mirror of
				https://source.denx.de/u-boot/u-boot.git
				synced 2025-10-26 05:51:29 +01:00 
			
		
		
		
	In efi_add_known_memory() we currently call board_get_usable_ram_top() with
an incorrect value 0 of parameter total_size. This leads to an incorrect
value for ram_top depending on the code in board_get_usable_ram_top().
Use the value of gd->ram_top instead which is set before relocation by
calling board_get_usable_ram_top().
Fixes: 7b78d6438a2b ("efi_loader: Reserve unaccessible memory")
Signed-off-by: Heinrich Schuchardt <heinrich.schuchardt@canonical.com>
		
	
			
		
			
				
	
	
		
			965 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			965 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0+
 | |
| /*
 | |
|  *  EFI application memory management
 | |
|  *
 | |
|  *  Copyright (c) 2016 Alexander Graf
 | |
|  */
 | |
| 
 | |
| #define LOG_CATEGORY LOGC_EFI
 | |
| 
 | |
| #include <common.h>
 | |
| #include <efi_loader.h>
 | |
| #include <init.h>
 | |
| #include <log.h>
 | |
| #include <malloc.h>
 | |
| #include <mapmem.h>
 | |
| #include <watchdog.h>
 | |
| #include <asm/cache.h>
 | |
| #include <asm/global_data.h>
 | |
| #include <linux/list_sort.h>
 | |
| #include <linux/sizes.h>
 | |
| 
 | |
| DECLARE_GLOBAL_DATA_PTR;
 | |
| 
 | |
| /* Magic number identifying memory allocated from pool */
 | |
| #define EFI_ALLOC_POOL_MAGIC 0x1fe67ddf6491caa2
 | |
| 
 | |
| efi_uintn_t efi_memory_map_key;
 | |
| 
 | |
| struct efi_mem_list {
 | |
| 	struct list_head link;
 | |
| 	struct efi_mem_desc desc;
 | |
| };
 | |
| 
 | |
| #define EFI_CARVE_NO_OVERLAP		-1
 | |
| #define EFI_CARVE_LOOP_AGAIN		-2
 | |
| #define EFI_CARVE_OVERLAPS_NONRAM	-3
 | |
| #define EFI_CARVE_OUT_OF_RESOURCES	-4
 | |
| 
 | |
| /* This list contains all memory map items */
 | |
| static LIST_HEAD(efi_mem);
 | |
| 
 | |
| #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
 | |
| void *efi_bounce_buffer;
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * struct efi_pool_allocation - memory block allocated from pool
 | |
|  *
 | |
|  * @num_pages:	number of pages allocated
 | |
|  * @checksum:	checksum
 | |
|  * @data:	allocated pool memory
 | |
|  *
 | |
|  * U-Boot services each UEFI AllocatePool() request as a separate
 | |
|  * (multiple) page allocation. We have to track the number of pages
 | |
|  * to be able to free the correct amount later.
 | |
|  *
 | |
|  * The checksum calculated in function checksum() is used in FreePool() to avoid
 | |
|  * freeing memory not allocated by AllocatePool() and duplicate freeing.
 | |
|  *
 | |
|  * EFI requires 8 byte alignment for pool allocations, so we can
 | |
|  * prepend each allocation with these header fields.
 | |
|  */
 | |
| struct efi_pool_allocation {
 | |
| 	u64 num_pages;
 | |
| 	u64 checksum;
 | |
| 	char data[] __aligned(ARCH_DMA_MINALIGN);
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * checksum() - calculate checksum for memory allocated from pool
 | |
|  *
 | |
|  * @alloc:	allocation header
 | |
|  * Return:	checksum, always non-zero
 | |
|  */
 | |
| static u64 checksum(struct efi_pool_allocation *alloc)
 | |
| {
 | |
| 	u64 addr = (uintptr_t)alloc;
 | |
| 	u64 ret = (addr >> 32) ^ (addr << 32) ^ alloc->num_pages ^
 | |
| 		  EFI_ALLOC_POOL_MAGIC;
 | |
| 	if (!ret)
 | |
| 		++ret;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * efi_mem_cmp() - comparator function for sorting memory map
 | |
|  *
 | |
|  * Sorts the memory list from highest address to lowest address
 | |
|  *
 | |
|  * When allocating memory we should always start from the highest
 | |
|  * address chunk, so sort the memory list such that the first list
 | |
|  * iterator gets the highest address and goes lower from there.
 | |
|  *
 | |
|  * @priv:	unused
 | |
|  * @a:		first memory area
 | |
|  * @b:		second memory area
 | |
|  * Return:	1 if @a is before @b, -1 if @b is before @a, 0 if equal
 | |
|  */
 | |
| static int efi_mem_cmp(void *priv, struct list_head *a, struct list_head *b)
 | |
| {
 | |
| 	struct efi_mem_list *mema = list_entry(a, struct efi_mem_list, link);
 | |
| 	struct efi_mem_list *memb = list_entry(b, struct efi_mem_list, link);
 | |
| 
 | |
| 	if (mema->desc.physical_start == memb->desc.physical_start)
 | |
| 		return 0;
 | |
| 	else if (mema->desc.physical_start < memb->desc.physical_start)
 | |
| 		return 1;
 | |
| 	else
 | |
| 		return -1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * desc_get_end() - get end address of memory area
 | |
|  *
 | |
|  * @desc:	memory descriptor
 | |
|  * Return:	end address + 1
 | |
|  */
 | |
| static uint64_t desc_get_end(struct efi_mem_desc *desc)
 | |
| {
 | |
| 	return desc->physical_start + (desc->num_pages << EFI_PAGE_SHIFT);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * efi_mem_sort() - sort memory map
 | |
|  *
 | |
|  * Sort the memory map and then try to merge adjacent memory areas.
 | |
|  */
 | |
| static void efi_mem_sort(void)
 | |
| {
 | |
| 	struct list_head *lhandle;
 | |
| 	struct efi_mem_list *prevmem = NULL;
 | |
| 	bool merge_again = true;
 | |
| 
 | |
| 	list_sort(NULL, &efi_mem, efi_mem_cmp);
 | |
| 
 | |
| 	/* Now merge entries that can be merged */
 | |
| 	while (merge_again) {
 | |
| 		merge_again = false;
 | |
| 		list_for_each(lhandle, &efi_mem) {
 | |
| 			struct efi_mem_list *lmem;
 | |
| 			struct efi_mem_desc *prev = &prevmem->desc;
 | |
| 			struct efi_mem_desc *cur;
 | |
| 			uint64_t pages;
 | |
| 
 | |
| 			lmem = list_entry(lhandle, struct efi_mem_list, link);
 | |
| 			if (!prevmem) {
 | |
| 				prevmem = lmem;
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			cur = &lmem->desc;
 | |
| 
 | |
| 			if ((desc_get_end(cur) == prev->physical_start) &&
 | |
| 			    (prev->type == cur->type) &&
 | |
| 			    (prev->attribute == cur->attribute)) {
 | |
| 				/* There is an existing map before, reuse it */
 | |
| 				pages = cur->num_pages;
 | |
| 				prev->num_pages += pages;
 | |
| 				prev->physical_start -= pages << EFI_PAGE_SHIFT;
 | |
| 				prev->virtual_start -= pages << EFI_PAGE_SHIFT;
 | |
| 				list_del(&lmem->link);
 | |
| 				free(lmem);
 | |
| 
 | |
| 				merge_again = true;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			prevmem = lmem;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * efi_mem_carve_out() - unmap memory region
 | |
|  *
 | |
|  * @map:		memory map
 | |
|  * @carve_desc:		memory region to unmap
 | |
|  * @overlap_only_ram:	the carved out region may only overlap RAM
 | |
|  * Return:		the number of overlapping pages which have been
 | |
|  *			removed from the map,
 | |
|  *			EFI_CARVE_NO_OVERLAP, if the regions don't overlap,
 | |
|  *			EFI_CARVE_OVERLAPS_NONRAM, if the carve and map overlap,
 | |
|  *			and the map contains anything but free ram
 | |
|  *			(only when overlap_only_ram is true),
 | |
|  *			EFI_CARVE_LOOP_AGAIN, if the mapping list should be
 | |
|  *			traversed again, as it has been altered.
 | |
|  *
 | |
|  * Unmaps all memory occupied by the carve_desc region from the list entry
 | |
|  * pointed to by map.
 | |
|  *
 | |
|  * In case of EFI_CARVE_OVERLAPS_NONRAM it is the callers responsibility
 | |
|  * to re-add the already carved out pages to the mapping.
 | |
|  */
 | |
| static s64 efi_mem_carve_out(struct efi_mem_list *map,
 | |
| 			     struct efi_mem_desc *carve_desc,
 | |
| 			     bool overlap_only_ram)
 | |
| {
 | |
| 	struct efi_mem_list *newmap;
 | |
| 	struct efi_mem_desc *map_desc = &map->desc;
 | |
| 	uint64_t map_start = map_desc->physical_start;
 | |
| 	uint64_t map_end = map_start + (map_desc->num_pages << EFI_PAGE_SHIFT);
 | |
| 	uint64_t carve_start = carve_desc->physical_start;
 | |
| 	uint64_t carve_end = carve_start +
 | |
| 			     (carve_desc->num_pages << EFI_PAGE_SHIFT);
 | |
| 
 | |
| 	/* check whether we're overlapping */
 | |
| 	if ((carve_end <= map_start) || (carve_start >= map_end))
 | |
| 		return EFI_CARVE_NO_OVERLAP;
 | |
| 
 | |
| 	/* We're overlapping with non-RAM, warn the caller if desired */
 | |
| 	if (overlap_only_ram && (map_desc->type != EFI_CONVENTIONAL_MEMORY))
 | |
| 		return EFI_CARVE_OVERLAPS_NONRAM;
 | |
| 
 | |
| 	/* Sanitize carve_start and carve_end to lie within our bounds */
 | |
| 	carve_start = max(carve_start, map_start);
 | |
| 	carve_end = min(carve_end, map_end);
 | |
| 
 | |
| 	/* Carving at the beginning of our map? Just move it! */
 | |
| 	if (carve_start == map_start) {
 | |
| 		if (map_end == carve_end) {
 | |
| 			/* Full overlap, just remove map */
 | |
| 			list_del(&map->link);
 | |
| 			free(map);
 | |
| 		} else {
 | |
| 			map->desc.physical_start = carve_end;
 | |
| 			map->desc.virtual_start = carve_end;
 | |
| 			map->desc.num_pages = (map_end - carve_end)
 | |
| 					      >> EFI_PAGE_SHIFT;
 | |
| 		}
 | |
| 
 | |
| 		return (carve_end - carve_start) >> EFI_PAGE_SHIFT;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Overlapping maps, just split the list map at carve_start,
 | |
| 	 * it will get moved or removed in the next iteration.
 | |
| 	 *
 | |
| 	 * [ map_desc |__carve_start__| newmap ]
 | |
| 	 */
 | |
| 
 | |
| 	/* Create a new map from [ carve_start ... map_end ] */
 | |
| 	newmap = calloc(1, sizeof(*newmap));
 | |
| 	if (!newmap)
 | |
| 		return EFI_CARVE_OUT_OF_RESOURCES;
 | |
| 	newmap->desc = map->desc;
 | |
| 	newmap->desc.physical_start = carve_start;
 | |
| 	newmap->desc.virtual_start = carve_start;
 | |
| 	newmap->desc.num_pages = (map_end - carve_start) >> EFI_PAGE_SHIFT;
 | |
| 	/* Insert before current entry (descending address order) */
 | |
| 	list_add_tail(&newmap->link, &map->link);
 | |
| 
 | |
| 	/* Shrink the map to [ map_start ... carve_start ] */
 | |
| 	map_desc->num_pages = (carve_start - map_start) >> EFI_PAGE_SHIFT;
 | |
| 
 | |
| 	return EFI_CARVE_LOOP_AGAIN;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * efi_add_memory_map_pg() - add pages to the memory map
 | |
|  *
 | |
|  * @start:		start address, must be a multiple of EFI_PAGE_SIZE
 | |
|  * @pages:		number of pages to add
 | |
|  * @memory_type:	type of memory added
 | |
|  * @overlap_only_ram:	region may only overlap RAM
 | |
|  * Return:		status code
 | |
|  */
 | |
| static efi_status_t efi_add_memory_map_pg(u64 start, u64 pages,
 | |
| 					  int memory_type,
 | |
| 					  bool overlap_only_ram)
 | |
| {
 | |
| 	struct list_head *lhandle;
 | |
| 	struct efi_mem_list *newlist;
 | |
| 	bool carve_again;
 | |
| 	uint64_t carved_pages = 0;
 | |
| 	struct efi_event *evt;
 | |
| 
 | |
| 	EFI_PRINT("%s: 0x%llx 0x%llx %d %s\n", __func__,
 | |
| 		  start, pages, memory_type, overlap_only_ram ? "yes" : "no");
 | |
| 
 | |
| 	if (memory_type >= EFI_MAX_MEMORY_TYPE)
 | |
| 		return EFI_INVALID_PARAMETER;
 | |
| 
 | |
| 	if (!pages)
 | |
| 		return EFI_SUCCESS;
 | |
| 
 | |
| 	++efi_memory_map_key;
 | |
| 	newlist = calloc(1, sizeof(*newlist));
 | |
| 	if (!newlist)
 | |
| 		return EFI_OUT_OF_RESOURCES;
 | |
| 	newlist->desc.type = memory_type;
 | |
| 	newlist->desc.physical_start = start;
 | |
| 	newlist->desc.virtual_start = start;
 | |
| 	newlist->desc.num_pages = pages;
 | |
| 
 | |
| 	switch (memory_type) {
 | |
| 	case EFI_RUNTIME_SERVICES_CODE:
 | |
| 	case EFI_RUNTIME_SERVICES_DATA:
 | |
| 		newlist->desc.attribute = EFI_MEMORY_WB | EFI_MEMORY_RUNTIME;
 | |
| 		break;
 | |
| 	case EFI_MMAP_IO:
 | |
| 		newlist->desc.attribute = EFI_MEMORY_RUNTIME;
 | |
| 		break;
 | |
| 	default:
 | |
| 		newlist->desc.attribute = EFI_MEMORY_WB;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* Add our new map */
 | |
| 	do {
 | |
| 		carve_again = false;
 | |
| 		list_for_each(lhandle, &efi_mem) {
 | |
| 			struct efi_mem_list *lmem;
 | |
| 			s64 r;
 | |
| 
 | |
| 			lmem = list_entry(lhandle, struct efi_mem_list, link);
 | |
| 			r = efi_mem_carve_out(lmem, &newlist->desc,
 | |
| 					      overlap_only_ram);
 | |
| 			switch (r) {
 | |
| 			case EFI_CARVE_OUT_OF_RESOURCES:
 | |
| 				free(newlist);
 | |
| 				return EFI_OUT_OF_RESOURCES;
 | |
| 			case EFI_CARVE_OVERLAPS_NONRAM:
 | |
| 				/*
 | |
| 				 * The user requested to only have RAM overlaps,
 | |
| 				 * but we hit a non-RAM region. Error out.
 | |
| 				 */
 | |
| 				free(newlist);
 | |
| 				return EFI_NO_MAPPING;
 | |
| 			case EFI_CARVE_NO_OVERLAP:
 | |
| 				/* Just ignore this list entry */
 | |
| 				break;
 | |
| 			case EFI_CARVE_LOOP_AGAIN:
 | |
| 				/*
 | |
| 				 * We split an entry, but need to loop through
 | |
| 				 * the list again to actually carve it.
 | |
| 				 */
 | |
| 				carve_again = true;
 | |
| 				break;
 | |
| 			default:
 | |
| 				/* We carved a number of pages */
 | |
| 				carved_pages += r;
 | |
| 				carve_again = true;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			if (carve_again) {
 | |
| 				/* The list changed, we need to start over */
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	} while (carve_again);
 | |
| 
 | |
| 	if (overlap_only_ram && (carved_pages != pages)) {
 | |
| 		/*
 | |
| 		 * The payload wanted to have RAM overlaps, but we overlapped
 | |
| 		 * with an unallocated region. Error out.
 | |
| 		 */
 | |
| 		free(newlist);
 | |
| 		return EFI_NO_MAPPING;
 | |
| 	}
 | |
| 
 | |
| 	/* Add our new map */
 | |
|         list_add_tail(&newlist->link, &efi_mem);
 | |
| 
 | |
| 	/* And make sure memory is listed in descending order */
 | |
| 	efi_mem_sort();
 | |
| 
 | |
| 	/* Notify that the memory map was changed */
 | |
| 	list_for_each_entry(evt, &efi_events, link) {
 | |
| 		if (evt->group &&
 | |
| 		    !guidcmp(evt->group,
 | |
| 			     &efi_guid_event_group_memory_map_change)) {
 | |
| 			efi_signal_event(evt);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * efi_add_memory_map() - add memory area to the memory map
 | |
|  *
 | |
|  * @start:		start address of the memory area
 | |
|  * @size:		length in bytes of the memory area
 | |
|  * @memory_type:	type of memory added
 | |
|  *
 | |
|  * Return:		status code
 | |
|  *
 | |
|  * This function automatically aligns the start and size of the memory area
 | |
|  * to EFI_PAGE_SIZE.
 | |
|  */
 | |
| efi_status_t efi_add_memory_map(u64 start, u64 size, int memory_type)
 | |
| {
 | |
| 	u64 pages;
 | |
| 
 | |
| 	pages = efi_size_in_pages(size + (start & EFI_PAGE_MASK));
 | |
| 	start &= ~EFI_PAGE_MASK;
 | |
| 
 | |
| 	return efi_add_memory_map_pg(start, pages, memory_type, false);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * efi_check_allocated() - validate address to be freed
 | |
|  *
 | |
|  * Check that the address is within allocated memory:
 | |
|  *
 | |
|  * * The address must be in a range of the memory map.
 | |
|  * * The address may not point to EFI_CONVENTIONAL_MEMORY.
 | |
|  *
 | |
|  * Page alignment is not checked as this is not a requirement of
 | |
|  * efi_free_pool().
 | |
|  *
 | |
|  * @addr:		address of page to be freed
 | |
|  * @must_be_allocated:	return success if the page is allocated
 | |
|  * Return:		status code
 | |
|  */
 | |
| static efi_status_t efi_check_allocated(u64 addr, bool must_be_allocated)
 | |
| {
 | |
| 	struct efi_mem_list *item;
 | |
| 
 | |
| 	list_for_each_entry(item, &efi_mem, link) {
 | |
| 		u64 start = item->desc.physical_start;
 | |
| 		u64 end = start + (item->desc.num_pages << EFI_PAGE_SHIFT);
 | |
| 
 | |
| 		if (addr >= start && addr < end) {
 | |
| 			if (must_be_allocated ^
 | |
| 			    (item->desc.type == EFI_CONVENTIONAL_MEMORY))
 | |
| 				return EFI_SUCCESS;
 | |
| 			else
 | |
| 				return EFI_NOT_FOUND;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return EFI_NOT_FOUND;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * efi_find_free_memory() - find free memory pages
 | |
|  *
 | |
|  * @len:	size of memory area needed
 | |
|  * @max_addr:	highest address to allocate
 | |
|  * Return:	pointer to free memory area or 0
 | |
|  */
 | |
| static uint64_t efi_find_free_memory(uint64_t len, uint64_t max_addr)
 | |
| {
 | |
| 	struct list_head *lhandle;
 | |
| 
 | |
| 	/*
 | |
| 	 * Prealign input max address, so we simplify our matching
 | |
| 	 * logic below and can just reuse it as return pointer.
 | |
| 	 */
 | |
| 	max_addr &= ~EFI_PAGE_MASK;
 | |
| 
 | |
| 	list_for_each(lhandle, &efi_mem) {
 | |
| 		struct efi_mem_list *lmem = list_entry(lhandle,
 | |
| 			struct efi_mem_list, link);
 | |
| 		struct efi_mem_desc *desc = &lmem->desc;
 | |
| 		uint64_t desc_len = desc->num_pages << EFI_PAGE_SHIFT;
 | |
| 		uint64_t desc_end = desc->physical_start + desc_len;
 | |
| 		uint64_t curmax = min(max_addr, desc_end);
 | |
| 		uint64_t ret = curmax - len;
 | |
| 
 | |
| 		/* We only take memory from free RAM */
 | |
| 		if (desc->type != EFI_CONVENTIONAL_MEMORY)
 | |
| 			continue;
 | |
| 
 | |
| 		/* Out of bounds for max_addr */
 | |
| 		if ((ret + len) > max_addr)
 | |
| 			continue;
 | |
| 
 | |
| 		/* Out of bounds for upper map limit */
 | |
| 		if ((ret + len) > desc_end)
 | |
| 			continue;
 | |
| 
 | |
| 		/* Out of bounds for lower map limit */
 | |
| 		if (ret < desc->physical_start)
 | |
| 			continue;
 | |
| 
 | |
| 		/* Return the highest address in this map within bounds */
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * efi_allocate_pages - allocate memory pages
 | |
|  *
 | |
|  * @type:		type of allocation to be performed
 | |
|  * @memory_type:	usage type of the allocated memory
 | |
|  * @pages:		number of pages to be allocated
 | |
|  * @memory:		allocated memory
 | |
|  * Return:		status code
 | |
|  */
 | |
| efi_status_t efi_allocate_pages(enum efi_allocate_type type,
 | |
| 				enum efi_memory_type memory_type,
 | |
| 				efi_uintn_t pages, uint64_t *memory)
 | |
| {
 | |
| 	u64 len;
 | |
| 	efi_status_t ret;
 | |
| 	uint64_t addr;
 | |
| 
 | |
| 	/* Check import parameters */
 | |
| 	if (memory_type >= EFI_PERSISTENT_MEMORY_TYPE &&
 | |
| 	    memory_type <= 0x6FFFFFFF)
 | |
| 		return EFI_INVALID_PARAMETER;
 | |
| 	if (!memory)
 | |
| 		return EFI_INVALID_PARAMETER;
 | |
| 	len = (u64)pages << EFI_PAGE_SHIFT;
 | |
| 	/* Catch possible overflow on 64bit systems */
 | |
| 	if (sizeof(efi_uintn_t) == sizeof(u64) &&
 | |
| 	    (len >> EFI_PAGE_SHIFT) != (u64)pages)
 | |
| 		return EFI_OUT_OF_RESOURCES;
 | |
| 
 | |
| 	switch (type) {
 | |
| 	case EFI_ALLOCATE_ANY_PAGES:
 | |
| 		/* Any page */
 | |
| 		addr = efi_find_free_memory(len, -1ULL);
 | |
| 		if (!addr)
 | |
| 			return EFI_OUT_OF_RESOURCES;
 | |
| 		break;
 | |
| 	case EFI_ALLOCATE_MAX_ADDRESS:
 | |
| 		/* Max address */
 | |
| 		addr = efi_find_free_memory(len, *memory);
 | |
| 		if (!addr)
 | |
| 			return EFI_OUT_OF_RESOURCES;
 | |
| 		break;
 | |
| 	case EFI_ALLOCATE_ADDRESS:
 | |
| 		if (*memory & EFI_PAGE_MASK)
 | |
| 			return EFI_NOT_FOUND;
 | |
| 		/* Exact address, reserve it. The addr is already in *memory. */
 | |
| 		ret = efi_check_allocated(*memory, false);
 | |
| 		if (ret != EFI_SUCCESS)
 | |
| 			return EFI_NOT_FOUND;
 | |
| 		addr = *memory;
 | |
| 		break;
 | |
| 	default:
 | |
| 		/* UEFI doesn't specify other allocation types */
 | |
| 		return EFI_INVALID_PARAMETER;
 | |
| 	}
 | |
| 
 | |
| 	/* Reserve that map in our memory maps */
 | |
| 	ret = efi_add_memory_map_pg(addr, pages, memory_type, true);
 | |
| 	if (ret != EFI_SUCCESS)
 | |
| 		/* Map would overlap, bail out */
 | |
| 		return  EFI_OUT_OF_RESOURCES;
 | |
| 
 | |
| 	*memory = addr;
 | |
| 
 | |
| 	return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * efi_free_pages() - free memory pages
 | |
|  *
 | |
|  * @memory:	start of the memory area to be freed
 | |
|  * @pages:	number of pages to be freed
 | |
|  * Return:	status code
 | |
|  */
 | |
| efi_status_t efi_free_pages(uint64_t memory, efi_uintn_t pages)
 | |
| {
 | |
| 	efi_status_t ret;
 | |
| 
 | |
| 	ret = efi_check_allocated(memory, true);
 | |
| 	if (ret != EFI_SUCCESS)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* Sanity check */
 | |
| 	if (!memory || (memory & EFI_PAGE_MASK) || !pages) {
 | |
| 		printf("%s: illegal free 0x%llx, 0x%zx\n", __func__,
 | |
| 		       memory, pages);
 | |
| 		return EFI_INVALID_PARAMETER;
 | |
| 	}
 | |
| 
 | |
| 	ret = efi_add_memory_map_pg(memory, pages, EFI_CONVENTIONAL_MEMORY,
 | |
| 				    false);
 | |
| 	if (ret != EFI_SUCCESS)
 | |
| 		return EFI_NOT_FOUND;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * efi_alloc_aligned_pages() - allocate aligned memory pages
 | |
|  *
 | |
|  * @len:		len in bytes
 | |
|  * @memory_type:	usage type of the allocated memory
 | |
|  * @align:		alignment in bytes
 | |
|  * Return:		aligned memory or NULL
 | |
|  */
 | |
| void *efi_alloc_aligned_pages(u64 len, int memory_type, size_t align)
 | |
| {
 | |
| 	u64 req_pages = efi_size_in_pages(len);
 | |
| 	u64 true_pages = req_pages + efi_size_in_pages(align) - 1;
 | |
| 	u64 free_pages;
 | |
| 	u64 aligned_mem;
 | |
| 	efi_status_t r;
 | |
| 	u64 mem;
 | |
| 
 | |
| 	/* align must be zero or a power of two */
 | |
| 	if (align & (align - 1))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* Check for overflow */
 | |
| 	if (true_pages < req_pages)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (align < EFI_PAGE_SIZE) {
 | |
| 		r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, memory_type,
 | |
| 				       req_pages, &mem);
 | |
| 		return (r == EFI_SUCCESS) ? (void *)(uintptr_t)mem : NULL;
 | |
| 	}
 | |
| 
 | |
| 	r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, memory_type,
 | |
| 			       true_pages, &mem);
 | |
| 	if (r != EFI_SUCCESS)
 | |
| 		return NULL;
 | |
| 
 | |
| 	aligned_mem = ALIGN(mem, align);
 | |
| 	/* Free pages before alignment */
 | |
| 	free_pages = efi_size_in_pages(aligned_mem - mem);
 | |
| 	if (free_pages)
 | |
| 		efi_free_pages(mem, free_pages);
 | |
| 
 | |
| 	/* Free trailing pages */
 | |
| 	free_pages = true_pages - (req_pages + free_pages);
 | |
| 	if (free_pages) {
 | |
| 		mem = aligned_mem + req_pages * EFI_PAGE_SIZE;
 | |
| 		efi_free_pages(mem, free_pages);
 | |
| 	}
 | |
| 
 | |
| 	return (void *)(uintptr_t)aligned_mem;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * efi_allocate_pool - allocate memory from pool
 | |
|  *
 | |
|  * @pool_type:	type of the pool from which memory is to be allocated
 | |
|  * @size:	number of bytes to be allocated
 | |
|  * @buffer:	allocated memory
 | |
|  * Return:	status code
 | |
|  */
 | |
| efi_status_t efi_allocate_pool(enum efi_memory_type pool_type, efi_uintn_t size, void **buffer)
 | |
| {
 | |
| 	efi_status_t r;
 | |
| 	u64 addr;
 | |
| 	struct efi_pool_allocation *alloc;
 | |
| 	u64 num_pages = efi_size_in_pages(size +
 | |
| 					  sizeof(struct efi_pool_allocation));
 | |
| 
 | |
| 	if (!buffer)
 | |
| 		return EFI_INVALID_PARAMETER;
 | |
| 
 | |
| 	if (size == 0) {
 | |
| 		*buffer = NULL;
 | |
| 		return EFI_SUCCESS;
 | |
| 	}
 | |
| 
 | |
| 	r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, pool_type, num_pages,
 | |
| 			       &addr);
 | |
| 	if (r == EFI_SUCCESS) {
 | |
| 		alloc = (struct efi_pool_allocation *)(uintptr_t)addr;
 | |
| 		alloc->num_pages = num_pages;
 | |
| 		alloc->checksum = checksum(alloc);
 | |
| 		*buffer = alloc->data;
 | |
| 	}
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * efi_alloc() - allocate boot services data pool memory
 | |
|  *
 | |
|  * Allocate memory from pool and zero it out.
 | |
|  *
 | |
|  * @size:	number of bytes to allocate
 | |
|  * Return:	pointer to allocated memory or NULL
 | |
|  */
 | |
| void *efi_alloc(size_t size)
 | |
| {
 | |
| 	void *buf;
 | |
| 
 | |
| 	if (efi_allocate_pool(EFI_BOOT_SERVICES_DATA, size, &buf) !=
 | |
| 	    EFI_SUCCESS) {
 | |
| 		log_err("out of memory");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	memset(buf, 0, size);
 | |
| 
 | |
| 	return buf;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * efi_free_pool() - free memory from pool
 | |
|  *
 | |
|  * @buffer:	start of memory to be freed
 | |
|  * Return:	status code
 | |
|  */
 | |
| efi_status_t efi_free_pool(void *buffer)
 | |
| {
 | |
| 	efi_status_t ret;
 | |
| 	struct efi_pool_allocation *alloc;
 | |
| 
 | |
| 	if (!buffer)
 | |
| 		return EFI_INVALID_PARAMETER;
 | |
| 
 | |
| 	ret = efi_check_allocated((uintptr_t)buffer, true);
 | |
| 	if (ret != EFI_SUCCESS)
 | |
| 		return ret;
 | |
| 
 | |
| 	alloc = container_of(buffer, struct efi_pool_allocation, data);
 | |
| 
 | |
| 	/* Check that this memory was allocated by efi_allocate_pool() */
 | |
| 	if (((uintptr_t)alloc & EFI_PAGE_MASK) ||
 | |
| 	    alloc->checksum != checksum(alloc)) {
 | |
| 		printf("%s: illegal free 0x%p\n", __func__, buffer);
 | |
| 		return EFI_INVALID_PARAMETER;
 | |
| 	}
 | |
| 	/* Avoid double free */
 | |
| 	alloc->checksum = 0;
 | |
| 
 | |
| 	ret = efi_free_pages((uintptr_t)alloc, alloc->num_pages);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * efi_get_memory_map() - get map describing memory usage.
 | |
|  *
 | |
|  * @memory_map_size:	on entry the size, in bytes, of the memory map buffer,
 | |
|  *			on exit the size of the copied memory map
 | |
|  * @memory_map:		buffer to which the memory map is written
 | |
|  * @map_key:		key for the memory map
 | |
|  * @descriptor_size:	size of an individual memory descriptor
 | |
|  * @descriptor_version:	version number of the memory descriptor structure
 | |
|  * Return:		status code
 | |
|  */
 | |
| efi_status_t efi_get_memory_map(efi_uintn_t *memory_map_size,
 | |
| 				struct efi_mem_desc *memory_map,
 | |
| 				efi_uintn_t *map_key,
 | |
| 				efi_uintn_t *descriptor_size,
 | |
| 				uint32_t *descriptor_version)
 | |
| {
 | |
| 	efi_uintn_t map_size = 0;
 | |
| 	int map_entries = 0;
 | |
| 	struct list_head *lhandle;
 | |
| 	efi_uintn_t provided_map_size;
 | |
| 
 | |
| 	if (!memory_map_size)
 | |
| 		return EFI_INVALID_PARAMETER;
 | |
| 
 | |
| 	provided_map_size = *memory_map_size;
 | |
| 
 | |
| 	list_for_each(lhandle, &efi_mem)
 | |
| 		map_entries++;
 | |
| 
 | |
| 	map_size = map_entries * sizeof(struct efi_mem_desc);
 | |
| 
 | |
| 	*memory_map_size = map_size;
 | |
| 
 | |
| 	if (descriptor_size)
 | |
| 		*descriptor_size = sizeof(struct efi_mem_desc);
 | |
| 
 | |
| 	if (descriptor_version)
 | |
| 		*descriptor_version = EFI_MEMORY_DESCRIPTOR_VERSION;
 | |
| 
 | |
| 	if (provided_map_size < map_size)
 | |
| 		return EFI_BUFFER_TOO_SMALL;
 | |
| 
 | |
| 	if (!memory_map)
 | |
| 		return EFI_INVALID_PARAMETER;
 | |
| 
 | |
| 	/* Copy list into array */
 | |
| 	/* Return the list in ascending order */
 | |
| 	memory_map = &memory_map[map_entries - 1];
 | |
| 	list_for_each(lhandle, &efi_mem) {
 | |
| 		struct efi_mem_list *lmem;
 | |
| 
 | |
| 		lmem = list_entry(lhandle, struct efi_mem_list, link);
 | |
| 		*memory_map = lmem->desc;
 | |
| 		memory_map--;
 | |
| 	}
 | |
| 
 | |
| 	if (map_key)
 | |
| 		*map_key = efi_memory_map_key;
 | |
| 
 | |
| 	return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * efi_get_memory_map_alloc() - allocate map describing memory usage
 | |
|  *
 | |
|  * The caller is responsible for calling FreePool() if the call succeeds.
 | |
|  *
 | |
|  * @map_size:		size of the memory map
 | |
|  * @memory_map:		buffer to which the memory map is written
 | |
|  * Return:		status code
 | |
|  */
 | |
| efi_status_t efi_get_memory_map_alloc(efi_uintn_t *map_size,
 | |
| 				      struct efi_mem_desc **memory_map)
 | |
| {
 | |
| 	efi_status_t ret;
 | |
| 
 | |
| 	*memory_map = NULL;
 | |
| 	*map_size = 0;
 | |
| 	ret = efi_get_memory_map(map_size, *memory_map, NULL, NULL, NULL);
 | |
| 	if (ret == EFI_BUFFER_TOO_SMALL) {
 | |
| 		*map_size += sizeof(struct efi_mem_desc); /* for the map */
 | |
| 		ret = efi_allocate_pool(EFI_BOOT_SERVICES_DATA, *map_size,
 | |
| 					(void **)memory_map);
 | |
| 		if (ret != EFI_SUCCESS)
 | |
| 			return ret;
 | |
| 		ret = efi_get_memory_map(map_size, *memory_map,
 | |
| 					 NULL, NULL, NULL);
 | |
| 		if (ret != EFI_SUCCESS) {
 | |
| 			efi_free_pool(*memory_map);
 | |
| 			*memory_map = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * efi_add_conventional_memory_map() - add a RAM memory area to the map
 | |
|  *
 | |
|  * @ram_start:		start address of a RAM memory area
 | |
|  * @ram_end:		end address of a RAM memory area
 | |
|  * @ram_top:		max address to be used as conventional memory
 | |
|  * Return:		status code
 | |
|  */
 | |
| efi_status_t efi_add_conventional_memory_map(u64 ram_start, u64 ram_end,
 | |
| 					     u64 ram_top)
 | |
| {
 | |
| 	u64 pages;
 | |
| 
 | |
| 	/* Remove partial pages */
 | |
| 	ram_end &= ~EFI_PAGE_MASK;
 | |
| 	ram_start = (ram_start + EFI_PAGE_MASK) & ~EFI_PAGE_MASK;
 | |
| 
 | |
| 	if (ram_end <= ram_start) {
 | |
| 		/* Invalid mapping */
 | |
| 		return EFI_INVALID_PARAMETER;
 | |
| 	}
 | |
| 
 | |
| 	pages = (ram_end - ram_start) >> EFI_PAGE_SHIFT;
 | |
| 
 | |
| 	efi_add_memory_map_pg(ram_start, pages,
 | |
| 			      EFI_CONVENTIONAL_MEMORY, false);
 | |
| 
 | |
| 	/*
 | |
| 	 * Boards may indicate to the U-Boot memory core that they
 | |
| 	 * can not support memory above ram_top. Let's honor this
 | |
| 	 * in the efi_loader subsystem too by declaring any memory
 | |
| 	 * above ram_top as "already occupied by firmware".
 | |
| 	 */
 | |
| 	if (ram_top < ram_start) {
 | |
| 		/* ram_top is before this region, reserve all */
 | |
| 		efi_add_memory_map_pg(ram_start, pages,
 | |
| 				      EFI_BOOT_SERVICES_DATA, true);
 | |
| 	} else if (ram_top < ram_end) {
 | |
| 		/* ram_top is inside this region, reserve parts */
 | |
| 		pages = (ram_end - ram_top) >> EFI_PAGE_SHIFT;
 | |
| 
 | |
| 		efi_add_memory_map_pg(ram_top, pages,
 | |
| 				      EFI_BOOT_SERVICES_DATA, true);
 | |
| 	}
 | |
| 
 | |
| 	return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * efi_add_known_memory() - add memory banks to map
 | |
|  *
 | |
|  * This function may be overridden for specific architectures.
 | |
|  */
 | |
| __weak void efi_add_known_memory(void)
 | |
| {
 | |
| 	u64 ram_top = gd->ram_top & ~EFI_PAGE_MASK;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * ram_top is just outside mapped memory. So use an offset of one for
 | |
| 	 * mapping the sandbox address.
 | |
| 	 */
 | |
| 	ram_top = (uintptr_t)map_sysmem(ram_top - 1, 0) + 1;
 | |
| 
 | |
| 	/* Fix for 32bit targets with ram_top at 4G */
 | |
| 	if (!ram_top)
 | |
| 		ram_top = 0x100000000ULL;
 | |
| 
 | |
| 	/* Add RAM */
 | |
| 	for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
 | |
| 		u64 ram_end, ram_start;
 | |
| 
 | |
| 		ram_start = (uintptr_t)map_sysmem(gd->bd->bi_dram[i].start, 0);
 | |
| 		ram_end = ram_start + gd->bd->bi_dram[i].size;
 | |
| 
 | |
| 		efi_add_conventional_memory_map(ram_start, ram_end, ram_top);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * add_u_boot_and_runtime() - add U-Boot code to memory map
 | |
|  *
 | |
|  * Add memory regions for U-Boot's memory and for the runtime services code.
 | |
|  */
 | |
| static void add_u_boot_and_runtime(void)
 | |
| {
 | |
| 	unsigned long runtime_start, runtime_end, runtime_pages;
 | |
| 	unsigned long runtime_mask = EFI_PAGE_MASK;
 | |
| 	unsigned long uboot_start, uboot_pages;
 | |
| 	unsigned long uboot_stack_size = CONFIG_STACK_SIZE;
 | |
| 
 | |
| 	/* Add U-Boot */
 | |
| 	uboot_start = ((uintptr_t)map_sysmem(gd->start_addr_sp, 0) -
 | |
| 		       uboot_stack_size) & ~EFI_PAGE_MASK;
 | |
| 	uboot_pages = ((uintptr_t)map_sysmem(gd->ram_top - 1, 0) -
 | |
| 		       uboot_start + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
 | |
| 	efi_add_memory_map_pg(uboot_start, uboot_pages, EFI_BOOT_SERVICES_CODE,
 | |
| 			      false);
 | |
| 
 | |
| #if defined(__aarch64__)
 | |
| 	/*
 | |
| 	 * Runtime Services must be 64KiB aligned according to the
 | |
| 	 * "AArch64 Platforms" section in the UEFI spec (2.7+).
 | |
| 	 */
 | |
| 
 | |
| 	runtime_mask = SZ_64K - 1;
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Add Runtime Services. We mark surrounding boottime code as runtime as
 | |
| 	 * well to fulfill the runtime alignment constraints but avoid padding.
 | |
| 	 */
 | |
| 	runtime_start = (ulong)&__efi_runtime_start & ~runtime_mask;
 | |
| 	runtime_end = (ulong)&__efi_runtime_stop;
 | |
| 	runtime_end = (runtime_end + runtime_mask) & ~runtime_mask;
 | |
| 	runtime_pages = (runtime_end - runtime_start) >> EFI_PAGE_SHIFT;
 | |
| 	efi_add_memory_map_pg(runtime_start, runtime_pages,
 | |
| 			      EFI_RUNTIME_SERVICES_CODE, false);
 | |
| }
 | |
| 
 | |
| int efi_memory_init(void)
 | |
| {
 | |
| 	efi_add_known_memory();
 | |
| 
 | |
| 	add_u_boot_and_runtime();
 | |
| 
 | |
| #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
 | |
| 	/* Request a 32bit 64MB bounce buffer region */
 | |
| 	uint64_t efi_bounce_buffer_addr = 0xffffffff;
 | |
| 
 | |
| 	if (efi_allocate_pages(EFI_ALLOCATE_MAX_ADDRESS, EFI_BOOT_SERVICES_DATA,
 | |
| 			       (64 * 1024 * 1024) >> EFI_PAGE_SHIFT,
 | |
| 			       &efi_bounce_buffer_addr) != EFI_SUCCESS)
 | |
| 		return -1;
 | |
| 
 | |
| 	efi_bounce_buffer = (void*)(uintptr_t)efi_bounce_buffer_addr;
 | |
| #endif
 | |
| 
 | |
| 	return 0;
 | |
| }
 |