | |
| 	if (ret_val)
 | |
| 		return ret_val;
 | |
| 
 | |
| 	if (hw->phy_revision < M88E1011_I_REV_4) {
 | |
| 		/* Force TX_CLK in the Extended PHY Specific Control Register
 | |
| 		 * to 25MHz clock.
 | |
| 		 */
 | |
| 		ret_val = e1000_read_phy_reg(hw,
 | |
| 				M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 | |
| 		if (ret_val)
 | |
| 			return ret_val;
 | |
| 
 | |
| 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
 | |
| 
 | |
| 		if ((hw->phy_revision == E1000_REVISION_2) &&
 | |
| 			(hw->phy_id == M88E1111_I_PHY_ID)) {
 | |
| 			/* Vidalia Phy, set the downshift counter to 5x */
 | |
| 			phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
 | |
| 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
 | |
| 			ret_val = e1000_write_phy_reg(hw,
 | |
| 					M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 | |
| 			if (ret_val)
 | |
| 				return ret_val;
 | |
| 		} else {
 | |
| 			/* Configure Master and Slave downshift values */
 | |
| 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
 | |
| 					| M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
 | |
| 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
 | |
| 					| M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
 | |
| 			ret_val = e1000_write_phy_reg(hw,
 | |
| 					M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 | |
| 			if (ret_val)
 | |
| 				return ret_val;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* SW Reset the PHY so all changes take effect */
 | |
| 	ret_val = e1000_phy_reset(hw);
 | |
| 	if (ret_val) {
 | |
| 		DEBUGOUT("Error Resetting the PHY\n");
 | |
| 		return ret_val;
 | |
| 	}
 | |
| 
 | |
| 	return E1000_SUCCESS;
 | |
| }
 | |
| 
 | |
| /********************************************************************
 | |
| * Setup auto-negotiation and flow control advertisements,
 | |
| * and then perform auto-negotiation.
 | |
| *
 | |
| * hw - Struct containing variables accessed by shared code
 | |
| *********************************************************************/
 | |
| static int32_t
 | |
| e1000_copper_link_autoneg(struct e1000_hw *hw)
 | |
| {
 | |
| 	int32_t ret_val;
 | |
| 	uint16_t phy_data;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	/* Perform some bounds checking on the hw->autoneg_advertised
 | |
| 	 * parameter.  If this variable is zero, then set it to the default.
 | |
| 	 */
 | |
| 	hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
 | |
| 
 | |
| 	/* If autoneg_advertised is zero, we assume it was not defaulted
 | |
| 	 * by the calling code so we set to advertise full capability.
 | |
| 	 */
 | |
| 	if (hw->autoneg_advertised == 0)
 | |
| 		hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 | |
| 
 | |
| 	/* IFE phy only supports 10/100 */
 | |
| 	if (hw->phy_type == e1000_phy_ife)
 | |
| 		hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
 | |
| 
 | |
| 	DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
 | |
| 	ret_val = e1000_phy_setup_autoneg(hw);
 | |
| 	if (ret_val) {
 | |
| 		DEBUGOUT("Error Setting up Auto-Negotiation\n");
 | |
| 		return ret_val;
 | |
| 	}
 | |
| 	DEBUGOUT("Restarting Auto-Neg\n");
 | |
| 
 | |
| 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
 | |
| 	 * the Auto Neg Restart bit in the PHY control register.
 | |
| 	 */
 | |
| 	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
 | |
| 	if (ret_val)
 | |
| 		return ret_val;
 | |
| 
 | |
| 	phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
 | |
| 	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
 | |
| 	if (ret_val)
 | |
| 		return ret_val;
 | |
| 
 | |
| 	/* Does the user want to wait for Auto-Neg to complete here, or
 | |
| 	 * check at a later time (for example, callback routine).
 | |
| 	 */
 | |
| 	/* If we do not wait for autonegtation to complete I
 | |
| 	 * do not see a valid link status.
 | |
| 	 * wait_autoneg_complete = 1 .
 | |
| 	 */
 | |
| 	if (hw->wait_autoneg_complete) {
 | |
| 		ret_val = e1000_wait_autoneg(hw);
 | |
| 		if (ret_val) {
 | |
| 			DEBUGOUT("Error while waiting for autoneg"
 | |
| 					"to complete\n");
 | |
| 			return ret_val;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	hw->get_link_status = true;
 | |
| 
 | |
| 	return E1000_SUCCESS;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
| * Config the MAC and the PHY after link is up.
 | |
| *   1) Set up the MAC to the current PHY speed/duplex
 | |
| *      if we are on 82543.  If we
 | |
| *      are on newer silicon, we only need to configure
 | |
| *      collision distance in the Transmit Control Register.
 | |
| *   2) Set up flow control on the MAC to that established with
 | |
| *      the link partner.
 | |
| *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
 | |
| *
 | |
| * hw - Struct containing variables accessed by shared code
 | |
| ******************************************************************************/
 | |
| static int32_t
 | |
| e1000_copper_link_postconfig(struct e1000_hw *hw)
 | |
| {
 | |
| 	int32_t ret_val;
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	if (hw->mac_type >= e1000_82544) {
 | |
| 		e1000_config_collision_dist(hw);
 | |
| 	} else {
 | |
| 		ret_val = e1000_config_mac_to_phy(hw);
 | |
| 		if (ret_val) {
 | |
| 			DEBUGOUT("Error configuring MAC to PHY settings\n");
 | |
| 			return ret_val;
 | |
| 		}
 | |
| 	}
 | |
| 	ret_val = e1000_config_fc_after_link_up(hw);
 | |
| 	if (ret_val) {
 | |
| 		DEBUGOUT("Error Configuring Flow Control\n");
 | |
| 		return ret_val;
 | |
| 	}
 | |
| 	return E1000_SUCCESS;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
| * Detects which PHY is present and setup the speed and duplex
 | |
| *
 | |
| * hw - Struct containing variables accessed by shared code
 | |
| ******************************************************************************/
 | |
| static int
 | |
| e1000_setup_copper_link(struct e1000_hw *hw)
 | |
| {
 | |
| 	int32_t ret_val;
 | |
| 	uint16_t i;
 | |
| 	uint16_t phy_data;
 | |
| 	uint16_t reg_data;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	switch (hw->mac_type) {
 | |
| 	case e1000_80003es2lan:
 | |
| 	case e1000_ich8lan:
 | |
| 		/* Set the mac to wait the maximum time between each
 | |
| 		 * iteration and increase the max iterations when
 | |
| 		 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
 | |
| 		ret_val = e1000_write_kmrn_reg(hw,
 | |
| 				GG82563_REG(0x34, 4), 0xFFFF);
 | |
| 		if (ret_val)
 | |
| 			return ret_val;
 | |
| 		ret_val = e1000_read_kmrn_reg(hw,
 | |
| 				GG82563_REG(0x34, 9), ®_data);
 | |
| 		if (ret_val)
 | |
| 			return ret_val;
 | |
| 		reg_data |= 0x3F;
 | |
| 		ret_val = e1000_write_kmrn_reg(hw,
 | |
| 				GG82563_REG(0x34, 9), reg_data);
 | |
| 		if (ret_val)
 | |
| 			return ret_val;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* Check if it is a valid PHY and set PHY mode if necessary. */
 | |
| 	ret_val = e1000_copper_link_preconfig(hw);
 | |
| 	if (ret_val)
 | |
| 		return ret_val;
 | |
| 	switch (hw->mac_type) {
 | |
| 	case e1000_80003es2lan:
 | |
| 		/* Kumeran registers are written-only */
 | |
| 		reg_data =
 | |
| 		E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
 | |
| 		reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
 | |
| 		ret_val = e1000_write_kmrn_reg(hw,
 | |
| 				E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
 | |
| 		if (ret_val)
 | |
| 			return ret_val;
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (hw->phy_type == e1000_phy_igp ||
 | |
| 		hw->phy_type == e1000_phy_igp_3 ||
 | |
| 		hw->phy_type == e1000_phy_igp_2) {
 | |
| 		ret_val = e1000_copper_link_igp_setup(hw);
 | |
| 		if (ret_val)
 | |
| 			return ret_val;
 | |
| 	} else if (hw->phy_type == e1000_phy_m88 ||
 | |
| 		hw->phy_type == e1000_phy_igb) {
 | |
| 		ret_val = e1000_copper_link_mgp_setup(hw);
 | |
| 		if (ret_val)
 | |
| 			return ret_val;
 | |
| 	} else if (hw->phy_type == e1000_phy_gg82563) {
 | |
| 		ret_val = e1000_copper_link_ggp_setup(hw);
 | |
| 		if (ret_val)
 | |
| 			return ret_val;
 | |
| 	}
 | |
| 
 | |
| 	/* always auto */
 | |
| 	/* Setup autoneg and flow control advertisement
 | |
| 	  * and perform autonegotiation */
 | |
| 	ret_val = e1000_copper_link_autoneg(hw);
 | |
| 	if (ret_val)
 | |
| 		return ret_val;
 | |
| 
 | |
| 	/* Check link status. Wait up to 100 microseconds for link to become
 | |
| 	 * valid.
 | |
| 	 */
 | |
| 	for (i = 0; i < 10; i++) {
 | |
| 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
 | |
| 		if (ret_val)
 | |
| 			return ret_val;
 | |
| 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
 | |
| 		if (ret_val)
 | |
| 			return ret_val;
 | |
| 
 | |
| 		if (phy_data & MII_SR_LINK_STATUS) {
 | |
| 			/* Config the MAC and PHY after link is up */
 | |
| 			ret_val = e1000_copper_link_postconfig(hw);
 | |
| 			if (ret_val)
 | |
| 				return ret_val;
 | |
| 
 | |
| 			DEBUGOUT("Valid link established!!!\n");
 | |
| 			return E1000_SUCCESS;
 | |
| 		}
 | |
| 		udelay(10);
 | |
| 	}
 | |
| 
 | |
| 	DEBUGOUT("Unable to establish link!!!\n");
 | |
| 	return E1000_SUCCESS;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
| * Configures PHY autoneg and flow control advertisement settings
 | |
| *
 | |
| * hw - Struct containing variables accessed by shared code
 | |
| ******************************************************************************/
 | |
| int32_t
 | |
| e1000_phy_setup_autoneg(struct e1000_hw *hw)
 | |
| {
 | |
| 	int32_t ret_val;
 | |
| 	uint16_t mii_autoneg_adv_reg;
 | |
| 	uint16_t mii_1000t_ctrl_reg;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
 | |
| 	ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
 | |
| 	if (ret_val)
 | |
| 		return ret_val;
 | |
| 
 | |
| 	if (hw->phy_type != e1000_phy_ife) {
 | |
| 		/* Read the MII 1000Base-T Control Register (Address 9). */
 | |
| 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
 | |
| 				&mii_1000t_ctrl_reg);
 | |
| 		if (ret_val)
 | |
| 			return ret_val;
 | |
| 	} else
 | |
| 		mii_1000t_ctrl_reg = 0;
 | |
| 
 | |
| 	/* Need to parse both autoneg_advertised and fc and set up
 | |
| 	 * the appropriate PHY registers.  First we will parse for
 | |
| 	 * autoneg_advertised software override.  Since we can advertise
 | |
| 	 * a plethora of combinations, we need to check each bit
 | |
| 	 * individually.
 | |
| 	 */
 | |
| 
 | |
| 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
 | |
| 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
 | |
| 	 * the  1000Base-T Control Register (Address 9).
 | |
| 	 */
 | |
| 	mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
 | |
| 	mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
 | |
| 
 | |
| 	DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
 | |
| 
 | |
| 	/* Do we want to advertise 10 Mb Half Duplex? */
 | |
| 	if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
 | |
| 		DEBUGOUT("Advertise 10mb Half duplex\n");
 | |
| 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
 | |
| 	}
 | |
| 
 | |
| 	/* Do we want to advertise 10 Mb Full Duplex? */
 | |
| 	if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
 | |
| 		DEBUGOUT("Advertise 10mb Full duplex\n");
 | |
| 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
 | |
| 	}
 | |
| 
 | |
| 	/* Do we want to advertise 100 Mb Half Duplex? */
 | |
| 	if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
 | |
| 		DEBUGOUT("Advertise 100mb Half duplex\n");
 | |
| 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
 | |
| 	}
 | |
| 
 | |
| 	/* Do we want to advertise 100 Mb Full Duplex? */
 | |
| 	if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
 | |
| 		DEBUGOUT("Advertise 100mb Full duplex\n");
 | |
| 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
 | |
| 	}
 | |
| 
 | |
| 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
 | |
| 	if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
 | |
| 		DEBUGOUT
 | |
| 		    ("Advertise 1000mb Half duplex requested, request denied!\n");
 | |
| 	}
 | |
| 
 | |
| 	/* Do we want to advertise 1000 Mb Full Duplex? */
 | |
| 	if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
 | |
| 		DEBUGOUT("Advertise 1000mb Full duplex\n");
 | |
| 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
 | |
| 	}
 | |
| 
 | |
| 	/* Check for a software override of the flow control settings, and
 | |
| 	 * setup the PHY advertisement registers accordingly.  If
 | |
| 	 * auto-negotiation is enabled, then software will have to set the
 | |
| 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
 | |
| 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
 | |
| 	 *
 | |
| 	 * The possible values of the "fc" parameter are:
 | |
| 	 *	0:  Flow control is completely disabled
 | |
| 	 *	1:  Rx flow control is enabled (we can receive pause frames
 | |
| 	 *	    but not send pause frames).
 | |
| 	 *	2:  Tx flow control is enabled (we can send pause frames
 | |
| 	 *	    but we do not support receiving pause frames).
 | |
| 	 *	3:  Both Rx and TX flow control (symmetric) are enabled.
 | |
| 	 *  other:  No software override.  The flow control configuration
 | |
| 	 *	    in the EEPROM is used.
 | |
| 	 */
 | |
| 	switch (hw->fc) {
 | |
| 	case e1000_fc_none:	/* 0 */
 | |
| 		/* Flow control (RX & TX) is completely disabled by a
 | |
| 		 * software over-ride.
 | |
| 		 */
 | |
| 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
 | |
| 		break;
 | |
| 	case e1000_fc_rx_pause:	/* 1 */
 | |
| 		/* RX Flow control is enabled, and TX Flow control is
 | |
| 		 * disabled, by a software over-ride.
 | |
| 		 */
 | |
| 		/* Since there really isn't a way to advertise that we are
 | |
| 		 * capable of RX Pause ONLY, we will advertise that we
 | |
| 		 * support both symmetric and asymmetric RX PAUSE.  Later
 | |
| 		 * (in e1000_config_fc_after_link_up) we will disable the
 | |
| 		 *hw's ability to send PAUSE frames.
 | |
| 		 */
 | |
| 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
 | |
| 		break;
 | |
| 	case e1000_fc_tx_pause:	/* 2 */
 | |
| 		/* TX Flow control is enabled, and RX Flow control is
 | |
| 		 * disabled, by a software over-ride.
 | |
| 		 */
 | |
| 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
 | |
| 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
 | |
| 		break;
 | |
| 	case e1000_fc_full:	/* 3 */
 | |
| 		/* Flow control (both RX and TX) is enabled by a software
 | |
| 		 * over-ride.
 | |
| 		 */
 | |
| 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
 | |
| 		break;
 | |
| 	default:
 | |
| 		DEBUGOUT("Flow control param set incorrectly\n");
 | |
| 		return -E1000_ERR_CONFIG;
 | |
| 	}
 | |
| 
 | |
| 	ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
 | |
| 	if (ret_val)
 | |
| 		return ret_val;
 | |
| 
 | |
| 	DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
 | |
| 
 | |
| 	if (hw->phy_type != e1000_phy_ife) {
 | |
| 		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
 | |
| 				mii_1000t_ctrl_reg);
 | |
| 		if (ret_val)
 | |
| 			return ret_val;
 | |
| 	}
 | |
| 
 | |
| 	return E1000_SUCCESS;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
| * Sets the collision distance in the Transmit Control register
 | |
| *
 | |
| * hw - Struct containing variables accessed by shared code
 | |
| *
 | |
| * Link should have been established previously. Reads the speed and duplex
 | |
| * information from the Device Status register.
 | |
| ******************************************************************************/
 | |
| static void
 | |
| e1000_config_collision_dist(struct e1000_hw *hw)
 | |
| {
 | |
| 	uint32_t tctl, coll_dist;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	if (hw->mac_type < e1000_82543)
 | |
| 		coll_dist = E1000_COLLISION_DISTANCE_82542;
 | |
| 	else
 | |
| 		coll_dist = E1000_COLLISION_DISTANCE;
 | |
| 
 | |
| 	tctl = E1000_READ_REG(hw, TCTL);
 | |
| 
 | |
| 	tctl &= ~E1000_TCTL_COLD;
 | |
| 	tctl |= coll_dist << E1000_COLD_SHIFT;
 | |
| 
 | |
| 	E1000_WRITE_REG(hw, TCTL, tctl);
 | |
| 	E1000_WRITE_FLUSH(hw);
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
| * Sets MAC speed and duplex settings to reflect the those in the PHY
 | |
| *
 | |
| * hw - Struct containing variables accessed by shared code
 | |
| * mii_reg - data to write to the MII control register
 | |
| *
 | |
| * The contents of the PHY register containing the needed information need to
 | |
| * be passed in.
 | |
| ******************************************************************************/
 | |
| static int
 | |
| e1000_config_mac_to_phy(struct e1000_hw *hw)
 | |
| {
 | |
| 	uint32_t ctrl;
 | |
| 	uint16_t phy_data;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	/* Read the Device Control Register and set the bits to Force Speed
 | |
| 	 * and Duplex.
 | |
| 	 */
 | |
| 	ctrl = E1000_READ_REG(hw, CTRL);
 | |
| 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
 | |
| 	ctrl &= ~(E1000_CTRL_ILOS);
 | |
| 	ctrl |= (E1000_CTRL_SPD_SEL);
 | |
| 
 | |
| 	/* Set up duplex in the Device Control and Transmit Control
 | |
| 	 * registers depending on negotiated values.
 | |
| 	 */
 | |
| 	if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
 | |
| 		DEBUGOUT("PHY Read Error\n");
 | |
| 		return -E1000_ERR_PHY;
 | |
| 	}
 | |
| 	if (phy_data & M88E1000_PSSR_DPLX)
 | |
| 		ctrl |= E1000_CTRL_FD;
 | |
| 	else
 | |
| 		ctrl &= ~E1000_CTRL_FD;
 | |
| 
 | |
| 	e1000_config_collision_dist(hw);
 | |
| 
 | |
| 	/* Set up speed in the Device Control register depending on
 | |
| 	 * negotiated values.
 | |
| 	 */
 | |
| 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
 | |
| 		ctrl |= E1000_CTRL_SPD_1000;
 | |
| 	else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
 | |
| 		ctrl |= E1000_CTRL_SPD_100;
 | |
| 	/* Write the configured values back to the Device Control Reg. */
 | |
| 	E1000_WRITE_REG(hw, CTRL, ctrl);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Forces the MAC's flow control settings.
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  *
 | |
|  * Sets the TFCE and RFCE bits in the device control register to reflect
 | |
|  * the adapter settings. TFCE and RFCE need to be explicitly set by
 | |
|  * software when a Copper PHY is used because autonegotiation is managed
 | |
|  * by the PHY rather than the MAC. Software must also configure these
 | |
|  * bits when link is forced on a fiber connection.
 | |
|  *****************************************************************************/
 | |
| static int
 | |
| e1000_force_mac_fc(struct e1000_hw *hw)
 | |
| {
 | |
| 	uint32_t ctrl;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	/* Get the current configuration of the Device Control Register */
 | |
| 	ctrl = E1000_READ_REG(hw, CTRL);
 | |
| 
 | |
| 	/* Because we didn't get link via the internal auto-negotiation
 | |
| 	 * mechanism (we either forced link or we got link via PHY
 | |
| 	 * auto-neg), we have to manually enable/disable transmit an
 | |
| 	 * receive flow control.
 | |
| 	 *
 | |
| 	 * The "Case" statement below enables/disable flow control
 | |
| 	 * according to the "hw->fc" parameter.
 | |
| 	 *
 | |
| 	 * The possible values of the "fc" parameter are:
 | |
| 	 *	0:  Flow control is completely disabled
 | |
| 	 *	1:  Rx flow control is enabled (we can receive pause
 | |
| 	 *	    frames but not send pause frames).
 | |
| 	 *	2:  Tx flow control is enabled (we can send pause frames
 | |
| 	 *	    frames but we do not receive pause frames).
 | |
| 	 *	3:  Both Rx and TX flow control (symmetric) is enabled.
 | |
| 	 *  other:  No other values should be possible at this point.
 | |
| 	 */
 | |
| 
 | |
| 	switch (hw->fc) {
 | |
| 	case e1000_fc_none:
 | |
| 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
 | |
| 		break;
 | |
| 	case e1000_fc_rx_pause:
 | |
| 		ctrl &= (~E1000_CTRL_TFCE);
 | |
| 		ctrl |= E1000_CTRL_RFCE;
 | |
| 		break;
 | |
| 	case e1000_fc_tx_pause:
 | |
| 		ctrl &= (~E1000_CTRL_RFCE);
 | |
| 		ctrl |= E1000_CTRL_TFCE;
 | |
| 		break;
 | |
| 	case e1000_fc_full:
 | |
| 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
 | |
| 		break;
 | |
| 	default:
 | |
| 		DEBUGOUT("Flow control param set incorrectly\n");
 | |
| 		return -E1000_ERR_CONFIG;
 | |
| 	}
 | |
| 
 | |
| 	/* Disable TX Flow Control for 82542 (rev 2.0) */
 | |
| 	if (hw->mac_type == e1000_82542_rev2_0)
 | |
| 		ctrl &= (~E1000_CTRL_TFCE);
 | |
| 
 | |
| 	E1000_WRITE_REG(hw, CTRL, ctrl);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Configures flow control settings after link is established
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  *
 | |
|  * Should be called immediately after a valid link has been established.
 | |
|  * Forces MAC flow control settings if link was forced. When in MII/GMII mode
 | |
|  * and autonegotiation is enabled, the MAC flow control settings will be set
 | |
|  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
 | |
|  * and RFCE bits will be automaticaly set to the negotiated flow control mode.
 | |
|  *****************************************************************************/
 | |
| static int32_t
 | |
| e1000_config_fc_after_link_up(struct e1000_hw *hw)
 | |
| {
 | |
| 	int32_t ret_val;
 | |
| 	uint16_t mii_status_reg;
 | |
| 	uint16_t mii_nway_adv_reg;
 | |
| 	uint16_t mii_nway_lp_ability_reg;
 | |
| 	uint16_t speed;
 | |
| 	uint16_t duplex;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	/* Check for the case where we have fiber media and auto-neg failed
 | |
| 	 * so we had to force link.  In this case, we need to force the
 | |
| 	 * configuration of the MAC to match the "fc" parameter.
 | |
| 	 */
 | |
| 	if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
 | |
| 		|| ((hw->media_type == e1000_media_type_internal_serdes)
 | |
| 		&& (hw->autoneg_failed))
 | |
| 		|| ((hw->media_type == e1000_media_type_copper)
 | |
| 		&& (!hw->autoneg))) {
 | |
| 		ret_val = e1000_force_mac_fc(hw);
 | |
| 		if (ret_val < 0) {
 | |
| 			DEBUGOUT("Error forcing flow control settings\n");
 | |
| 			return ret_val;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Check for the case where we have copper media and auto-neg is
 | |
| 	 * enabled.  In this case, we need to check and see if Auto-Neg
 | |
| 	 * has completed, and if so, how the PHY and link partner has
 | |
| 	 * flow control configured.
 | |
| 	 */
 | |
| 	if (hw->media_type == e1000_media_type_copper) {
 | |
| 		/* Read the MII Status Register and check to see if AutoNeg
 | |
| 		 * has completed.  We read this twice because this reg has
 | |
| 		 * some "sticky" (latched) bits.
 | |
| 		 */
 | |
| 		if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
 | |
| 			DEBUGOUT("PHY Read Error\n");
 | |
| 			return -E1000_ERR_PHY;
 | |
| 		}
 | |
| 		if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
 | |
| 			DEBUGOUT("PHY Read Error\n");
 | |
| 			return -E1000_ERR_PHY;
 | |
| 		}
 | |
| 
 | |
| 		if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
 | |
| 			/* The AutoNeg process has completed, so we now need to
 | |
| 			 * read both the Auto Negotiation Advertisement Register
 | |
| 			 * (Address 4) and the Auto_Negotiation Base Page Ability
 | |
| 			 * Register (Address 5) to determine how flow control was
 | |
| 			 * negotiated.
 | |
| 			 */
 | |
| 			if (e1000_read_phy_reg
 | |
| 			    (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
 | |
| 				DEBUGOUT("PHY Read Error\n");
 | |
| 				return -E1000_ERR_PHY;
 | |
| 			}
 | |
| 			if (e1000_read_phy_reg
 | |
| 			    (hw, PHY_LP_ABILITY,
 | |
| 			     &mii_nway_lp_ability_reg) < 0) {
 | |
| 				DEBUGOUT("PHY Read Error\n");
 | |
| 				return -E1000_ERR_PHY;
 | |
| 			}
 | |
| 
 | |
| 			/* Two bits in the Auto Negotiation Advertisement Register
 | |
| 			 * (Address 4) and two bits in the Auto Negotiation Base
 | |
| 			 * Page Ability Register (Address 5) determine flow control
 | |
| 			 * for both the PHY and the link partner.  The following
 | |
| 			 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
 | |
| 			 * 1999, describes these PAUSE resolution bits and how flow
 | |
| 			 * control is determined based upon these settings.
 | |
| 			 * NOTE:  DC = Don't Care
 | |
| 			 *
 | |
| 			 *   LOCAL DEVICE  |   LINK PARTNER
 | |
| 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
 | |
| 			 *-------|---------|-------|---------|--------------------
 | |
| 			 *   0	 |    0    |  DC   |   DC    | e1000_fc_none
 | |
| 			 *   0	 |    1    |   0   |   DC    | e1000_fc_none
 | |
| 			 *   0	 |    1    |   1   |	0    | e1000_fc_none
 | |
| 			 *   0	 |    1    |   1   |	1    | e1000_fc_tx_pause
 | |
| 			 *   1	 |    0    |   0   |   DC    | e1000_fc_none
 | |
| 			 *   1	 |   DC    |   1   |   DC    | e1000_fc_full
 | |
| 			 *   1	 |    1    |   0   |	0    | e1000_fc_none
 | |
| 			 *   1	 |    1    |   0   |	1    | e1000_fc_rx_pause
 | |
| 			 *
 | |
| 			 */
 | |
| 			/* Are both PAUSE bits set to 1?  If so, this implies
 | |
| 			 * Symmetric Flow Control is enabled at both ends.  The
 | |
| 			 * ASM_DIR bits are irrelevant per the spec.
 | |
| 			 *
 | |
| 			 * For Symmetric Flow Control:
 | |
| 			 *
 | |
| 			 *   LOCAL DEVICE  |   LINK PARTNER
 | |
| 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
 | |
| 			 *-------|---------|-------|---------|--------------------
 | |
| 			 *   1	 |   DC    |   1   |   DC    | e1000_fc_full
 | |
| 			 *
 | |
| 			 */
 | |
| 			if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
 | |
| 			    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
 | |
| 				/* Now we need to check if the user selected RX ONLY
 | |
| 				 * of pause frames.  In this case, we had to advertise
 | |
| 				 * FULL flow control because we could not advertise RX
 | |
| 				 * ONLY. Hence, we must now check to see if we need to
 | |
| 				 * turn OFF  the TRANSMISSION of PAUSE frames.
 | |
| 				 */
 | |
| 				if (hw->original_fc == e1000_fc_full) {
 | |
| 					hw->fc = e1000_fc_full;
 | |
| 					DEBUGOUT("Flow Control = FULL.\r\n");
 | |
| 				} else {
 | |
| 					hw->fc = e1000_fc_rx_pause;
 | |
| 					DEBUGOUT
 | |
| 					    ("Flow Control = RX PAUSE frames only.\r\n");
 | |
| 				}
 | |
| 			}
 | |
| 			/* For receiving PAUSE frames ONLY.
 | |
| 			 *
 | |
| 			 *   LOCAL DEVICE  |   LINK PARTNER
 | |
| 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
 | |
| 			 *-------|---------|-------|---------|--------------------
 | |
| 			 *   0	 |    1    |   1   |	1    | e1000_fc_tx_pause
 | |
| 			 *
 | |
| 			 */
 | |
| 			else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
 | |
| 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
 | |
| 				 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
 | |
| 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
 | |
| 			{
 | |
| 				hw->fc = e1000_fc_tx_pause;
 | |
| 				DEBUGOUT
 | |
| 				    ("Flow Control = TX PAUSE frames only.\r\n");
 | |
| 			}
 | |
| 			/* For transmitting PAUSE frames ONLY.
 | |
| 			 *
 | |
| 			 *   LOCAL DEVICE  |   LINK PARTNER
 | |
| 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
 | |
| 			 *-------|---------|-------|---------|--------------------
 | |
| 			 *   1	 |    1    |   0   |	1    | e1000_fc_rx_pause
 | |
| 			 *
 | |
| 			 */
 | |
| 			else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
 | |
| 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
 | |
| 				 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
 | |
| 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
 | |
| 			{
 | |
| 				hw->fc = e1000_fc_rx_pause;
 | |
| 				DEBUGOUT
 | |
| 				    ("Flow Control = RX PAUSE frames only.\r\n");
 | |
| 			}
 | |
| 			/* Per the IEEE spec, at this point flow control should be
 | |
| 			 * disabled.  However, we want to consider that we could
 | |
| 			 * be connected to a legacy switch that doesn't advertise
 | |
| 			 * desired flow control, but can be forced on the link
 | |
| 			 * partner.  So if we advertised no flow control, that is
 | |
| 			 * what we will resolve to.  If we advertised some kind of
 | |
| 			 * receive capability (Rx Pause Only or Full Flow Control)
 | |
| 			 * and the link partner advertised none, we will configure
 | |
| 			 * ourselves to enable Rx Flow Control only.  We can do
 | |
| 			 * this safely for two reasons:  If the link partner really
 | |
| 			 * didn't want flow control enabled, and we enable Rx, no
 | |
| 			 * harm done since we won't be receiving any PAUSE frames
 | |
| 			 * anyway.  If the intent on the link partner was to have
 | |
| 			 * flow control enabled, then by us enabling RX only, we
 | |
| 			 * can at least receive pause frames and process them.
 | |
| 			 * This is a good idea because in most cases, since we are
 | |
| 			 * predominantly a server NIC, more times than not we will
 | |
| 			 * be asked to delay transmission of packets than asking
 | |
| 			 * our link partner to pause transmission of frames.
 | |
| 			 */
 | |
| 			else if (hw->original_fc == e1000_fc_none ||
 | |
| 				 hw->original_fc == e1000_fc_tx_pause) {
 | |
| 				hw->fc = e1000_fc_none;
 | |
| 				DEBUGOUT("Flow Control = NONE.\r\n");
 | |
| 			} else {
 | |
| 				hw->fc = e1000_fc_rx_pause;
 | |
| 				DEBUGOUT
 | |
| 				    ("Flow Control = RX PAUSE frames only.\r\n");
 | |
| 			}
 | |
| 
 | |
| 			/* Now we need to do one last check...	If we auto-
 | |
| 			 * negotiated to HALF DUPLEX, flow control should not be
 | |
| 			 * enabled per IEEE 802.3 spec.
 | |
| 			 */
 | |
| 			e1000_get_speed_and_duplex(hw, &speed, &duplex);
 | |
| 
 | |
| 			if (duplex == HALF_DUPLEX)
 | |
| 				hw->fc = e1000_fc_none;
 | |
| 
 | |
| 			/* Now we call a subroutine to actually force the MAC
 | |
| 			 * controller to use the correct flow control settings.
 | |
| 			 */
 | |
| 			ret_val = e1000_force_mac_fc(hw);
 | |
| 			if (ret_val < 0) {
 | |
| 				DEBUGOUT
 | |
| 				    ("Error forcing flow control settings\n");
 | |
| 				return ret_val;
 | |
| 			}
 | |
| 		} else {
 | |
| 			DEBUGOUT
 | |
| 			    ("Copper PHY and Auto Neg has not completed.\r\n");
 | |
| 		}
 | |
| 	}
 | |
| 	return E1000_SUCCESS;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Checks to see if the link status of the hardware has changed.
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  *
 | |
|  * Called by any function that needs to check the link status of the adapter.
 | |
|  *****************************************************************************/
 | |
| static int
 | |
| e1000_check_for_link(struct e1000_hw *hw)
 | |
| {
 | |
| 	uint32_t rxcw;
 | |
| 	uint32_t ctrl;
 | |
| 	uint32_t status;
 | |
| 	uint32_t rctl;
 | |
| 	uint32_t signal;
 | |
| 	int32_t ret_val;
 | |
| 	uint16_t phy_data;
 | |
| 	uint16_t lp_capability;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
 | |
| 	 * set when the optics detect a signal. On older adapters, it will be
 | |
| 	 * cleared when there is a signal
 | |
| 	 */
 | |
| 	ctrl = E1000_READ_REG(hw, CTRL);
 | |
| 	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
 | |
| 		signal = E1000_CTRL_SWDPIN1;
 | |
| 	else
 | |
| 		signal = 0;
 | |
| 
 | |
| 	status = E1000_READ_REG(hw, STATUS);
 | |
| 	rxcw = E1000_READ_REG(hw, RXCW);
 | |
| 	DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
 | |
| 
 | |
| 	/* If we have a copper PHY then we only want to go out to the PHY
 | |
| 	 * registers to see if Auto-Neg has completed and/or if our link
 | |
| 	 * status has changed.	The get_link_status flag will be set if we
 | |
| 	 * receive a Link Status Change interrupt or we have Rx Sequence
 | |
| 	 * Errors.
 | |
| 	 */
 | |
| 	if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
 | |
| 		/* First we want to see if the MII Status Register reports
 | |
| 		 * link.  If so, then we want to get the current speed/duplex
 | |
| 		 * of the PHY.
 | |
| 		 * Read the register twice since the link bit is sticky.
 | |
| 		 */
 | |
| 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
 | |
| 			DEBUGOUT("PHY Read Error\n");
 | |
| 			return -E1000_ERR_PHY;
 | |
| 		}
 | |
| 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
 | |
| 			DEBUGOUT("PHY Read Error\n");
 | |
| 			return -E1000_ERR_PHY;
 | |
| 		}
 | |
| 
 | |
| 		if (phy_data & MII_SR_LINK_STATUS) {
 | |
| 			hw->get_link_status = false;
 | |
| 		} else {
 | |
| 			/* No link detected */
 | |
| 			return -E1000_ERR_NOLINK;
 | |
| 		}
 | |
| 
 | |
| 		/* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
 | |
| 		 * have Si on board that is 82544 or newer, Auto
 | |
| 		 * Speed Detection takes care of MAC speed/duplex
 | |
| 		 * configuration.  So we only need to configure Collision
 | |
| 		 * Distance in the MAC.  Otherwise, we need to force
 | |
| 		 * speed/duplex on the MAC to the current PHY speed/duplex
 | |
| 		 * settings.
 | |
| 		 */
 | |
| 		if (hw->mac_type >= e1000_82544)
 | |
| 			e1000_config_collision_dist(hw);
 | |
| 		else {
 | |
| 			ret_val = e1000_config_mac_to_phy(hw);
 | |
| 			if (ret_val < 0) {
 | |
| 				DEBUGOUT
 | |
| 				    ("Error configuring MAC to PHY settings\n");
 | |
| 				return ret_val;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* Configure Flow Control now that Auto-Neg has completed. First, we
 | |
| 		 * need to restore the desired flow control settings because we may
 | |
| 		 * have had to re-autoneg with a different link partner.
 | |
| 		 */
 | |
| 		ret_val = e1000_config_fc_after_link_up(hw);
 | |
| 		if (ret_val < 0) {
 | |
| 			DEBUGOUT("Error configuring flow control\n");
 | |
| 			return ret_val;
 | |
| 		}
 | |
| 
 | |
| 		/* At this point we know that we are on copper and we have
 | |
| 		 * auto-negotiated link.  These are conditions for checking the link
 | |
| 		 * parter capability register.	We use the link partner capability to
 | |
| 		 * determine if TBI Compatibility needs to be turned on or off.  If
 | |
| 		 * the link partner advertises any speed in addition to Gigabit, then
 | |
| 		 * we assume that they are GMII-based, and TBI compatibility is not
 | |
| 		 * needed. If no other speeds are advertised, we assume the link
 | |
| 		 * partner is TBI-based, and we turn on TBI Compatibility.
 | |
| 		 */
 | |
| 		if (hw->tbi_compatibility_en) {
 | |
| 			if (e1000_read_phy_reg
 | |
| 			    (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
 | |
| 				DEBUGOUT("PHY Read Error\n");
 | |
| 				return -E1000_ERR_PHY;
 | |
| 			}
 | |
| 			if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
 | |
| 					     NWAY_LPAR_10T_FD_CAPS |
 | |
| 					     NWAY_LPAR_100TX_HD_CAPS |
 | |
| 					     NWAY_LPAR_100TX_FD_CAPS |
 | |
| 					     NWAY_LPAR_100T4_CAPS)) {
 | |
| 				/* If our link partner advertises anything in addition to
 | |
| 				 * gigabit, we do not need to enable TBI compatibility.
 | |
| 				 */
 | |
| 				if (hw->tbi_compatibility_on) {
 | |
| 					/* If we previously were in the mode, turn it off. */
 | |
| 					rctl = E1000_READ_REG(hw, RCTL);
 | |
| 					rctl &= ~E1000_RCTL_SBP;
 | |
| 					E1000_WRITE_REG(hw, RCTL, rctl);
 | |
| 					hw->tbi_compatibility_on = false;
 | |
| 				}
 | |
| 			} else {
 | |
| 				/* If TBI compatibility is was previously off, turn it on. For
 | |
| 				 * compatibility with a TBI link partner, we will store bad
 | |
| 				 * packets. Some frames have an additional byte on the end and
 | |
| 				 * will look like CRC errors to to the hardware.
 | |
| 				 */
 | |
| 				if (!hw->tbi_compatibility_on) {
 | |
| 					hw->tbi_compatibility_on = true;
 | |
| 					rctl = E1000_READ_REG(hw, RCTL);
 | |
| 					rctl |= E1000_RCTL_SBP;
 | |
| 					E1000_WRITE_REG(hw, RCTL, rctl);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	/* If we don't have link (auto-negotiation failed or link partner cannot
 | |
| 	 * auto-negotiate), the cable is plugged in (we have signal), and our
 | |
| 	 * link partner is not trying to auto-negotiate with us (we are receiving
 | |
| 	 * idles or data), we need to force link up. We also need to give
 | |
| 	 * auto-negotiation time to complete, in case the cable was just plugged
 | |
| 	 * in. The autoneg_failed flag does this.
 | |
| 	 */
 | |
| 	else if ((hw->media_type == e1000_media_type_fiber) &&
 | |
| 		 (!(status & E1000_STATUS_LU)) &&
 | |
| 		 ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
 | |
| 		 (!(rxcw & E1000_RXCW_C))) {
 | |
| 		if (hw->autoneg_failed == 0) {
 | |
| 			hw->autoneg_failed = 1;
 | |
| 			return 0;
 | |
| 		}
 | |
| 		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
 | |
| 
 | |
| 		/* Disable auto-negotiation in the TXCW register */
 | |
| 		E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
 | |
| 
 | |
| 		/* Force link-up and also force full-duplex. */
 | |
| 		ctrl = E1000_READ_REG(hw, CTRL);
 | |
| 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
 | |
| 		E1000_WRITE_REG(hw, CTRL, ctrl);
 | |
| 
 | |
| 		/* Configure Flow Control after forcing link up. */
 | |
| 		ret_val = e1000_config_fc_after_link_up(hw);
 | |
| 		if (ret_val < 0) {
 | |
| 			DEBUGOUT("Error configuring flow control\n");
 | |
| 			return ret_val;
 | |
| 		}
 | |
| 	}
 | |
| 	/* If we are forcing link and we are receiving /C/ ordered sets, re-enable
 | |
| 	 * auto-negotiation in the TXCW register and disable forced link in the
 | |
| 	 * Device Control register in an attempt to auto-negotiate with our link
 | |
| 	 * partner.
 | |
| 	 */
 | |
| 	else if ((hw->media_type == e1000_media_type_fiber) &&
 | |
| 		 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
 | |
| 		DEBUGOUT
 | |
| 		    ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
 | |
| 		E1000_WRITE_REG(hw, TXCW, hw->txcw);
 | |
| 		E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
| * Configure the MAC-to-PHY interface for 10/100Mbps
 | |
| *
 | |
| * hw - Struct containing variables accessed by shared code
 | |
| ******************************************************************************/
 | |
| static int32_t
 | |
| e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
 | |
| {
 | |
| 	int32_t ret_val = E1000_SUCCESS;
 | |
| 	uint32_t tipg;
 | |
| 	uint16_t reg_data;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
 | |
| 	ret_val = e1000_write_kmrn_reg(hw,
 | |
| 			E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
 | |
| 	if (ret_val)
 | |
| 		return ret_val;
 | |
| 
 | |
| 	/* Configure Transmit Inter-Packet Gap */
 | |
| 	tipg = E1000_READ_REG(hw, TIPG);
 | |
| 	tipg &= ~E1000_TIPG_IPGT_MASK;
 | |
| 	tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
 | |
| 	E1000_WRITE_REG(hw, TIPG, tipg);
 | |
| 
 | |
| 	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data);
 | |
| 
 | |
| 	if (ret_val)
 | |
| 		return ret_val;
 | |
| 
 | |
| 	if (duplex == HALF_DUPLEX)
 | |
| 		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
 | |
| 	else
 | |
| 		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
 | |
| 
 | |
| 	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
 | |
| 
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| static int32_t
 | |
| e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
 | |
| {
 | |
| 	int32_t ret_val = E1000_SUCCESS;
 | |
| 	uint16_t reg_data;
 | |
| 	uint32_t tipg;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
 | |
| 	ret_val = e1000_write_kmrn_reg(hw,
 | |
| 			E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
 | |
| 	if (ret_val)
 | |
| 		return ret_val;
 | |
| 
 | |
| 	/* Configure Transmit Inter-Packet Gap */
 | |
| 	tipg = E1000_READ_REG(hw, TIPG);
 | |
| 	tipg &= ~E1000_TIPG_IPGT_MASK;
 | |
| 	tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
 | |
| 	E1000_WRITE_REG(hw, TIPG, tipg);
 | |
| 
 | |
| 	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data);
 | |
| 
 | |
| 	if (ret_val)
 | |
| 		return ret_val;
 | |
| 
 | |
| 	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
 | |
| 	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
 | |
| 
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Detects the current speed and duplex settings of the hardware.
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  * speed - Speed of the connection
 | |
|  * duplex - Duplex setting of the connection
 | |
|  *****************************************************************************/
 | |
| static int
 | |
| e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
 | |
| 		uint16_t *duplex)
 | |
| {
 | |
| 	uint32_t status;
 | |
| 	int32_t ret_val;
 | |
| 	uint16_t phy_data;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	if (hw->mac_type >= e1000_82543) {
 | |
| 		status = E1000_READ_REG(hw, STATUS);
 | |
| 		if (status & E1000_STATUS_SPEED_1000) {
 | |
| 			*speed = SPEED_1000;
 | |
| 			DEBUGOUT("1000 Mbs, ");
 | |
| 		} else if (status & E1000_STATUS_SPEED_100) {
 | |
| 			*speed = SPEED_100;
 | |
| 			DEBUGOUT("100 Mbs, ");
 | |
| 		} else {
 | |
| 			*speed = SPEED_10;
 | |
| 			DEBUGOUT("10 Mbs, ");
 | |
| 		}
 | |
| 
 | |
| 		if (status & E1000_STATUS_FD) {
 | |
| 			*duplex = FULL_DUPLEX;
 | |
| 			DEBUGOUT("Full Duplex\r\n");
 | |
| 		} else {
 | |
| 			*duplex = HALF_DUPLEX;
 | |
| 			DEBUGOUT(" Half Duplex\r\n");
 | |
| 		}
 | |
| 	} else {
 | |
| 		DEBUGOUT("1000 Mbs, Full Duplex\r\n");
 | |
| 		*speed = SPEED_1000;
 | |
| 		*duplex = FULL_DUPLEX;
 | |
| 	}
 | |
| 
 | |
| 	/* IGP01 PHY may advertise full duplex operation after speed downgrade
 | |
| 	 * even if it is operating at half duplex.  Here we set the duplex
 | |
| 	 * settings to match the duplex in the link partner's capabilities.
 | |
| 	 */
 | |
| 	if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
 | |
| 		ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
 | |
| 		if (ret_val)
 | |
| 			return ret_val;
 | |
| 
 | |
| 		if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
 | |
| 			*duplex = HALF_DUPLEX;
 | |
| 		else {
 | |
| 			ret_val = e1000_read_phy_reg(hw,
 | |
| 					PHY_LP_ABILITY, &phy_data);
 | |
| 			if (ret_val)
 | |
| 				return ret_val;
 | |
| 			if ((*speed == SPEED_100 &&
 | |
| 				!(phy_data & NWAY_LPAR_100TX_FD_CAPS))
 | |
| 				|| (*speed == SPEED_10
 | |
| 				&& !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
 | |
| 				*duplex = HALF_DUPLEX;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if ((hw->mac_type == e1000_80003es2lan) &&
 | |
| 		(hw->media_type == e1000_media_type_copper)) {
 | |
| 		if (*speed == SPEED_1000)
 | |
| 			ret_val = e1000_configure_kmrn_for_1000(hw);
 | |
| 		else
 | |
| 			ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
 | |
| 		if (ret_val)
 | |
| 			return ret_val;
 | |
| 	}
 | |
| 	return E1000_SUCCESS;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
| * Blocks until autoneg completes or times out (~4.5 seconds)
 | |
| *
 | |
| * hw - Struct containing variables accessed by shared code
 | |
| ******************************************************************************/
 | |
| static int
 | |
| e1000_wait_autoneg(struct e1000_hw *hw)
 | |
| {
 | |
| 	uint16_t i;
 | |
| 	uint16_t phy_data;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 	DEBUGOUT("Waiting for Auto-Neg to complete.\n");
 | |
| 
 | |
| 	/* We will wait for autoneg to complete or timeout to expire. */
 | |
| 	for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
 | |
| 		/* Read the MII Status Register and wait for Auto-Neg
 | |
| 		 * Complete bit to be set.
 | |
| 		 */
 | |
| 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
 | |
| 			DEBUGOUT("PHY Read Error\n");
 | |
| 			return -E1000_ERR_PHY;
 | |
| 		}
 | |
| 		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
 | |
| 			DEBUGOUT("PHY Read Error\n");
 | |
| 			return -E1000_ERR_PHY;
 | |
| 		}
 | |
| 		if (phy_data & MII_SR_AUTONEG_COMPLETE) {
 | |
| 			DEBUGOUT("Auto-Neg complete.\n");
 | |
| 			return 0;
 | |
| 		}
 | |
| 		mdelay(100);
 | |
| 	}
 | |
| 	DEBUGOUT("Auto-Neg timedout.\n");
 | |
| 	return -E1000_ERR_TIMEOUT;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
| * Raises the Management Data Clock
 | |
| *
 | |
| * hw - Struct containing variables accessed by shared code
 | |
| * ctrl - Device control register's current value
 | |
| ******************************************************************************/
 | |
| static void
 | |
| e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
 | |
| {
 | |
| 	/* Raise the clock input to the Management Data Clock (by setting the MDC
 | |
| 	 * bit), and then delay 2 microseconds.
 | |
| 	 */
 | |
| 	E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
 | |
| 	E1000_WRITE_FLUSH(hw);
 | |
| 	udelay(2);
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
| * Lowers the Management Data Clock
 | |
| *
 | |
| * hw - Struct containing variables accessed by shared code
 | |
| * ctrl - Device control register's current value
 | |
| ******************************************************************************/
 | |
| static void
 | |
| e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
 | |
| {
 | |
| 	/* Lower the clock input to the Management Data Clock (by clearing the MDC
 | |
| 	 * bit), and then delay 2 microseconds.
 | |
| 	 */
 | |
| 	E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
 | |
| 	E1000_WRITE_FLUSH(hw);
 | |
| 	udelay(2);
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
| * Shifts data bits out to the PHY
 | |
| *
 | |
| * hw - Struct containing variables accessed by shared code
 | |
| * data - Data to send out to the PHY
 | |
| * count - Number of bits to shift out
 | |
| *
 | |
| * Bits are shifted out in MSB to LSB order.
 | |
| ******************************************************************************/
 | |
| static void
 | |
| e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
 | |
| {
 | |
| 	uint32_t ctrl;
 | |
| 	uint32_t mask;
 | |
| 
 | |
| 	/* We need to shift "count" number of bits out to the PHY. So, the value
 | |
| 	 * in the "data" parameter will be shifted out to the PHY one bit at a
 | |
| 	 * time. In order to do this, "data" must be broken down into bits.
 | |
| 	 */
 | |
| 	mask = 0x01;
 | |
| 	mask <<= (count - 1);
 | |
| 
 | |
| 	ctrl = E1000_READ_REG(hw, CTRL);
 | |
| 
 | |
| 	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
 | |
| 	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
 | |
| 
 | |
| 	while (mask) {
 | |
| 		/* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
 | |
| 		 * then raising and lowering the Management Data Clock. A "0" is
 | |
| 		 * shifted out to the PHY by setting the MDIO bit to "0" and then
 | |
| 		 * raising and lowering the clock.
 | |
| 		 */
 | |
| 		if (data & mask)
 | |
| 			ctrl |= E1000_CTRL_MDIO;
 | |
| 		else
 | |
| 			ctrl &= ~E1000_CTRL_MDIO;
 | |
| 
 | |
| 		E1000_WRITE_REG(hw, CTRL, ctrl);
 | |
| 		E1000_WRITE_FLUSH(hw);
 | |
| 
 | |
| 		udelay(2);
 | |
| 
 | |
| 		e1000_raise_mdi_clk(hw, &ctrl);
 | |
| 		e1000_lower_mdi_clk(hw, &ctrl);
 | |
| 
 | |
| 		mask = mask >> 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
| * Shifts data bits in from the PHY
 | |
| *
 | |
| * hw - Struct containing variables accessed by shared code
 | |
| *
 | |
| * Bits are shifted in in MSB to LSB order.
 | |
| ******************************************************************************/
 | |
| static uint16_t
 | |
| e1000_shift_in_mdi_bits(struct e1000_hw *hw)
 | |
| {
 | |
| 	uint32_t ctrl;
 | |
| 	uint16_t data = 0;
 | |
| 	uint8_t i;
 | |
| 
 | |
| 	/* In order to read a register from the PHY, we need to shift in a total
 | |
| 	 * of 18 bits from the PHY. The first two bit (turnaround) times are used
 | |
| 	 * to avoid contention on the MDIO pin when a read operation is performed.
 | |
| 	 * These two bits are ignored by us and thrown away. Bits are "shifted in"
 | |
| 	 * by raising the input to the Management Data Clock (setting the MDC bit),
 | |
| 	 * and then reading the value of the MDIO bit.
 | |
| 	 */
 | |
| 	ctrl = E1000_READ_REG(hw, CTRL);
 | |
| 
 | |
| 	/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
 | |
| 	ctrl &= ~E1000_CTRL_MDIO_DIR;
 | |
| 	ctrl &= ~E1000_CTRL_MDIO;
 | |
| 
 | |
| 	E1000_WRITE_REG(hw, CTRL, ctrl);
 | |
| 	E1000_WRITE_FLUSH(hw);
 | |
| 
 | |
| 	/* Raise and Lower the clock before reading in the data. This accounts for
 | |
| 	 * the turnaround bits. The first clock occurred when we clocked out the
 | |
| 	 * last bit of the Register Address.
 | |
| 	 */
 | |
| 	e1000_raise_mdi_clk(hw, &ctrl);
 | |
| 	e1000_lower_mdi_clk(hw, &ctrl);
 | |
| 
 | |
| 	for (data = 0, i = 0; i < 16; i++) {
 | |
| 		data = data << 1;
 | |
| 		e1000_raise_mdi_clk(hw, &ctrl);
 | |
| 		ctrl = E1000_READ_REG(hw, CTRL);
 | |
| 		/* Check to see if we shifted in a "1". */
 | |
| 		if (ctrl & E1000_CTRL_MDIO)
 | |
| 			data |= 1;
 | |
| 		e1000_lower_mdi_clk(hw, &ctrl);
 | |
| 	}
 | |
| 
 | |
| 	e1000_raise_mdi_clk(hw, &ctrl);
 | |
| 	e1000_lower_mdi_clk(hw, &ctrl);
 | |
| 
 | |
| 	return data;
 | |
| }
 | |
| 
 | |
| /*****************************************************************************
 | |
| * Reads the value from a PHY register
 | |
| *
 | |
| * hw - Struct containing variables accessed by shared code
 | |
| * reg_addr - address of the PHY register to read
 | |
| ******************************************************************************/
 | |
| static int
 | |
| e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
 | |
| {
 | |
| 	uint32_t i;
 | |
| 	uint32_t mdic = 0;
 | |
| 	const uint32_t phy_addr = 1;
 | |
| 
 | |
| 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
 | |
| 		DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
 | |
| 		return -E1000_ERR_PARAM;
 | |
| 	}
 | |
| 
 | |
| 	if (hw->mac_type > e1000_82543) {
 | |
| 		/* Set up Op-code, Phy Address, and register address in the MDI
 | |
| 		 * Control register.  The MAC will take care of interfacing with the
 | |
| 		 * PHY to retrieve the desired data.
 | |
| 		 */
 | |
| 		mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
 | |
| 			(phy_addr << E1000_MDIC_PHY_SHIFT) |
 | |
| 			(E1000_MDIC_OP_READ));
 | |
| 
 | |
| 		E1000_WRITE_REG(hw, MDIC, mdic);
 | |
| 
 | |
| 		/* Poll the ready bit to see if the MDI read completed */
 | |
| 		for (i = 0; i < 64; i++) {
 | |
| 			udelay(10);
 | |
| 			mdic = E1000_READ_REG(hw, MDIC);
 | |
| 			if (mdic & E1000_MDIC_READY)
 | |
| 				break;
 | |
| 		}
 | |
| 		if (!(mdic & E1000_MDIC_READY)) {
 | |
| 			DEBUGOUT("MDI Read did not complete\n");
 | |
| 			return -E1000_ERR_PHY;
 | |
| 		}
 | |
| 		if (mdic & E1000_MDIC_ERROR) {
 | |
| 			DEBUGOUT("MDI Error\n");
 | |
| 			return -E1000_ERR_PHY;
 | |
| 		}
 | |
| 		*phy_data = (uint16_t) mdic;
 | |
| 	} else {
 | |
| 		/* We must first send a preamble through the MDIO pin to signal the
 | |
| 		 * beginning of an MII instruction.  This is done by sending 32
 | |
| 		 * consecutive "1" bits.
 | |
| 		 */
 | |
| 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
 | |
| 
 | |
| 		/* Now combine the next few fields that are required for a read
 | |
| 		 * operation.  We use this method instead of calling the
 | |
| 		 * e1000_shift_out_mdi_bits routine five different times. The format of
 | |
| 		 * a MII read instruction consists of a shift out of 14 bits and is
 | |
| 		 * defined as follows:
 | |
| 		 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
 | |
| 		 * followed by a shift in of 18 bits.  This first two bits shifted in
 | |
| 		 * are TurnAround bits used to avoid contention on the MDIO pin when a
 | |
| 		 * READ operation is performed.  These two bits are thrown away
 | |
| 		 * followed by a shift in of 16 bits which contains the desired data.
 | |
| 		 */
 | |
| 		mdic = ((reg_addr) | (phy_addr << 5) |
 | |
| 			(PHY_OP_READ << 10) | (PHY_SOF << 12));
 | |
| 
 | |
| 		e1000_shift_out_mdi_bits(hw, mdic, 14);
 | |
| 
 | |
| 		/* Now that we've shifted out the read command to the MII, we need to
 | |
| 		 * "shift in" the 16-bit value (18 total bits) of the requested PHY
 | |
| 		 * register address.
 | |
| 		 */
 | |
| 		*phy_data = e1000_shift_in_mdi_bits(hw);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
| * Writes a value to a PHY register
 | |
| *
 | |
| * hw - Struct containing variables accessed by shared code
 | |
| * reg_addr - address of the PHY register to write
 | |
| * data - data to write to the PHY
 | |
| ******************************************************************************/
 | |
| static int
 | |
| e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
 | |
| {
 | |
| 	uint32_t i;
 | |
| 	uint32_t mdic = 0;
 | |
| 	const uint32_t phy_addr = 1;
 | |
| 
 | |
| 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
 | |
| 		DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
 | |
| 		return -E1000_ERR_PARAM;
 | |
| 	}
 | |
| 
 | |
| 	if (hw->mac_type > e1000_82543) {
 | |
| 		/* Set up Op-code, Phy Address, register address, and data intended
 | |
| 		 * for the PHY register in the MDI Control register.  The MAC will take
 | |
| 		 * care of interfacing with the PHY to send the desired data.
 | |
| 		 */
 | |
| 		mdic = (((uint32_t) phy_data) |
 | |
| 			(reg_addr << E1000_MDIC_REG_SHIFT) |
 | |
| 			(phy_addr << E1000_MDIC_PHY_SHIFT) |
 | |
| 			(E1000_MDIC_OP_WRITE));
 | |
| 
 | |
| 		E1000_WRITE_REG(hw, MDIC, mdic);
 | |
| 
 | |
| 		/* Poll the ready bit to see if the MDI read completed */
 | |
| 		for (i = 0; i < 64; i++) {
 | |
| 			udelay(10);
 | |
| 			mdic = E1000_READ_REG(hw, MDIC);
 | |
| 			if (mdic & E1000_MDIC_READY)
 | |
| 				break;
 | |
| 		}
 | |
| 		if (!(mdic & E1000_MDIC_READY)) {
 | |
| 			DEBUGOUT("MDI Write did not complete\n");
 | |
| 			return -E1000_ERR_PHY;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* We'll need to use the SW defined pins to shift the write command
 | |
| 		 * out to the PHY. We first send a preamble to the PHY to signal the
 | |
| 		 * beginning of the MII instruction.  This is done by sending 32
 | |
| 		 * consecutive "1" bits.
 | |
| 		 */
 | |
| 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
 | |
| 
 | |
| 		/* Now combine the remaining required fields that will indicate a
 | |
| 		 * write operation. We use this method instead of calling the
 | |
| 		 * e1000_shift_out_mdi_bits routine for each field in the command. The
 | |
| 		 * format of a MII write instruction is as follows:
 | |
| 		 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
 | |
| 		 */
 | |
| 		mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
 | |
| 			(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
 | |
| 		mdic <<= 16;
 | |
| 		mdic |= (uint32_t) phy_data;
 | |
| 
 | |
| 		e1000_shift_out_mdi_bits(hw, mdic, 32);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Checks if PHY reset is blocked due to SOL/IDER session, for example.
 | |
|  * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
 | |
|  * the caller to figure out how to deal with it.
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  *
 | |
|  * returns: - E1000_BLK_PHY_RESET
 | |
|  *            E1000_SUCCESS
 | |
|  *
 | |
|  *****************************************************************************/
 | |
| int32_t
 | |
| e1000_check_phy_reset_block(struct e1000_hw *hw)
 | |
| {
 | |
| 	uint32_t manc = 0;
 | |
| 	uint32_t fwsm = 0;
 | |
| 
 | |
| 	if (hw->mac_type == e1000_ich8lan) {
 | |
| 		fwsm = E1000_READ_REG(hw, FWSM);
 | |
| 		return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
 | |
| 						: E1000_BLK_PHY_RESET;
 | |
| 	}
 | |
| 
 | |
| 	if (hw->mac_type > e1000_82547_rev_2)
 | |
| 		manc = E1000_READ_REG(hw, MANC);
 | |
| 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
 | |
| 		E1000_BLK_PHY_RESET : E1000_SUCCESS;
 | |
| }
 | |
| 
 | |
| /***************************************************************************
 | |
|  * Checks if the PHY configuration is done
 | |
|  *
 | |
|  * hw: Struct containing variables accessed by shared code
 | |
|  *
 | |
|  * returns: - E1000_ERR_RESET if fail to reset MAC
 | |
|  *            E1000_SUCCESS at any other case.
 | |
|  *
 | |
|  ***************************************************************************/
 | |
| static int32_t
 | |
| e1000_get_phy_cfg_done(struct e1000_hw *hw)
 | |
| {
 | |
| 	int32_t timeout = PHY_CFG_TIMEOUT;
 | |
| 	uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	switch (hw->mac_type) {
 | |
| 	default:
 | |
| 		mdelay(10);
 | |
| 		break;
 | |
| 
 | |
| 	case e1000_80003es2lan:
 | |
| 		/* Separate *_CFG_DONE_* bit for each port */
 | |
| 		if (e1000_is_second_port(hw))
 | |
| 			cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
 | |
| 		/* Fall Through */
 | |
| 
 | |
| 	case e1000_82571:
 | |
| 	case e1000_82572:
 | |
| 	case e1000_igb:
 | |
| 		while (timeout) {
 | |
| 			if (hw->mac_type == e1000_igb) {
 | |
| 				if (E1000_READ_REG(hw, I210_EEMNGCTL) & cfg_mask)
 | |
| 					break;
 | |
| 			} else {
 | |
| 				if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
 | |
| 					break;
 | |
| 			}
 | |
| 			mdelay(1);
 | |
| 			timeout--;
 | |
| 		}
 | |
| 		if (!timeout) {
 | |
| 			DEBUGOUT("MNG configuration cycle has not "
 | |
| 					"completed.\n");
 | |
| 			return -E1000_ERR_RESET;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return E1000_SUCCESS;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
| * Returns the PHY to the power-on reset state
 | |
| *
 | |
| * hw - Struct containing variables accessed by shared code
 | |
| ******************************************************************************/
 | |
| int32_t
 | |
| e1000_phy_hw_reset(struct e1000_hw *hw)
 | |
| {
 | |
| 	uint16_t swfw = E1000_SWFW_PHY0_SM;
 | |
| 	uint32_t ctrl, ctrl_ext;
 | |
| 	uint32_t led_ctrl;
 | |
| 	int32_t ret_val;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	/* In the case of the phy reset being blocked, it's not an error, we
 | |
| 	 * simply return success without performing the reset. */
 | |
| 	ret_val = e1000_check_phy_reset_block(hw);
 | |
| 	if (ret_val)
 | |
| 		return E1000_SUCCESS;
 | |
| 
 | |
| 	DEBUGOUT("Resetting Phy...\n");
 | |
| 
 | |
| 	if (hw->mac_type > e1000_82543) {
 | |
| 		if (e1000_is_second_port(hw))
 | |
| 			swfw = E1000_SWFW_PHY1_SM;
 | |
| 
 | |
| 		if (e1000_swfw_sync_acquire(hw, swfw)) {
 | |
| 			DEBUGOUT("Unable to acquire swfw sync\n");
 | |
| 			return -E1000_ERR_SWFW_SYNC;
 | |
| 		}
 | |
| 
 | |
| 		/* Read the device control register and assert the E1000_CTRL_PHY_RST
 | |
| 		 * bit. Then, take it out of reset.
 | |
| 		 */
 | |
| 		ctrl = E1000_READ_REG(hw, CTRL);
 | |
| 		E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
 | |
| 		E1000_WRITE_FLUSH(hw);
 | |
| 
 | |
| 		if (hw->mac_type < e1000_82571)
 | |
| 			udelay(10);
 | |
| 		else
 | |
| 			udelay(100);
 | |
| 
 | |
| 		E1000_WRITE_REG(hw, CTRL, ctrl);
 | |
| 		E1000_WRITE_FLUSH(hw);
 | |
| 
 | |
| 		if (hw->mac_type >= e1000_82571)
 | |
| 			mdelay(10);
 | |
| 
 | |
| 	} else {
 | |
| 		/* Read the Extended Device Control Register, assert the PHY_RESET_DIR
 | |
| 		 * bit to put the PHY into reset. Then, take it out of reset.
 | |
| 		 */
 | |
| 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
 | |
| 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
 | |
| 		ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
 | |
| 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
 | |
| 		E1000_WRITE_FLUSH(hw);
 | |
| 		mdelay(10);
 | |
| 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
 | |
| 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
 | |
| 		E1000_WRITE_FLUSH(hw);
 | |
| 	}
 | |
| 	udelay(150);
 | |
| 
 | |
| 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
 | |
| 		/* Configure activity LED after PHY reset */
 | |
| 		led_ctrl = E1000_READ_REG(hw, LEDCTL);
 | |
| 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
 | |
| 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
 | |
| 		E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
 | |
| 	}
 | |
| 
 | |
| 	e1000_swfw_sync_release(hw, swfw);
 | |
| 
 | |
| 	/* Wait for FW to finish PHY configuration. */
 | |
| 	ret_val = e1000_get_phy_cfg_done(hw);
 | |
| 	if (ret_val != E1000_SUCCESS)
 | |
| 		return ret_val;
 | |
| 
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * IGP phy init script - initializes the GbE PHY
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  *****************************************************************************/
 | |
| static void
 | |
| e1000_phy_init_script(struct e1000_hw *hw)
 | |
| {
 | |
| 	uint32_t ret_val;
 | |
| 	uint16_t phy_saved_data;
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	if (hw->phy_init_script) {
 | |
| 		mdelay(20);
 | |
| 
 | |
| 		/* Save off the current value of register 0x2F5B to be
 | |
| 		 * restored at the end of this routine. */
 | |
| 		ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
 | |
| 
 | |
| 		/* Disabled the PHY transmitter */
 | |
| 		e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
 | |
| 
 | |
| 		mdelay(20);
 | |
| 
 | |
| 		e1000_write_phy_reg(hw, 0x0000, 0x0140);
 | |
| 
 | |
| 		mdelay(5);
 | |
| 
 | |
| 		switch (hw->mac_type) {
 | |
| 		case e1000_82541:
 | |
| 		case e1000_82547:
 | |
| 			e1000_write_phy_reg(hw, 0x1F95, 0x0001);
 | |
| 
 | |
| 			e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
 | |
| 
 | |
| 			e1000_write_phy_reg(hw, 0x1F79, 0x0018);
 | |
| 
 | |
| 			e1000_write_phy_reg(hw, 0x1F30, 0x1600);
 | |
| 
 | |
| 			e1000_write_phy_reg(hw, 0x1F31, 0x0014);
 | |
| 
 | |
| 			e1000_write_phy_reg(hw, 0x1F32, 0x161C);
 | |
| 
 | |
| 			e1000_write_phy_reg(hw, 0x1F94, 0x0003);
 | |
| 
 | |
| 			e1000_write_phy_reg(hw, 0x1F96, 0x003F);
 | |
| 
 | |
| 			e1000_write_phy_reg(hw, 0x2010, 0x0008);
 | |
| 			break;
 | |
| 
 | |
| 		case e1000_82541_rev_2:
 | |
| 		case e1000_82547_rev_2:
 | |
| 			e1000_write_phy_reg(hw, 0x1F73, 0x0099);
 | |
| 			break;
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		e1000_write_phy_reg(hw, 0x0000, 0x3300);
 | |
| 
 | |
| 		mdelay(20);
 | |
| 
 | |
| 		/* Now enable the transmitter */
 | |
| 		if (!ret_val)
 | |
| 			e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
 | |
| 
 | |
| 		if (hw->mac_type == e1000_82547) {
 | |
| 			uint16_t fused, fine, coarse;
 | |
| 
 | |
| 			/* Move to analog registers page */
 | |
| 			e1000_read_phy_reg(hw,
 | |
| 				IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
 | |
| 
 | |
| 			if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
 | |
| 				e1000_read_phy_reg(hw,
 | |
| 					IGP01E1000_ANALOG_FUSE_STATUS, &fused);
 | |
| 
 | |
| 				fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
 | |
| 				coarse = fused
 | |
| 					& IGP01E1000_ANALOG_FUSE_COARSE_MASK;
 | |
| 
 | |
| 				if (coarse >
 | |
| 					IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
 | |
| 					coarse -=
 | |
| 					IGP01E1000_ANALOG_FUSE_COARSE_10;
 | |
| 					fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
 | |
| 				} else if (coarse
 | |
| 					== IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
 | |
| 					fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
 | |
| 
 | |
| 				fused = (fused
 | |
| 					& IGP01E1000_ANALOG_FUSE_POLY_MASK) |
 | |
| 					(fine
 | |
| 					& IGP01E1000_ANALOG_FUSE_FINE_MASK) |
 | |
| 					(coarse
 | |
| 					& IGP01E1000_ANALOG_FUSE_COARSE_MASK);
 | |
| 
 | |
| 				e1000_write_phy_reg(hw,
 | |
| 					IGP01E1000_ANALOG_FUSE_CONTROL, fused);
 | |
| 				e1000_write_phy_reg(hw,
 | |
| 					IGP01E1000_ANALOG_FUSE_BYPASS,
 | |
| 				IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
| * Resets the PHY
 | |
| *
 | |
| * hw - Struct containing variables accessed by shared code
 | |
| *
 | |
| * Sets bit 15 of the MII Control register
 | |
| ******************************************************************************/
 | |
| int32_t
 | |
| e1000_phy_reset(struct e1000_hw *hw)
 | |
| {
 | |
| 	int32_t ret_val;
 | |
| 	uint16_t phy_data;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	/* In the case of the phy reset being blocked, it's not an error, we
 | |
| 	 * simply return success without performing the reset. */
 | |
| 	ret_val = e1000_check_phy_reset_block(hw);
 | |
| 	if (ret_val)
 | |
| 		return E1000_SUCCESS;
 | |
| 
 | |
| 	switch (hw->phy_type) {
 | |
| 	case e1000_phy_igp:
 | |
| 	case e1000_phy_igp_2:
 | |
| 	case e1000_phy_igp_3:
 | |
| 	case e1000_phy_ife:
 | |
| 	case e1000_phy_igb:
 | |
| 		ret_val = e1000_phy_hw_reset(hw);
 | |
| 		if (ret_val)
 | |
| 			return ret_val;
 | |
| 		break;
 | |
| 	default:
 | |
| 		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
 | |
| 		if (ret_val)
 | |
| 			return ret_val;
 | |
| 
 | |
| 		phy_data |= MII_CR_RESET;
 | |
| 		ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
 | |
| 		if (ret_val)
 | |
| 			return ret_val;
 | |
| 
 | |
| 		udelay(1);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
 | |
| 		e1000_phy_init_script(hw);
 | |
| 
 | |
| 	return E1000_SUCCESS;
 | |
| }
 | |
| 
 | |
| static int e1000_set_phy_type (struct e1000_hw *hw)
 | |
| {
 | |
| 	DEBUGFUNC ();
 | |
| 
 | |
| 	if (hw->mac_type == e1000_undefined)
 | |
| 		return -E1000_ERR_PHY_TYPE;
 | |
| 
 | |
| 	switch (hw->phy_id) {
 | |
| 	case M88E1000_E_PHY_ID:
 | |
| 	case M88E1000_I_PHY_ID:
 | |
| 	case M88E1011_I_PHY_ID:
 | |
| 	case M88E1111_I_PHY_ID:
 | |
| 		hw->phy_type = e1000_phy_m88;
 | |
| 		break;
 | |
| 	case IGP01E1000_I_PHY_ID:
 | |
| 		if (hw->mac_type == e1000_82541 ||
 | |
| 			hw->mac_type == e1000_82541_rev_2 ||
 | |
| 			hw->mac_type == e1000_82547 ||
 | |
| 			hw->mac_type == e1000_82547_rev_2) {
 | |
| 			hw->phy_type = e1000_phy_igp;
 | |
| 			break;
 | |
| 		}
 | |
| 	case IGP03E1000_E_PHY_ID:
 | |
| 		hw->phy_type = e1000_phy_igp_3;
 | |
| 		break;
 | |
| 	case IFE_E_PHY_ID:
 | |
| 	case IFE_PLUS_E_PHY_ID:
 | |
| 	case IFE_C_E_PHY_ID:
 | |
| 		hw->phy_type = e1000_phy_ife;
 | |
| 		break;
 | |
| 	case GG82563_E_PHY_ID:
 | |
| 		if (hw->mac_type == e1000_80003es2lan) {
 | |
| 			hw->phy_type = e1000_phy_gg82563;
 | |
| 			break;
 | |
| 		}
 | |
| 	case BME1000_E_PHY_ID:
 | |
| 		hw->phy_type = e1000_phy_bm;
 | |
| 		break;
 | |
| 	case I210_I_PHY_ID:
 | |
| 		hw->phy_type = e1000_phy_igb;
 | |
| 		break;
 | |
| 		/* Fall Through */
 | |
| 	default:
 | |
| 		/* Should never have loaded on this device */
 | |
| 		hw->phy_type = e1000_phy_undefined;
 | |
| 		return -E1000_ERR_PHY_TYPE;
 | |
| 	}
 | |
| 
 | |
| 	return E1000_SUCCESS;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
| * Probes the expected PHY address for known PHY IDs
 | |
| *
 | |
| * hw - Struct containing variables accessed by shared code
 | |
| ******************************************************************************/
 | |
| static int32_t
 | |
| e1000_detect_gig_phy(struct e1000_hw *hw)
 | |
| {
 | |
| 	int32_t phy_init_status, ret_val;
 | |
| 	uint16_t phy_id_high, phy_id_low;
 | |
| 	bool match = false;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	/* The 82571 firmware may still be configuring the PHY.  In this
 | |
| 	 * case, we cannot access the PHY until the configuration is done.  So
 | |
| 	 * we explicitly set the PHY values. */
 | |
| 	if (hw->mac_type == e1000_82571 ||
 | |
| 		hw->mac_type == e1000_82572) {
 | |
| 		hw->phy_id = IGP01E1000_I_PHY_ID;
 | |
| 		hw->phy_type = e1000_phy_igp_2;
 | |
| 		return E1000_SUCCESS;
 | |
| 	}
 | |
| 
 | |
| 	/* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
 | |
| 	 * work- around that forces PHY page 0 to be set or the reads fail.
 | |
| 	 * The rest of the code in this routine uses e1000_read_phy_reg to
 | |
| 	 * read the PHY ID.  So for ESB-2 we need to have this set so our
 | |
| 	 * reads won't fail.  If the attached PHY is not a e1000_phy_gg82563,
 | |
| 	 * the routines below will figure this out as well. */
 | |
| 	if (hw->mac_type == e1000_80003es2lan)
 | |
| 		hw->phy_type = e1000_phy_gg82563;
 | |
| 
 | |
| 	/* Read the PHY ID Registers to identify which PHY is onboard. */
 | |
| 	ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
 | |
| 	if (ret_val)
 | |
| 		return ret_val;
 | |
| 
 | |
| 	hw->phy_id = (uint32_t) (phy_id_high << 16);
 | |
| 	udelay(20);
 | |
| 	ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
 | |
| 	if (ret_val)
 | |
| 		return ret_val;
 | |
| 
 | |
| 	hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
 | |
| 	hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
 | |
| 
 | |
| 	switch (hw->mac_type) {
 | |
| 	case e1000_82543:
 | |
| 		if (hw->phy_id == M88E1000_E_PHY_ID)
 | |
| 			match = true;
 | |
| 		break;
 | |
| 	case e1000_82544:
 | |
| 		if (hw->phy_id == M88E1000_I_PHY_ID)
 | |
| 			match = true;
 | |
| 		break;
 | |
| 	case e1000_82540:
 | |
| 	case e1000_82545:
 | |
| 	case e1000_82545_rev_3:
 | |
| 	case e1000_82546:
 | |
| 	case e1000_82546_rev_3:
 | |
| 		if (hw->phy_id == M88E1011_I_PHY_ID)
 | |
| 			match = true;
 | |
| 		break;
 | |
| 	case e1000_82541:
 | |
| 	case e1000_82541_rev_2:
 | |
| 	case e1000_82547:
 | |
| 	case e1000_82547_rev_2:
 | |
| 		if(hw->phy_id == IGP01E1000_I_PHY_ID)
 | |
| 			match = true;
 | |
| 
 | |
| 		break;
 | |
| 	case e1000_82573:
 | |
| 		if (hw->phy_id == M88E1111_I_PHY_ID)
 | |
| 			match = true;
 | |
| 		break;
 | |
| 	case e1000_82574:
 | |
| 		if (hw->phy_id == BME1000_E_PHY_ID)
 | |
| 			match = true;
 | |
| 		break;
 | |
| 	case e1000_80003es2lan:
 | |
| 		if (hw->phy_id == GG82563_E_PHY_ID)
 | |
| 			match = true;
 | |
| 		break;
 | |
| 	case e1000_ich8lan:
 | |
| 		if (hw->phy_id == IGP03E1000_E_PHY_ID)
 | |
| 			match = true;
 | |
| 		if (hw->phy_id == IFE_E_PHY_ID)
 | |
| 			match = true;
 | |
| 		if (hw->phy_id == IFE_PLUS_E_PHY_ID)
 | |
| 			match = true;
 | |
| 		if (hw->phy_id == IFE_C_E_PHY_ID)
 | |
| 			match = true;
 | |
| 		break;
 | |
| 	case e1000_igb:
 | |
| 		if (hw->phy_id == I210_I_PHY_ID)
 | |
| 			match = true;
 | |
| 		break;
 | |
| 	default:
 | |
| 		DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
 | |
| 		return -E1000_ERR_CONFIG;
 | |
| 	}
 | |
| 
 | |
| 	phy_init_status = e1000_set_phy_type(hw);
 | |
| 
 | |
| 	if ((match) && (phy_init_status == E1000_SUCCESS)) {
 | |
| 		DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
 | |
| 	return -E1000_ERR_PHY;
 | |
| }
 | |
| 
 | |
| /*****************************************************************************
 | |
|  * Set media type and TBI compatibility.
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  * **************************************************************************/
 | |
| void
 | |
| e1000_set_media_type(struct e1000_hw *hw)
 | |
| {
 | |
| 	uint32_t status;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	if (hw->mac_type != e1000_82543) {
 | |
| 		/* tbi_compatibility is only valid on 82543 */
 | |
| 		hw->tbi_compatibility_en = false;
 | |
| 	}
 | |
| 
 | |
| 	switch (hw->device_id) {
 | |
| 	case E1000_DEV_ID_82545GM_SERDES:
 | |
| 	case E1000_DEV_ID_82546GB_SERDES:
 | |
| 	case E1000_DEV_ID_82571EB_SERDES:
 | |
| 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
 | |
| 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
 | |
| 	case E1000_DEV_ID_82572EI_SERDES:
 | |
| 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
 | |
| 		hw->media_type = e1000_media_type_internal_serdes;
 | |
| 		break;
 | |
| 	default:
 | |
| 		switch (hw->mac_type) {
 | |
| 		case e1000_82542_rev2_0:
 | |
| 		case e1000_82542_rev2_1:
 | |
| 			hw->media_type = e1000_media_type_fiber;
 | |
| 			break;
 | |
| 		case e1000_ich8lan:
 | |
| 		case e1000_82573:
 | |
| 		case e1000_82574:
 | |
| 		case e1000_igb:
 | |
| 			/* The STATUS_TBIMODE bit is reserved or reused
 | |
| 			 * for the this device.
 | |
| 			 */
 | |
| 			hw->media_type = e1000_media_type_copper;
 | |
| 			break;
 | |
| 		default:
 | |
| 			status = E1000_READ_REG(hw, STATUS);
 | |
| 			if (status & E1000_STATUS_TBIMODE) {
 | |
| 				hw->media_type = e1000_media_type_fiber;
 | |
| 				/* tbi_compatibility not valid on fiber */
 | |
| 				hw->tbi_compatibility_en = false;
 | |
| 			} else {
 | |
| 				hw->media_type = e1000_media_type_copper;
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
 | |
|  *
 | |
|  * e1000_sw_init initializes the Adapter private data structure.
 | |
|  * Fields are initialized based on PCI device information and
 | |
|  * OS network device settings (MTU size).
 | |
|  **/
 | |
| 
 | |
| static int
 | |
| e1000_sw_init(struct e1000_hw *hw)
 | |
| {
 | |
| 	int result;
 | |
| 
 | |
| 	/* PCI config space info */
 | |
| #ifdef CONFIG_DM_ETH
 | |
| 	dm_pci_read_config16(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
 | |
| 	dm_pci_read_config16(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
 | |
| 	dm_pci_read_config16(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
 | |
| 			     &hw->subsystem_vendor_id);
 | |
| 	dm_pci_read_config16(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
 | |
| 
 | |
| 	dm_pci_read_config8(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
 | |
| 	dm_pci_read_config16(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
 | |
| #else
 | |
| 	pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
 | |
| 	pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
 | |
| 	pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
 | |
| 			     &hw->subsystem_vendor_id);
 | |
| 	pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
 | |
| 
 | |
| 	pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
 | |
| 	pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
 | |
| #endif
 | |
| 
 | |
| 	/* identify the MAC */
 | |
| 	result = e1000_set_mac_type(hw);
 | |
| 	if (result) {
 | |
| 		E1000_ERR(hw, "Unknown MAC Type\n");
 | |
| 		return result;
 | |
| 	}
 | |
| 
 | |
| 	switch (hw->mac_type) {
 | |
| 	default:
 | |
| 		break;
 | |
| 	case e1000_82541:
 | |
| 	case e1000_82547:
 | |
| 	case e1000_82541_rev_2:
 | |
| 	case e1000_82547_rev_2:
 | |
| 		hw->phy_init_script = 1;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* flow control settings */
 | |
| 	hw->fc_high_water = E1000_FC_HIGH_THRESH;
 | |
| 	hw->fc_low_water = E1000_FC_LOW_THRESH;
 | |
| 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
 | |
| 	hw->fc_send_xon = 1;
 | |
| 
 | |
| 	/* Media type - copper or fiber */
 | |
| 	hw->tbi_compatibility_en = true;
 | |
| 	e1000_set_media_type(hw);
 | |
| 
 | |
| 	if (hw->mac_type >= e1000_82543) {
 | |
| 		uint32_t status = E1000_READ_REG(hw, STATUS);
 | |
| 
 | |
| 		if (status & E1000_STATUS_TBIMODE) {
 | |
| 			DEBUGOUT("fiber interface\n");
 | |
| 			hw->media_type = e1000_media_type_fiber;
 | |
| 		} else {
 | |
| 			DEBUGOUT("copper interface\n");
 | |
| 			hw->media_type = e1000_media_type_copper;
 | |
| 		}
 | |
| 	} else {
 | |
| 		hw->media_type = e1000_media_type_fiber;
 | |
| 	}
 | |
| 
 | |
| 	hw->wait_autoneg_complete = true;
 | |
| 	if (hw->mac_type < e1000_82543)
 | |
| 		hw->report_tx_early = 0;
 | |
| 	else
 | |
| 		hw->report_tx_early = 1;
 | |
| 
 | |
| 	return E1000_SUCCESS;
 | |
| }
 | |
| 
 | |
| void
 | |
| fill_rx(struct e1000_hw *hw)
 | |
| {
 | |
| 	struct e1000_rx_desc *rd;
 | |
| 	unsigned long flush_start, flush_end;
 | |
| 
 | |
| 	rx_last = rx_tail;
 | |
| 	rd = rx_base + rx_tail;
 | |
| 	rx_tail = (rx_tail + 1) % 8;
 | |
| 	memset(rd, 0, 16);
 | |
| 	rd->buffer_addr = cpu_to_le64((unsigned long)packet);
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure there are no stale data in WB over this area, which
 | |
| 	 * might get written into the memory while the e1000 also writes
 | |
| 	 * into the same memory area.
 | |
| 	 */
 | |
| 	invalidate_dcache_range((unsigned long)packet,
 | |
| 				(unsigned long)packet + 4096);
 | |
| 	/* Dump the DMA descriptor into RAM. */
 | |
| 	flush_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
 | |
| 	flush_end = flush_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
 | |
| 	flush_dcache_range(flush_start, flush_end);
 | |
| 
 | |
| 	E1000_WRITE_REG(hw, RDT, rx_tail);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
 | |
|  * @adapter: board private structure
 | |
|  *
 | |
|  * Configure the Tx unit of the MAC after a reset.
 | |
|  **/
 | |
| 
 | |
| static void
 | |
| e1000_configure_tx(struct e1000_hw *hw)
 | |
| {
 | |
| 	unsigned long tctl;
 | |
| 	unsigned long tipg, tarc;
 | |
| 	uint32_t ipgr1, ipgr2;
 | |
| 
 | |
| 	E1000_WRITE_REG(hw, TDBAL, lower_32_bits((unsigned long)tx_base));
 | |
| 	E1000_WRITE_REG(hw, TDBAH, upper_32_bits((unsigned long)tx_base));
 | |
| 
 | |
| 	E1000_WRITE_REG(hw, TDLEN, 128);
 | |
| 
 | |
| 	/* Setup the HW Tx Head and Tail descriptor pointers */
 | |
| 	E1000_WRITE_REG(hw, TDH, 0);
 | |
| 	E1000_WRITE_REG(hw, TDT, 0);
 | |
| 	tx_tail = 0;
 | |
| 
 | |
| 	/* Set the default values for the Tx Inter Packet Gap timer */
 | |
| 	if (hw->mac_type <= e1000_82547_rev_2 &&
 | |
| 	    (hw->media_type == e1000_media_type_fiber ||
 | |
| 	     hw->media_type == e1000_media_type_internal_serdes))
 | |
| 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
 | |
| 	else
 | |
| 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
 | |
| 
 | |
| 	/* Set the default values for the Tx Inter Packet Gap timer */
 | |
| 	switch (hw->mac_type) {
 | |
| 	case e1000_82542_rev2_0:
 | |
| 	case e1000_82542_rev2_1:
 | |
| 		tipg = DEFAULT_82542_TIPG_IPGT;
 | |
| 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
 | |
| 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
 | |
| 		break;
 | |
| 	case e1000_80003es2lan:
 | |
| 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
 | |
| 		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
 | |
| 		break;
 | |
| 	default:
 | |
| 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
 | |
| 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
 | |
| 		break;
 | |
| 	}
 | |
| 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
 | |
| 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
 | |
| 	E1000_WRITE_REG(hw, TIPG, tipg);
 | |
| 	/* Program the Transmit Control Register */
 | |
| 	tctl = E1000_READ_REG(hw, TCTL);
 | |
| 	tctl &= ~E1000_TCTL_CT;
 | |
| 	tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
 | |
| 	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
 | |
| 
 | |
| 	if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
 | |
| 		tarc = E1000_READ_REG(hw, TARC0);
 | |
| 		/* set the speed mode bit, we'll clear it if we're not at
 | |
| 		 * gigabit link later */
 | |
| 		/* git bit can be set to 1*/
 | |
| 	} else if (hw->mac_type == e1000_80003es2lan) {
 | |
| 		tarc = E1000_READ_REG(hw, TARC0);
 | |
| 		tarc |= 1;
 | |
| 		E1000_WRITE_REG(hw, TARC0, tarc);
 | |
| 		tarc = E1000_READ_REG(hw, TARC1);
 | |
| 		tarc |= 1;
 | |
| 		E1000_WRITE_REG(hw, TARC1, tarc);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	e1000_config_collision_dist(hw);
 | |
| 	/* Setup Transmit Descriptor Settings for eop descriptor */
 | |
| 	hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
 | |
| 
 | |
| 	/* Need to set up RS bit */
 | |
| 	if (hw->mac_type < e1000_82543)
 | |
| 		hw->txd_cmd |= E1000_TXD_CMD_RPS;
 | |
| 	else
 | |
| 		hw->txd_cmd |= E1000_TXD_CMD_RS;
 | |
| 
 | |
| 
 | |
| 	if (hw->mac_type == e1000_igb) {
 | |
| 		E1000_WRITE_REG(hw, TCTL_EXT, 0x42 << 10);
 | |
| 
 | |
| 		uint32_t reg_txdctl = E1000_READ_REG(hw, TXDCTL);
 | |
| 		reg_txdctl |= 1 << 25;
 | |
| 		E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
 | |
| 		mdelay(20);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 
 | |
| 	E1000_WRITE_REG(hw, TCTL, tctl);
 | |
| 
 | |
| 
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_setup_rctl - configure the receive control register
 | |
|  * @adapter: Board private structure
 | |
|  **/
 | |
| static void
 | |
| e1000_setup_rctl(struct e1000_hw *hw)
 | |
| {
 | |
| 	uint32_t rctl;
 | |
| 
 | |
| 	rctl = E1000_READ_REG(hw, RCTL);
 | |
| 
 | |
| 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
 | |
| 
 | |
| 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
 | |
| 		| E1000_RCTL_RDMTS_HALF;	/* |
 | |
| 			(hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
 | |
| 
 | |
| 	if (hw->tbi_compatibility_on == 1)
 | |
| 		rctl |= E1000_RCTL_SBP;
 | |
| 	else
 | |
| 		rctl &= ~E1000_RCTL_SBP;
 | |
| 
 | |
| 	rctl &= ~(E1000_RCTL_SZ_4096);
 | |
| 		rctl |= E1000_RCTL_SZ_2048;
 | |
| 		rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
 | |
| 	E1000_WRITE_REG(hw, RCTL, rctl);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
 | |
|  * @adapter: board private structure
 | |
|  *
 | |
|  * Configure the Rx unit of the MAC after a reset.
 | |
|  **/
 | |
| static void
 | |
| e1000_configure_rx(struct e1000_hw *hw)
 | |
| {
 | |
| 	unsigned long rctl, ctrl_ext;
 | |
| 	rx_tail = 0;
 | |
| 
 | |
| 	/* make sure receives are disabled while setting up the descriptors */
 | |
| 	rctl = E1000_READ_REG(hw, RCTL);
 | |
| 	E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
 | |
| 	if (hw->mac_type >= e1000_82540) {
 | |
| 		/* Set the interrupt throttling rate.  Value is calculated
 | |
| 		 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
 | |
| #define MAX_INTS_PER_SEC	8000
 | |
| #define DEFAULT_ITR		1000000000/(MAX_INTS_PER_SEC * 256)
 | |
| 		E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
 | |
| 	}
 | |
| 
 | |
| 	if (hw->mac_type >= e1000_82571) {
 | |
| 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
 | |
| 		/* Reset delay timers after every interrupt */
 | |
| 		ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
 | |
| 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
 | |
| 		E1000_WRITE_FLUSH(hw);
 | |
| 	}
 | |
| 	/* Setup the Base and Length of the Rx Descriptor Ring */
 | |
| 	E1000_WRITE_REG(hw, RDBAL, lower_32_bits((unsigned long)rx_base));
 | |
| 	E1000_WRITE_REG(hw, RDBAH, upper_32_bits((unsigned long)rx_base));
 | |
| 
 | |
| 	E1000_WRITE_REG(hw, RDLEN, 128);
 | |
| 
 | |
| 	/* Setup the HW Rx Head and Tail Descriptor Pointers */
 | |
| 	E1000_WRITE_REG(hw, RDH, 0);
 | |
| 	E1000_WRITE_REG(hw, RDT, 0);
 | |
| 	/* Enable Receives */
 | |
| 
 | |
| 	if (hw->mac_type == e1000_igb) {
 | |
| 
 | |
| 		uint32_t reg_rxdctl = E1000_READ_REG(hw, RXDCTL);
 | |
| 		reg_rxdctl |= 1 << 25;
 | |
| 		E1000_WRITE_REG(hw, RXDCTL, reg_rxdctl);
 | |
| 		mdelay(20);
 | |
| 	}
 | |
| 
 | |
| 	E1000_WRITE_REG(hw, RCTL, rctl);
 | |
| 
 | |
| 	fill_rx(hw);
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
| POLL - Wait for a frame
 | |
| ***************************************************************************/
 | |
| static int
 | |
| _e1000_poll(struct e1000_hw *hw)
 | |
| {
 | |
| 	struct e1000_rx_desc *rd;
 | |
| 	unsigned long inval_start, inval_end;
 | |
| 	uint32_t len;
 | |
| 
 | |
| 	/* return true if there's an ethernet packet ready to read */
 | |
| 	rd = rx_base + rx_last;
 | |
| 
 | |
| 	/* Re-load the descriptor from RAM. */
 | |
| 	inval_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
 | |
| 	inval_end = inval_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
 | |
| 	invalidate_dcache_range(inval_start, inval_end);
 | |
| 
 | |
| 	if (!(rd->status & E1000_RXD_STAT_DD))
 | |
| 		return 0;
 | |
| 	/* DEBUGOUT("recv: packet len=%d\n", rd->length); */
 | |
| 	/* Packet received, make sure the data are re-loaded from RAM. */
 | |
| 	len = le16_to_cpu(rd->length);
 | |
| 	invalidate_dcache_range((unsigned long)packet,
 | |
| 				(unsigned long)packet +
 | |
| 				roundup(len, ARCH_DMA_MINALIGN));
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| static int _e1000_transmit(struct e1000_hw *hw, void *txpacket, int length)
 | |
| {
 | |
| 	void *nv_packet = (void *)txpacket;
 | |
| 	struct e1000_tx_desc *txp;
 | |
| 	int i = 0;
 | |
| 	unsigned long flush_start, flush_end;
 | |
| 
 | |
| 	txp = tx_base + tx_tail;
 | |
| 	tx_tail = (tx_tail + 1) % 8;
 | |
| 
 | |
| 	txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
 | |
| 	txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
 | |
| 	txp->upper.data = 0;
 | |
| 
 | |
| 	/* Dump the packet into RAM so e1000 can pick them. */
 | |
| 	flush_dcache_range((unsigned long)nv_packet,
 | |
| 			   (unsigned long)nv_packet +
 | |
| 			   roundup(length, ARCH_DMA_MINALIGN));
 | |
| 	/* Dump the descriptor into RAM as well. */
 | |
| 	flush_start = ((unsigned long)txp) & ~(ARCH_DMA_MINALIGN - 1);
 | |
| 	flush_end = flush_start + roundup(sizeof(*txp), ARCH_DMA_MINALIGN);
 | |
| 	flush_dcache_range(flush_start, flush_end);
 | |
| 
 | |
| 	E1000_WRITE_REG(hw, TDT, tx_tail);
 | |
| 
 | |
| 	E1000_WRITE_FLUSH(hw);
 | |
| 	while (1) {
 | |
| 		invalidate_dcache_range(flush_start, flush_end);
 | |
| 		if (le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)
 | |
| 			break;
 | |
| 		if (i++ > TOUT_LOOP) {
 | |
| 			DEBUGOUT("e1000: tx timeout\n");
 | |
| 			return 0;
 | |
| 		}
 | |
| 		udelay(10);	/* give the nic a chance to write to the register */
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void
 | |
| _e1000_disable(struct e1000_hw *hw)
 | |
| {
 | |
| 	/* Turn off the ethernet interface */
 | |
| 	E1000_WRITE_REG(hw, RCTL, 0);
 | |
| 	E1000_WRITE_REG(hw, TCTL, 0);
 | |
| 
 | |
| 	/* Clear the transmit ring */
 | |
| 	E1000_WRITE_REG(hw, TDH, 0);
 | |
| 	E1000_WRITE_REG(hw, TDT, 0);
 | |
| 
 | |
| 	/* Clear the receive ring */
 | |
| 	E1000_WRITE_REG(hw, RDH, 0);
 | |
| 	E1000_WRITE_REG(hw, RDT, 0);
 | |
| 
 | |
| 	mdelay(10);
 | |
| }
 | |
| 
 | |
| /*reset function*/
 | |
| static inline int
 | |
| e1000_reset(struct e1000_hw *hw, unsigned char enetaddr[6])
 | |
| {
 | |
| 	e1000_reset_hw(hw);
 | |
| 	if (hw->mac_type >= e1000_82544)
 | |
| 		E1000_WRITE_REG(hw, WUC, 0);
 | |
| 
 | |
| 	return e1000_init_hw(hw, enetaddr);
 | |
| }
 | |
| 
 | |
| static int
 | |
| _e1000_init(struct e1000_hw *hw, unsigned char enetaddr[6])
 | |
| {
 | |
| 	int ret_val = 0;
 | |
| 
 | |
| 	ret_val = e1000_reset(hw, enetaddr);
 | |
| 	if (ret_val < 0) {
 | |
| 		if ((ret_val == -E1000_ERR_NOLINK) ||
 | |
| 		    (ret_val == -E1000_ERR_TIMEOUT)) {
 | |
| 			E1000_ERR(hw, "Valid Link not detected: %d\n", ret_val);
 | |
| 		} else {
 | |
| 			E1000_ERR(hw, "Hardware Initialization Failed\n");
 | |
| 		}
 | |
| 		return ret_val;
 | |
| 	}
 | |
| 	e1000_configure_tx(hw);
 | |
| 	e1000_setup_rctl(hw);
 | |
| 	e1000_configure_rx(hw);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Gets the current PCI bus type of hardware
 | |
|  *
 | |
|  * hw - Struct containing variables accessed by shared code
 | |
|  *****************************************************************************/
 | |
| void e1000_get_bus_type(struct e1000_hw *hw)
 | |
| {
 | |
| 	uint32_t status;
 | |
| 
 | |
| 	switch (hw->mac_type) {
 | |
| 	case e1000_82542_rev2_0:
 | |
| 	case e1000_82542_rev2_1:
 | |
| 		hw->bus_type = e1000_bus_type_pci;
 | |
| 		break;
 | |
| 	case e1000_82571:
 | |
| 	case e1000_82572:
 | |
| 	case e1000_82573:
 | |
| 	case e1000_82574:
 | |
| 	case e1000_80003es2lan:
 | |
| 	case e1000_ich8lan:
 | |
| 	case e1000_igb:
 | |
| 		hw->bus_type = e1000_bus_type_pci_express;
 | |
| 		break;
 | |
| 	default:
 | |
| 		status = E1000_READ_REG(hw, STATUS);
 | |
| 		hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
 | |
| 				e1000_bus_type_pcix : e1000_bus_type_pci;
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_DM_ETH
 | |
| /* A list of all registered e1000 devices */
 | |
| static LIST_HEAD(e1000_hw_list);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_DM_ETH
 | |
| static int e1000_init_one(struct e1000_hw *hw, int cardnum,
 | |
| 			  struct udevice *devno, unsigned char enetaddr[6])
 | |
| #else
 | |
| static int e1000_init_one(struct e1000_hw *hw, int cardnum, pci_dev_t devno,
 | |
| 			  unsigned char enetaddr[6])
 | |
| #endif
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	/* Assign the passed-in values */
 | |
| #ifdef CONFIG_DM_ETH
 | |
| 	hw->pdev = devno;
 | |
| #else
 | |
| 	hw->pdev = devno;
 | |
| #endif
 | |
| 	hw->cardnum = cardnum;
 | |
| 
 | |
| 	/* Print a debug message with the IO base address */
 | |
| #ifdef CONFIG_DM_ETH
 | |
| 	dm_pci_read_config32(devno, PCI_BASE_ADDRESS_0, &val);
 | |
| #else
 | |
| 	pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &val);
 | |
| #endif
 | |
| 	E1000_DBG(hw, "iobase 0x%08x\n", val & 0xfffffff0);
 | |
| 
 | |
| 	/* Try to enable I/O accesses and bus-mastering */
 | |
| 	val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
 | |
| #ifdef CONFIG_DM_ETH
 | |
| 	dm_pci_write_config32(devno, PCI_COMMAND, val);
 | |
| #else
 | |
| 	pci_write_config_dword(devno, PCI_COMMAND, val);
 | |
| #endif
 | |
| 
 | |
| 	/* Make sure it worked */
 | |
| #ifdef CONFIG_DM_ETH
 | |
| 	dm_pci_read_config32(devno, PCI_COMMAND, &val);
 | |
| #else
 | |
| 	pci_read_config_dword(devno, PCI_COMMAND, &val);
 | |
| #endif
 | |
| 	if (!(val & PCI_COMMAND_MEMORY)) {
 | |
| 		E1000_ERR(hw, "Can't enable I/O memory\n");
 | |
| 		return -ENOSPC;
 | |
| 	}
 | |
| 	if (!(val & PCI_COMMAND_MASTER)) {
 | |
| 		E1000_ERR(hw, "Can't enable bus-mastering\n");
 | |
| 		return -EPERM;
 | |
| 	}
 | |
| 
 | |
| 	/* Are these variables needed? */
 | |
| 	hw->fc = e1000_fc_default;
 | |
| 	hw->original_fc = e1000_fc_default;
 | |
| 	hw->autoneg_failed = 0;
 | |
| 	hw->autoneg = 1;
 | |
| 	hw->get_link_status = true;
 | |
| #ifndef CONFIG_E1000_NO_NVM
 | |
| 	hw->eeprom_semaphore_present = true;
 | |
| #endif
 | |
| #ifdef CONFIG_DM_ETH
 | |
| 	hw->hw_addr = dm_pci_map_bar(devno,	PCI_BASE_ADDRESS_0,
 | |
| 						PCI_REGION_MEM);
 | |
| #else
 | |
| 	hw->hw_addr = pci_map_bar(devno,	PCI_BASE_ADDRESS_0,
 | |
| 						PCI_REGION_MEM);
 | |
| #endif
 | |
| 	hw->mac_type = e1000_undefined;
 | |
| 
 | |
| 	/* MAC and Phy settings */
 | |
| 	if (e1000_sw_init(hw) < 0) {
 | |
| 		E1000_ERR(hw, "Software init failed\n");
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	if (e1000_check_phy_reset_block(hw))
 | |
| 		E1000_ERR(hw, "PHY Reset is blocked!\n");
 | |
| 
 | |
| 	/* Basic init was OK, reset the hardware and allow SPI access */
 | |
| 	e1000_reset_hw(hw);
 | |
| 
 | |
| #ifndef CONFIG_E1000_NO_NVM
 | |
| 	/* Validate the EEPROM and get chipset information */
 | |
| 	if (e1000_init_eeprom_params(hw)) {
 | |
| 		E1000_ERR(hw, "EEPROM is invalid!\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	if ((E1000_READ_REG(hw, I210_EECD) & E1000_EECD_FLUPD) &&
 | |
| 	    e1000_validate_eeprom_checksum(hw))
 | |
| 		return -ENXIO;
 | |
| 	e1000_read_mac_addr(hw, enetaddr);
 | |
| #endif
 | |
| 	e1000_get_bus_type(hw);
 | |
| 
 | |
| #ifndef CONFIG_E1000_NO_NVM
 | |
| 	printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n       ",
 | |
| 	       enetaddr[0], enetaddr[1], enetaddr[2],
 | |
| 	       enetaddr[3], enetaddr[4], enetaddr[5]);
 | |
| #else
 | |
| 	memset(enetaddr, 0, 6);
 | |
| 	printf("e1000: no NVM\n");
 | |
| #endif
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Put the name of a device in a string */
 | |
| static void e1000_name(char *str, int cardnum)
 | |
| {
 | |
| 	sprintf(str, "e1000#%u", cardnum);
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_DM_ETH
 | |
| /**************************************************************************
 | |
| TRANSMIT - Transmit a frame
 | |
| ***************************************************************************/
 | |
| static int e1000_transmit(struct eth_device *nic, void *txpacket, int length)
 | |
| {
 | |
| 	struct e1000_hw *hw = nic->priv;
 | |
| 
 | |
| 	return _e1000_transmit(hw, txpacket, length);
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
| DISABLE - Turn off ethernet interface
 | |
| ***************************************************************************/
 | |
| static void
 | |
| e1000_disable(struct eth_device *nic)
 | |
| {
 | |
| 	struct e1000_hw *hw = nic->priv;
 | |
| 
 | |
| 	_e1000_disable(hw);
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
| INIT - set up ethernet interface(s)
 | |
| ***************************************************************************/
 | |
| static int
 | |
| e1000_init(struct eth_device *nic, bd_t *bis)
 | |
| {
 | |
| 	struct e1000_hw *hw = nic->priv;
 | |
| 
 | |
| 	return _e1000_init(hw, nic->enetaddr);
 | |
| }
 | |
| 
 | |
| static int
 | |
| e1000_poll(struct eth_device *nic)
 | |
| {
 | |
| 	struct e1000_hw *hw = nic->priv;
 | |
| 	int len;
 | |
| 
 | |
| 	len = _e1000_poll(hw);
 | |
| 	if (len) {
 | |
| 		net_process_received_packet((uchar *)packet, len);
 | |
| 		fill_rx(hw);
 | |
| 	}
 | |
| 
 | |
| 	return len ? 1 : 0;
 | |
| }
 | |
| 
 | |
| /**************************************************************************
 | |
| PROBE - Look for an adapter, this routine's visible to the outside
 | |
| You should omit the last argument struct pci_device * for a non-PCI NIC
 | |
| ***************************************************************************/
 | |
| int
 | |
| e1000_initialize(bd_t * bis)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	pci_dev_t devno;
 | |
| 	int ret;
 | |
| 
 | |
| 	DEBUGFUNC();
 | |
| 
 | |
| 	/* Find and probe all the matching PCI devices */
 | |
| 	for (i = 0; (devno = pci_find_devices(e1000_supported, i)) >= 0; i++) {
 | |
| 		/*
 | |
| 		 * These will never get freed due to errors, this allows us to
 | |
| 		 * perform SPI EEPROM programming from U-Boot, for example.
 | |
| 		 */
 | |
| 		struct eth_device *nic = malloc(sizeof(*nic));
 | |
| 		struct e1000_hw *hw = malloc(sizeof(*hw));
 | |
| 		if (!nic || !hw) {
 | |
| 			printf("e1000#%u: Out of Memory!\n", i);
 | |
| 			free(nic);
 | |
| 			free(hw);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Make sure all of the fields are initially zeroed */
 | |
| 		memset(nic, 0, sizeof(*nic));
 | |
| 		memset(hw, 0, sizeof(*hw));
 | |
| 		nic->priv = hw;
 | |
| 
 | |
| 		/* Generate a card name */
 | |
| 		e1000_name(nic->name, i);
 | |
| 		hw->name = nic->name;
 | |
| 
 | |
| 		ret = e1000_init_one(hw, i, devno, nic->enetaddr);
 | |
| 		if (ret)
 | |
| 			continue;
 | |
| 		list_add_tail(&hw->list_node, &e1000_hw_list);
 | |
| 
 | |
| 		hw->nic = nic;
 | |
| 
 | |
| 		/* Set up the function pointers and register the device */
 | |
| 		nic->init = e1000_init;
 | |
| 		nic->recv = e1000_poll;
 | |
| 		nic->send = e1000_transmit;
 | |
| 		nic->halt = e1000_disable;
 | |
| 		eth_register(nic);
 | |
| 	}
 | |
| 
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| struct e1000_hw *e1000_find_card(unsigned int cardnum)
 | |
| {
 | |
| 	struct e1000_hw *hw;
 | |
| 
 | |
| 	list_for_each_entry(hw, &e1000_hw_list, list_node)
 | |
| 		if (hw->cardnum == cardnum)
 | |
| 			return hw;
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| #endif /* !CONFIG_DM_ETH */
 | |
| 
 | |
| #ifdef CONFIG_CMD_E1000
 | |
| static int do_e1000(cmd_tbl_t *cmdtp, int flag,
 | |
| 		int argc, char * const argv[])
 | |
| {
 | |
| 	unsigned char *mac = NULL;
 | |
| #ifdef CONFIG_DM_ETH
 | |
| 	struct eth_pdata *plat;
 | |
| 	struct udevice *dev;
 | |
| 	char name[30];
 | |
| 	int ret;
 | |
| #else
 | |
| 	struct e1000_hw *hw;
 | |
| #endif
 | |
| 	int cardnum;
 | |
| 
 | |
| 	if (argc < 3) {
 | |
| 		cmd_usage(cmdtp);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Make sure we can find the requested e1000 card */
 | |
| 	cardnum = simple_strtoul(argv[1], NULL, 10);
 | |
| #ifdef CONFIG_DM_ETH
 | |
| 	e1000_name(name, cardnum);
 | |
| 	ret = uclass_get_device_by_name(UCLASS_ETH, name, &dev);
 | |
| 	if (!ret) {
 | |
| 		plat = dev_get_platdata(dev);
 | |
| 		mac = plat->enetaddr;
 | |
| 	}
 | |
| #else
 | |
| 	hw = e1000_find_card(cardnum);
 | |
| 	if (hw)
 | |
| 		mac = hw->nic->enetaddr;
 | |
| #endif
 | |
| 	if (!mac) {
 | |
| 		printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (!strcmp(argv[2], "print-mac-address")) {
 | |
| 		printf("%02x:%02x:%02x:%02x:%02x:%02x\n",
 | |
| 			mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_E1000_SPI
 | |
| 	/* Handle the "SPI" subcommand */
 | |
| 	if (!strcmp(argv[2], "spi"))
 | |
| 		return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3);
 | |
| #endif
 | |
| 
 | |
| 	cmd_usage(cmdtp);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| U_BOOT_CMD(
 | |
| 	e1000, 7, 0, do_e1000,
 | |
| 	"Intel e1000 controller management",
 | |
| 	/*  */"<card#> print-mac-address\n"
 | |
| #ifdef CONFIG_E1000_SPI
 | |
| 	"e1000 <card#> spi show [<offset> [<length>]]\n"
 | |
| 	"e1000 <card#> spi dump <addr> <offset> <length>\n"
 | |
| 	"e1000 <card#> spi program <addr> <offset> <length>\n"
 | |
| 	"e1000 <card#> spi checksum [update]\n"
 | |
| #endif
 | |
| 	"       - Manage the Intel E1000 PCI device"
 | |
| );
 | |
| #endif /* not CONFIG_CMD_E1000 */
 | |
| 
 | |
| #ifdef CONFIG_DM_ETH
 | |
| static int e1000_eth_start(struct udevice *dev)
 | |
| {
 | |
| 	struct eth_pdata *plat = dev_get_platdata(dev);
 | |
| 	struct e1000_hw *hw = dev_get_priv(dev);
 | |
| 
 | |
| 	return _e1000_init(hw, plat->enetaddr);
 | |
| }
 | |
| 
 | |
| static void e1000_eth_stop(struct udevice *dev)
 | |
| {
 | |
| 	struct e1000_hw *hw = dev_get_priv(dev);
 | |
| 
 | |
| 	_e1000_disable(hw);
 | |
| }
 | |
| 
 | |
| static int e1000_eth_send(struct udevice *dev, void *packet, int length)
 | |
| {
 | |
| 	struct e1000_hw *hw = dev_get_priv(dev);
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = _e1000_transmit(hw, packet, length);
 | |
| 
 | |
| 	return ret ? 0 : -ETIMEDOUT;
 | |
| }
 | |
| 
 | |
| static int e1000_eth_recv(struct udevice *dev, int flags, uchar **packetp)
 | |
| {
 | |
| 	struct e1000_hw *hw = dev_get_priv(dev);
 | |
| 	int len;
 | |
| 
 | |
| 	len = _e1000_poll(hw);
 | |
| 	if (len)
 | |
| 		*packetp = packet;
 | |
| 
 | |
| 	return len ? len : -EAGAIN;
 | |
| }
 | |
| 
 | |
| static int e1000_free_pkt(struct udevice *dev, uchar *packet, int length)
 | |
| {
 | |
| 	struct e1000_hw *hw = dev_get_priv(dev);
 | |
| 
 | |
| 	fill_rx(hw);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int e1000_eth_probe(struct udevice *dev)
 | |
| {
 | |
| 	struct eth_pdata *plat = dev_get_platdata(dev);
 | |
| 	struct e1000_hw *hw = dev_get_priv(dev);
 | |
| 	int ret;
 | |
| 
 | |
| 	hw->name = dev->name;
 | |
| 	ret = e1000_init_one(hw, trailing_strtol(dev->name),
 | |
| 			     dev, plat->enetaddr);
 | |
| 	if (ret < 0) {
 | |
| 		printf(pr_fmt("failed to initialize card: %d\n"), ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int e1000_eth_bind(struct udevice *dev)
 | |
| {
 | |
| 	char name[20];
 | |
| 
 | |
| 	/*
 | |
| 	 * A simple way to number the devices. When device tree is used this
 | |
| 	 * is unnecessary, but when the device is just discovered on the PCI
 | |
| 	 * bus we need a name. We could instead have the uclass figure out
 | |
| 	 * which devices are different and number them.
 | |
| 	 */
 | |
| 	e1000_name(name, num_cards++);
 | |
| 
 | |
| 	return device_set_name(dev, name);
 | |
| }
 | |
| 
 | |
| static const struct eth_ops e1000_eth_ops = {
 | |
| 	.start	= e1000_eth_start,
 | |
| 	.send	= e1000_eth_send,
 | |
| 	.recv	= e1000_eth_recv,
 | |
| 	.stop	= e1000_eth_stop,
 | |
| 	.free_pkt = e1000_free_pkt,
 | |
| };
 | |
| 
 | |
| static const struct udevice_id e1000_eth_ids[] = {
 | |
| 	{ .compatible = "intel,e1000" },
 | |
| 	{ }
 | |
| };
 | |
| 
 | |
| U_BOOT_DRIVER(eth_e1000) = {
 | |
| 	.name	= "eth_e1000",
 | |
| 	.id	= UCLASS_ETH,
 | |
| 	.of_match = e1000_eth_ids,
 | |
| 	.bind	= e1000_eth_bind,
 | |
| 	.probe	= e1000_eth_probe,
 | |
| 	.ops	= &e1000_eth_ops,
 | |
| 	.priv_auto_alloc_size = sizeof(struct e1000_hw),
 | |
| 	.platdata_auto_alloc_size = sizeof(struct eth_pdata),
 | |
| };
 | |
| 
 | |
| U_BOOT_PCI_DEVICE(eth_e1000, e1000_supported);
 | |
| #endif
 |