mirror of
				https://source.denx.de/u-boot/u-boot.git
				synced 2025-10-31 08:21:36 +01:00 
			
		
		
		
	Add support for imx8mn architecture in order to run the NAND in fast edo mode. Signed-off-by: Michael Trimarchi <michael@amarulasolutions.com> Reviewed-by: Dario Binacchi <dario.binacchi@amarulasolutions.com> Signed-off-by: Dario Binacchi <dario.binacchi@amarulasolutions.com>
		
			
				
	
	
		
			1856 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1856 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0+
 | |
| /*
 | |
|  * Freescale i.MX28 NAND flash driver
 | |
|  *
 | |
|  * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
 | |
|  * on behalf of DENX Software Engineering GmbH
 | |
|  *
 | |
|  * Based on code from LTIB:
 | |
|  * Freescale GPMI NFC NAND Flash Driver
 | |
|  *
 | |
|  * Copyright (C) 2010 Freescale Semiconductor, Inc.
 | |
|  * Copyright (C) 2008 Embedded Alley Solutions, Inc.
 | |
|  * Copyright 2017-2019 NXP
 | |
|  */
 | |
| 
 | |
| #include <common.h>
 | |
| #include <clk.h>
 | |
| #include <cpu_func.h>
 | |
| #include <dm.h>
 | |
| #include <dm/device_compat.h>
 | |
| #include <malloc.h>
 | |
| #include <mxs_nand.h>
 | |
| #include <asm/arch/clock.h>
 | |
| #include <asm/arch/imx-regs.h>
 | |
| #include <asm/arch/sys_proto.h>
 | |
| #include <asm/cache.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/mach-imx/regs-bch.h>
 | |
| #include <asm/mach-imx/regs-gpmi.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/mtd/rawnand.h>
 | |
| #include <linux/sizes.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/math64.h>
 | |
| 
 | |
| #define	MXS_NAND_DMA_DESCRIPTOR_COUNT		4
 | |
| 
 | |
| #if defined(CONFIG_MX6) || defined(CONFIG_MX7) || defined(CONFIG_IMX8) || \
 | |
| 	defined(CONFIG_IMX8M)
 | |
| #define	MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT	2
 | |
| #else
 | |
| #define	MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT	0
 | |
| #endif
 | |
| #define	MXS_NAND_METADATA_SIZE			10
 | |
| #define	MXS_NAND_BITS_PER_ECC_LEVEL		13
 | |
| 
 | |
| #if !defined(CONFIG_SYS_CACHELINE_SIZE) || CONFIG_SYS_CACHELINE_SIZE < 32
 | |
| #define	MXS_NAND_COMMAND_BUFFER_SIZE		32
 | |
| #else
 | |
| #define	MXS_NAND_COMMAND_BUFFER_SIZE		CONFIG_SYS_CACHELINE_SIZE
 | |
| #endif
 | |
| 
 | |
| #define	MXS_NAND_BCH_TIMEOUT			10000
 | |
| #define	USEC_PER_SEC				1000000
 | |
| #define	NSEC_PER_SEC				1000000000L
 | |
| 
 | |
| #define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period)
 | |
| 
 | |
| struct nand_ecclayout fake_ecc_layout;
 | |
| 
 | |
| /*
 | |
|  * Cache management functions
 | |
|  */
 | |
| #if !CONFIG_IS_ENABLED(SYS_DCACHE_OFF)
 | |
| static void mxs_nand_flush_data_buf(struct mxs_nand_info *info)
 | |
| {
 | |
| 	uint32_t addr = (uintptr_t)info->data_buf;
 | |
| 
 | |
| 	flush_dcache_range(addr, addr + info->data_buf_size);
 | |
| }
 | |
| 
 | |
| static void mxs_nand_inval_data_buf(struct mxs_nand_info *info)
 | |
| {
 | |
| 	uint32_t addr = (uintptr_t)info->data_buf;
 | |
| 
 | |
| 	invalidate_dcache_range(addr, addr + info->data_buf_size);
 | |
| }
 | |
| 
 | |
| static void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info)
 | |
| {
 | |
| 	uint32_t addr = (uintptr_t)info->cmd_buf;
 | |
| 
 | |
| 	flush_dcache_range(addr, addr + MXS_NAND_COMMAND_BUFFER_SIZE);
 | |
| }
 | |
| #else
 | |
| static inline void mxs_nand_flush_data_buf(struct mxs_nand_info *info) {}
 | |
| static inline void mxs_nand_inval_data_buf(struct mxs_nand_info *info) {}
 | |
| static inline void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info) {}
 | |
| #endif
 | |
| 
 | |
| static struct mxs_dma_desc *mxs_nand_get_dma_desc(struct mxs_nand_info *info)
 | |
| {
 | |
| 	struct mxs_dma_desc *desc;
 | |
| 
 | |
| 	if (info->desc_index >= MXS_NAND_DMA_DESCRIPTOR_COUNT) {
 | |
| 		printf("MXS NAND: Too many DMA descriptors requested\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	desc = info->desc[info->desc_index];
 | |
| 	info->desc_index++;
 | |
| 
 | |
| 	return desc;
 | |
| }
 | |
| 
 | |
| static void mxs_nand_return_dma_descs(struct mxs_nand_info *info)
 | |
| {
 | |
| 	int i;
 | |
| 	struct mxs_dma_desc *desc;
 | |
| 
 | |
| 	for (i = 0; i < info->desc_index; i++) {
 | |
| 		desc = info->desc[i];
 | |
| 		memset(desc, 0, sizeof(struct mxs_dma_desc));
 | |
| 		desc->address = (dma_addr_t)desc;
 | |
| 	}
 | |
| 
 | |
| 	info->desc_index = 0;
 | |
| }
 | |
| 
 | |
| static uint32_t mxs_nand_aux_status_offset(void)
 | |
| {
 | |
| 	return (MXS_NAND_METADATA_SIZE + 0x3) & ~0x3;
 | |
| }
 | |
| 
 | |
| static inline bool mxs_nand_bbm_in_data_chunk(struct bch_geometry *geo,
 | |
| 					      struct mtd_info *mtd,
 | |
| 					      unsigned int *chunk_num)
 | |
| {
 | |
| 	unsigned int i, j;
 | |
| 
 | |
| 	if (geo->ecc_chunk0_size != geo->ecc_chunkn_size) {
 | |
| 		dev_err(mtd->dev, "The size of chunk0 must equal to chunkn\n");
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	i = (mtd->writesize * 8 - MXS_NAND_METADATA_SIZE * 8) /
 | |
| 		(geo->gf_len * geo->ecc_strength +
 | |
| 				geo->ecc_chunkn_size * 8);
 | |
| 
 | |
| 	j = (mtd->writesize * 8 - MXS_NAND_METADATA_SIZE * 8) -
 | |
| 		(geo->gf_len * geo->ecc_strength +
 | |
| 				geo->ecc_chunkn_size * 8) * i;
 | |
| 
 | |
| 	if (j < geo->ecc_chunkn_size * 8) {
 | |
| 		*chunk_num = i + 1;
 | |
| 		dev_dbg(mtd->dev, "Set ecc to %d and bbm in chunk %d\n",
 | |
| 			geo->ecc_strength, *chunk_num);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline int mxs_nand_calc_ecc_layout_by_info(struct bch_geometry *geo,
 | |
| 						   struct mtd_info *mtd,
 | |
| 						   unsigned int ecc_strength,
 | |
| 						   unsigned int ecc_step)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
 | |
| 	unsigned int block_mark_bit_offset;
 | |
| 
 | |
| 	switch (ecc_step) {
 | |
| 	case SZ_512:
 | |
| 		geo->gf_len = 13;
 | |
| 		break;
 | |
| 	case SZ_1K:
 | |
| 		geo->gf_len = 14;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	geo->ecc_chunk0_size = ecc_step;
 | |
| 	geo->ecc_chunkn_size = ecc_step;
 | |
| 	geo->ecc_strength = round_up(ecc_strength, 2);
 | |
| 
 | |
| 	/* Keep the C >= O */
 | |
| 	if (geo->ecc_chunkn_size < mtd->oobsize)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (geo->ecc_strength > nand_info->max_ecc_strength_supported)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunkn_size;
 | |
| 
 | |
| 	/* For bit swap. */
 | |
| 	block_mark_bit_offset = mtd->writesize * 8 -
 | |
| 		(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
 | |
| 				+ MXS_NAND_METADATA_SIZE * 8);
 | |
| 
 | |
| 	geo->block_mark_byte_offset = block_mark_bit_offset / 8;
 | |
| 	geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int mxs_nand_legacy_calc_ecc_layout(struct bch_geometry *geo,
 | |
| 					   struct mtd_info *mtd)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
 | |
| 	unsigned int block_mark_bit_offset;
 | |
| 	int corr, ds_corr;
 | |
| 
 | |
| 	/* The default for the length of Galois Field. */
 | |
| 	geo->gf_len = 13;
 | |
| 
 | |
| 	/* The default for chunk size. */
 | |
| 	geo->ecc_chunk0_size = 512;
 | |
| 	geo->ecc_chunkn_size = 512;
 | |
| 
 | |
| 	if (geo->ecc_chunkn_size < mtd->oobsize) {
 | |
| 		geo->gf_len = 14;
 | |
| 		geo->ecc_chunk0_size *= 2;
 | |
| 		geo->ecc_chunkn_size *= 2;
 | |
| 	}
 | |
| 
 | |
| 	geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunkn_size;
 | |
| 
 | |
| 	/*
 | |
| 	 * Determine the ECC layout with the formula:
 | |
| 	 *	ECC bits per chunk = (total page spare data bits) /
 | |
| 	 *		(bits per ECC level) / (chunks per page)
 | |
| 	 * where:
 | |
| 	 *	total page spare data bits =
 | |
| 	 *		(page oob size - meta data size) * (bits per byte)
 | |
| 	 */
 | |
| 	geo->ecc_strength = ((mtd->oobsize - MXS_NAND_METADATA_SIZE) * 8)
 | |
| 			/ (geo->gf_len * geo->ecc_chunk_count);
 | |
| 
 | |
| 	geo->ecc_strength = min(round_down(geo->ecc_strength, 2),
 | |
| 				nand_info->max_ecc_strength_supported);
 | |
| 
 | |
| 	/* check ecc strength, same as nand_ecc_is_strong_enough() did*/
 | |
| 	if (chip->ecc_step_ds) {
 | |
| 		corr = mtd->writesize * geo->ecc_strength /
 | |
| 		       geo->ecc_chunkn_size;
 | |
| 		ds_corr = mtd->writesize * chip->ecc_strength_ds /
 | |
| 		       chip->ecc_step_ds;
 | |
| 		if (corr < ds_corr ||
 | |
| 		    geo->ecc_strength < chip->ecc_strength_ds)
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	block_mark_bit_offset = mtd->writesize * 8 -
 | |
| 		(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
 | |
| 				+ MXS_NAND_METADATA_SIZE * 8);
 | |
| 
 | |
| 	geo->block_mark_byte_offset = block_mark_bit_offset / 8;
 | |
| 	geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int mxs_nand_calc_ecc_for_large_oob(struct bch_geometry *geo,
 | |
| 					   struct mtd_info *mtd)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
 | |
| 	unsigned int block_mark_bit_offset;
 | |
| 	unsigned int max_ecc;
 | |
| 	unsigned int bbm_chunk;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	/* sanity check for the minimum ecc nand required */
 | |
| 	if (!(chip->ecc_strength_ds > 0 && chip->ecc_step_ds > 0))
 | |
| 		return -EINVAL;
 | |
| 	geo->ecc_strength = chip->ecc_strength_ds;
 | |
| 
 | |
| 	/* calculate the maximum ecc platform can support*/
 | |
| 	geo->gf_len = 14;
 | |
| 	geo->ecc_chunk0_size = 1024;
 | |
| 	geo->ecc_chunkn_size = 1024;
 | |
| 	geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunkn_size;
 | |
| 	max_ecc = ((mtd->oobsize - MXS_NAND_METADATA_SIZE) * 8)
 | |
| 			/ (geo->gf_len * geo->ecc_chunk_count);
 | |
| 	max_ecc = min(round_down(max_ecc, 2),
 | |
| 				nand_info->max_ecc_strength_supported);
 | |
| 
 | |
| 
 | |
| 	/* search a supported ecc strength that makes bbm */
 | |
| 	/* located in data chunk  */
 | |
| 	geo->ecc_strength = chip->ecc_strength_ds;
 | |
| 	while (!(geo->ecc_strength > max_ecc)) {
 | |
| 		if (mxs_nand_bbm_in_data_chunk(geo, mtd, &bbm_chunk))
 | |
| 			break;
 | |
| 		geo->ecc_strength += 2;
 | |
| 	}
 | |
| 
 | |
| 	/* if none of them works, keep using the minimum ecc */
 | |
| 	/* nand required but changing ecc page layout  */
 | |
| 	if (geo->ecc_strength > max_ecc) {
 | |
| 		geo->ecc_strength = chip->ecc_strength_ds;
 | |
| 		/* add extra ecc for meta data */
 | |
| 		geo->ecc_chunk0_size = 0;
 | |
| 		geo->ecc_chunk_count = (mtd->writesize / geo->ecc_chunkn_size) + 1;
 | |
| 		geo->ecc_for_meta = 1;
 | |
| 		/* check if oob can afford this extra ecc chunk */
 | |
| 		if (mtd->oobsize * 8 < MXS_NAND_METADATA_SIZE * 8 +
 | |
| 				geo->gf_len * geo->ecc_strength
 | |
| 				* geo->ecc_chunk_count) {
 | |
| 			printf("unsupported NAND chip with new layout\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		/* calculate in which chunk bbm located */
 | |
| 		bbm_chunk = (mtd->writesize * 8 - MXS_NAND_METADATA_SIZE * 8 -
 | |
| 			geo->gf_len * geo->ecc_strength) /
 | |
| 			(geo->gf_len * geo->ecc_strength +
 | |
| 					geo->ecc_chunkn_size * 8) + 1;
 | |
| 	}
 | |
| 
 | |
| 	/* calculate the number of ecc chunk behind the bbm */
 | |
| 	i = (mtd->writesize / geo->ecc_chunkn_size) - bbm_chunk + 1;
 | |
| 
 | |
| 	block_mark_bit_offset = mtd->writesize * 8 -
 | |
| 		(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - i)
 | |
| 				+ MXS_NAND_METADATA_SIZE * 8);
 | |
| 
 | |
| 	geo->block_mark_byte_offset = block_mark_bit_offset / 8;
 | |
| 	geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wait for BCH complete IRQ and clear the IRQ
 | |
|  */
 | |
| static int mxs_nand_wait_for_bch_complete(struct mxs_nand_info *nand_info)
 | |
| {
 | |
| 	int timeout = MXS_NAND_BCH_TIMEOUT;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = mxs_wait_mask_set(&nand_info->bch_regs->hw_bch_ctrl_reg,
 | |
| 		BCH_CTRL_COMPLETE_IRQ, timeout);
 | |
| 
 | |
| 	writel(BCH_CTRL_COMPLETE_IRQ, &nand_info->bch_regs->hw_bch_ctrl_clr);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is the function that we install in the cmd_ctrl function pointer of the
 | |
|  * owning struct nand_chip. The only functions in the reference implementation
 | |
|  * that use these functions pointers are cmdfunc and select_chip.
 | |
|  *
 | |
|  * In this driver, we implement our own select_chip, so this function will only
 | |
|  * be called by the reference implementation's cmdfunc. For this reason, we can
 | |
|  * ignore the chip enable bit and concentrate only on sending bytes to the NAND
 | |
|  * Flash.
 | |
|  */
 | |
| static void mxs_nand_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
 | |
| {
 | |
| 	struct nand_chip *nand = mtd_to_nand(mtd);
 | |
| 	struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 | |
| 	struct mxs_dma_desc *d;
 | |
| 	uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this condition is true, something is _VERY_ wrong in MTD
 | |
| 	 * subsystem!
 | |
| 	 */
 | |
| 	if (nand_info->cmd_queue_len == MXS_NAND_COMMAND_BUFFER_SIZE) {
 | |
| 		printf("MXS NAND: Command queue too long\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Every operation begins with a command byte and a series of zero or
 | |
| 	 * more address bytes. These are distinguished by either the Address
 | |
| 	 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
 | |
| 	 * asserted. When MTD is ready to execute the command, it will
 | |
| 	 * deasert both latch enables.
 | |
| 	 *
 | |
| 	 * Rather than run a separate DMA operation for every single byte, we
 | |
| 	 * queue them up and run a single DMA operation for the entire series
 | |
| 	 * of command and data bytes.
 | |
| 	 */
 | |
| 	if (ctrl & (NAND_ALE | NAND_CLE)) {
 | |
| 		if (data != NAND_CMD_NONE)
 | |
| 			nand_info->cmd_buf[nand_info->cmd_queue_len++] = data;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If control arrives here, MTD has deasserted both the ALE and CLE,
 | |
| 	 * which means it's ready to run an operation. Check if we have any
 | |
| 	 * bytes to send.
 | |
| 	 */
 | |
| 	if (nand_info->cmd_queue_len == 0)
 | |
| 		return;
 | |
| 
 | |
| 	/* Compile the DMA descriptor -- a descriptor that sends command. */
 | |
| 	d = mxs_nand_get_dma_desc(nand_info);
 | |
| 	d->cmd.data =
 | |
| 		MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
 | |
| 		MXS_DMA_DESC_CHAIN | MXS_DMA_DESC_DEC_SEM |
 | |
| 		MXS_DMA_DESC_WAIT4END | (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
 | |
| 		(nand_info->cmd_queue_len << MXS_DMA_DESC_BYTES_OFFSET);
 | |
| 
 | |
| 	d->cmd.address = (dma_addr_t)nand_info->cmd_buf;
 | |
| 
 | |
| 	d->cmd.pio_words[0] =
 | |
| 		GPMI_CTRL0_COMMAND_MODE_WRITE |
 | |
| 		GPMI_CTRL0_WORD_LENGTH |
 | |
| 		(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
 | |
| 		GPMI_CTRL0_ADDRESS_NAND_CLE |
 | |
| 		GPMI_CTRL0_ADDRESS_INCREMENT |
 | |
| 		nand_info->cmd_queue_len;
 | |
| 
 | |
| 	mxs_dma_desc_append(channel, d);
 | |
| 
 | |
| 	/* Flush caches */
 | |
| 	mxs_nand_flush_cmd_buf(nand_info);
 | |
| 
 | |
| 	/* Execute the DMA chain. */
 | |
| 	ret = mxs_dma_go(channel);
 | |
| 	if (ret)
 | |
| 		printf("MXS NAND: Error sending command\n");
 | |
| 
 | |
| 	mxs_nand_return_dma_descs(nand_info);
 | |
| 
 | |
| 	/* Reset the command queue. */
 | |
| 	nand_info->cmd_queue_len = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Test if the NAND flash is ready.
 | |
|  */
 | |
| static int mxs_nand_device_ready(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
 | |
| 	uint32_t tmp;
 | |
| 
 | |
| 	tmp = readl(&nand_info->gpmi_regs->hw_gpmi_stat);
 | |
| 	tmp >>= (GPMI_STAT_READY_BUSY_OFFSET + nand_info->cur_chip);
 | |
| 
 | |
| 	return tmp & 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Select the NAND chip.
 | |
|  */
 | |
| static void mxs_nand_select_chip(struct mtd_info *mtd, int chip)
 | |
| {
 | |
| 	struct nand_chip *nand = mtd_to_nand(mtd);
 | |
| 	struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 | |
| 
 | |
| 	nand_info->cur_chip = chip;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handle block mark swapping.
 | |
|  *
 | |
|  * Note that, when this function is called, it doesn't know whether it's
 | |
|  * swapping the block mark, or swapping it *back* -- but it doesn't matter
 | |
|  * because the the operation is the same.
 | |
|  */
 | |
| static void mxs_nand_swap_block_mark(struct bch_geometry *geo,
 | |
| 				     uint8_t *data_buf, uint8_t *oob_buf)
 | |
| {
 | |
| 	uint32_t bit_offset = geo->block_mark_bit_offset;
 | |
| 	uint32_t buf_offset = geo->block_mark_byte_offset;
 | |
| 
 | |
| 	uint32_t src;
 | |
| 	uint32_t dst;
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the byte from the data area that overlays the block mark. Since
 | |
| 	 * the ECC engine applies its own view to the bits in the page, the
 | |
| 	 * physical block mark won't (in general) appear on a byte boundary in
 | |
| 	 * the data.
 | |
| 	 */
 | |
| 	src = data_buf[buf_offset] >> bit_offset;
 | |
| 	src |= data_buf[buf_offset + 1] << (8 - bit_offset);
 | |
| 
 | |
| 	dst = oob_buf[0];
 | |
| 
 | |
| 	oob_buf[0] = src;
 | |
| 
 | |
| 	data_buf[buf_offset] &= ~(0xff << bit_offset);
 | |
| 	data_buf[buf_offset + 1] &= 0xff << bit_offset;
 | |
| 
 | |
| 	data_buf[buf_offset] |= dst << bit_offset;
 | |
| 	data_buf[buf_offset + 1] |= dst >> (8 - bit_offset);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read data from NAND.
 | |
|  */
 | |
| static void mxs_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int length)
 | |
| {
 | |
| 	struct nand_chip *nand = mtd_to_nand(mtd);
 | |
| 	struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 | |
| 	struct mxs_dma_desc *d;
 | |
| 	uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (length > NAND_MAX_PAGESIZE) {
 | |
| 		printf("MXS NAND: DMA buffer too big\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (!buf) {
 | |
| 		printf("MXS NAND: DMA buffer is NULL\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Compile the DMA descriptor - a descriptor that reads data. */
 | |
| 	d = mxs_nand_get_dma_desc(nand_info);
 | |
| 	d->cmd.data =
 | |
| 		MXS_DMA_DESC_COMMAND_DMA_WRITE | MXS_DMA_DESC_IRQ |
 | |
| 		MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
 | |
| 		(1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
 | |
| 		(length << MXS_DMA_DESC_BYTES_OFFSET);
 | |
| 
 | |
| 	d->cmd.address = (dma_addr_t)nand_info->data_buf;
 | |
| 
 | |
| 	d->cmd.pio_words[0] =
 | |
| 		GPMI_CTRL0_COMMAND_MODE_READ |
 | |
| 		GPMI_CTRL0_WORD_LENGTH |
 | |
| 		(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
 | |
| 		GPMI_CTRL0_ADDRESS_NAND_DATA |
 | |
| 		length;
 | |
| 
 | |
| 	mxs_dma_desc_append(channel, d);
 | |
| 
 | |
| 	/*
 | |
| 	 * A DMA descriptor that waits for the command to end and the chip to
 | |
| 	 * become ready.
 | |
| 	 *
 | |
| 	 * I think we actually should *not* be waiting for the chip to become
 | |
| 	 * ready because, after all, we don't care. I think the original code
 | |
| 	 * did that and no one has re-thought it yet.
 | |
| 	 */
 | |
| 	d = mxs_nand_get_dma_desc(nand_info);
 | |
| 	d->cmd.data =
 | |
| 		MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
 | |
| 		MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_DEC_SEM |
 | |
| 		MXS_DMA_DESC_WAIT4END | (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
 | |
| 
 | |
| 	d->cmd.address = 0;
 | |
| 
 | |
| 	d->cmd.pio_words[0] =
 | |
| 		GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
 | |
| 		GPMI_CTRL0_WORD_LENGTH |
 | |
| 		(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
 | |
| 		GPMI_CTRL0_ADDRESS_NAND_DATA;
 | |
| 
 | |
| 	mxs_dma_desc_append(channel, d);
 | |
| 
 | |
| 	/* Invalidate caches */
 | |
| 	mxs_nand_inval_data_buf(nand_info);
 | |
| 
 | |
| 	/* Execute the DMA chain. */
 | |
| 	ret = mxs_dma_go(channel);
 | |
| 	if (ret) {
 | |
| 		printf("MXS NAND: DMA read error\n");
 | |
| 		goto rtn;
 | |
| 	}
 | |
| 
 | |
| 	/* Invalidate caches */
 | |
| 	mxs_nand_inval_data_buf(nand_info);
 | |
| 
 | |
| 	memcpy(buf, nand_info->data_buf, length);
 | |
| 
 | |
| rtn:
 | |
| 	mxs_nand_return_dma_descs(nand_info);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write data to NAND.
 | |
|  */
 | |
| static void mxs_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
 | |
| 				int length)
 | |
| {
 | |
| 	struct nand_chip *nand = mtd_to_nand(mtd);
 | |
| 	struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 | |
| 	struct mxs_dma_desc *d;
 | |
| 	uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (length > NAND_MAX_PAGESIZE) {
 | |
| 		printf("MXS NAND: DMA buffer too big\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (!buf) {
 | |
| 		printf("MXS NAND: DMA buffer is NULL\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	memcpy(nand_info->data_buf, buf, length);
 | |
| 
 | |
| 	/* Compile the DMA descriptor - a descriptor that writes data. */
 | |
| 	d = mxs_nand_get_dma_desc(nand_info);
 | |
| 	d->cmd.data =
 | |
| 		MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
 | |
| 		MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
 | |
| 		(1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
 | |
| 		(length << MXS_DMA_DESC_BYTES_OFFSET);
 | |
| 
 | |
| 	d->cmd.address = (dma_addr_t)nand_info->data_buf;
 | |
| 
 | |
| 	d->cmd.pio_words[0] =
 | |
| 		GPMI_CTRL0_COMMAND_MODE_WRITE |
 | |
| 		GPMI_CTRL0_WORD_LENGTH |
 | |
| 		(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
 | |
| 		GPMI_CTRL0_ADDRESS_NAND_DATA |
 | |
| 		length;
 | |
| 
 | |
| 	mxs_dma_desc_append(channel, d);
 | |
| 
 | |
| 	/* Flush caches */
 | |
| 	mxs_nand_flush_data_buf(nand_info);
 | |
| 
 | |
| 	/* Execute the DMA chain. */
 | |
| 	ret = mxs_dma_go(channel);
 | |
| 	if (ret)
 | |
| 		printf("MXS NAND: DMA write error\n");
 | |
| 
 | |
| 	mxs_nand_return_dma_descs(nand_info);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read a single byte from NAND.
 | |
|  */
 | |
| static uint8_t mxs_nand_read_byte(struct mtd_info *mtd)
 | |
| {
 | |
| 	uint8_t buf;
 | |
| 	mxs_nand_read_buf(mtd, &buf, 1);
 | |
| 	return buf;
 | |
| }
 | |
| 
 | |
| static bool mxs_nand_erased_page(struct mtd_info *mtd, struct nand_chip *nand,
 | |
| 				 u8 *buf, int chunk, int page)
 | |
| {
 | |
| 	struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 | |
| 	struct bch_geometry *geo = &nand_info->bch_geometry;
 | |
| 	unsigned int flip_bits = 0, flip_bits_noecc = 0;
 | |
| 	unsigned int threshold;
 | |
| 	unsigned int base = geo->ecc_chunkn_size * chunk;
 | |
| 	u32 *dma_buf = (u32 *)buf;
 | |
| 	int i;
 | |
| 
 | |
| 	threshold = geo->gf_len / 2;
 | |
| 	if (threshold > geo->ecc_strength)
 | |
| 		threshold = geo->ecc_strength;
 | |
| 
 | |
| 	for (i = 0; i < geo->ecc_chunkn_size; i++) {
 | |
| 		flip_bits += hweight8(~buf[base + i]);
 | |
| 		if (flip_bits > threshold)
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	nand->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
 | |
| 	nand->read_buf(mtd, buf, mtd->writesize);
 | |
| 
 | |
| 	for (i = 0; i < mtd->writesize / 4; i++) {
 | |
| 		flip_bits_noecc += hweight32(~dma_buf[i]);
 | |
| 		if (flip_bits_noecc > threshold)
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	mtd->ecc_stats.corrected += flip_bits;
 | |
| 
 | |
| 	memset(buf, 0xff, mtd->writesize);
 | |
| 
 | |
| 	printf("The page(%d) is an erased page(%d,%d,%d,%d).\n", page, chunk, threshold, flip_bits, flip_bits_noecc);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read a page from NAND.
 | |
|  */
 | |
| static int mxs_nand_ecc_read_page(struct mtd_info *mtd, struct nand_chip *nand,
 | |
| 					uint8_t *buf, int oob_required,
 | |
| 					int page)
 | |
| {
 | |
| 	struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 | |
| 	struct bch_geometry *geo = &nand_info->bch_geometry;
 | |
| 	struct mxs_bch_regs *bch_regs = nand_info->bch_regs;
 | |
| 	struct mxs_dma_desc *d;
 | |
| 	uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
 | |
| 	uint32_t corrected = 0, failed = 0;
 | |
| 	uint8_t	*status;
 | |
| 	int i, ret;
 | |
| 	int flag = 0;
 | |
| 
 | |
| 	/* Compile the DMA descriptor - wait for ready. */
 | |
| 	d = mxs_nand_get_dma_desc(nand_info);
 | |
| 	d->cmd.data =
 | |
| 		MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
 | |
| 		MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
 | |
| 		(1 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
 | |
| 
 | |
| 	d->cmd.address = 0;
 | |
| 
 | |
| 	d->cmd.pio_words[0] =
 | |
| 		GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
 | |
| 		GPMI_CTRL0_WORD_LENGTH |
 | |
| 		(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
 | |
| 		GPMI_CTRL0_ADDRESS_NAND_DATA;
 | |
| 
 | |
| 	mxs_dma_desc_append(channel, d);
 | |
| 
 | |
| 	/* Compile the DMA descriptor - enable the BCH block and read. */
 | |
| 	d = mxs_nand_get_dma_desc(nand_info);
 | |
| 	d->cmd.data =
 | |
| 		MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
 | |
| 		MXS_DMA_DESC_WAIT4END |	(6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
 | |
| 
 | |
| 	d->cmd.address = 0;
 | |
| 
 | |
| 	d->cmd.pio_words[0] =
 | |
| 		GPMI_CTRL0_COMMAND_MODE_READ |
 | |
| 		GPMI_CTRL0_WORD_LENGTH |
 | |
| 		(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
 | |
| 		GPMI_CTRL0_ADDRESS_NAND_DATA |
 | |
| 		(mtd->writesize + mtd->oobsize);
 | |
| 	d->cmd.pio_words[1] = 0;
 | |
| 	d->cmd.pio_words[2] =
 | |
| 		GPMI_ECCCTRL_ENABLE_ECC |
 | |
| 		GPMI_ECCCTRL_ECC_CMD_DECODE |
 | |
| 		GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
 | |
| 	d->cmd.pio_words[3] = mtd->writesize + mtd->oobsize;
 | |
| 	d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
 | |
| 	d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
 | |
| 
 | |
| 	if (nand_info->en_randomizer) {
 | |
| 		d->cmd.pio_words[2] |= GPMI_ECCCTRL_RANDOMIZER_ENABLE |
 | |
| 				       GPMI_ECCCTRL_RANDOMIZER_TYPE2;
 | |
| 		d->cmd.pio_words[3] |= (page % 256) << 16;
 | |
| 	}
 | |
| 
 | |
| 	mxs_dma_desc_append(channel, d);
 | |
| 
 | |
| 	/* Compile the DMA descriptor - disable the BCH block. */
 | |
| 	d = mxs_nand_get_dma_desc(nand_info);
 | |
| 	d->cmd.data =
 | |
| 		MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
 | |
| 		MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
 | |
| 		(3 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
 | |
| 
 | |
| 	d->cmd.address = 0;
 | |
| 
 | |
| 	d->cmd.pio_words[0] =
 | |
| 		GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
 | |
| 		GPMI_CTRL0_WORD_LENGTH |
 | |
| 		(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
 | |
| 		GPMI_CTRL0_ADDRESS_NAND_DATA |
 | |
| 		(mtd->writesize + mtd->oobsize);
 | |
| 	d->cmd.pio_words[1] = 0;
 | |
| 	d->cmd.pio_words[2] = 0;
 | |
| 
 | |
| 	mxs_dma_desc_append(channel, d);
 | |
| 
 | |
| 	/* Compile the DMA descriptor - deassert the NAND lock and interrupt. */
 | |
| 	d = mxs_nand_get_dma_desc(nand_info);
 | |
| 	d->cmd.data =
 | |
| 		MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
 | |
| 		MXS_DMA_DESC_DEC_SEM;
 | |
| 
 | |
| 	d->cmd.address = 0;
 | |
| 
 | |
| 	mxs_dma_desc_append(channel, d);
 | |
| 
 | |
| 	/* Invalidate caches */
 | |
| 	mxs_nand_inval_data_buf(nand_info);
 | |
| 
 | |
| 	/* Execute the DMA chain. */
 | |
| 	ret = mxs_dma_go(channel);
 | |
| 	if (ret) {
 | |
| 		printf("MXS NAND: DMA read error\n");
 | |
| 		goto rtn;
 | |
| 	}
 | |
| 
 | |
| 	ret = mxs_nand_wait_for_bch_complete(nand_info);
 | |
| 	if (ret) {
 | |
| 		printf("MXS NAND: BCH read timeout\n");
 | |
| 		goto rtn;
 | |
| 	}
 | |
| 
 | |
| 	mxs_nand_return_dma_descs(nand_info);
 | |
| 
 | |
| 	/* Invalidate caches */
 | |
| 	mxs_nand_inval_data_buf(nand_info);
 | |
| 
 | |
| 	/* Read DMA completed, now do the mark swapping. */
 | |
| 	mxs_nand_swap_block_mark(geo, nand_info->data_buf, nand_info->oob_buf);
 | |
| 
 | |
| 	/* Loop over status bytes, accumulating ECC status. */
 | |
| 	status = nand_info->oob_buf + mxs_nand_aux_status_offset();
 | |
| 	for (i = 0; i < geo->ecc_chunk_count; i++) {
 | |
| 		if (status[i] == 0x00)
 | |
| 			continue;
 | |
| 
 | |
| 		if (status[i] == 0xff) {
 | |
| 			if (!nand_info->en_randomizer &&
 | |
| 			    (is_mx6dqp() || is_mx7() || is_mx6ul() ||
 | |
| 			     is_imx8() || is_imx8m()))
 | |
| 				if (readl(&bch_regs->hw_bch_debug1))
 | |
| 					flag = 1;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (status[i] == 0xfe) {
 | |
| 			if (mxs_nand_erased_page(mtd, nand,
 | |
| 						 nand_info->data_buf, i, page))
 | |
| 				break;
 | |
| 			failed++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		corrected += status[i];
 | |
| 	}
 | |
| 
 | |
| 	/* Propagate ECC status to the owning MTD. */
 | |
| 	mtd->ecc_stats.failed += failed;
 | |
| 	mtd->ecc_stats.corrected += corrected;
 | |
| 
 | |
| 	/*
 | |
| 	 * It's time to deliver the OOB bytes. See mxs_nand_ecc_read_oob() for
 | |
| 	 * details about our policy for delivering the OOB.
 | |
| 	 *
 | |
| 	 * We fill the caller's buffer with set bits, and then copy the block
 | |
| 	 * mark to the caller's buffer. Note that, if block mark swapping was
 | |
| 	 * necessary, it has already been done, so we can rely on the first
 | |
| 	 * byte of the auxiliary buffer to contain the block mark.
 | |
| 	 */
 | |
| 	memset(nand->oob_poi, 0xff, mtd->oobsize);
 | |
| 
 | |
| 	nand->oob_poi[0] = nand_info->oob_buf[0];
 | |
| 
 | |
| 	memcpy(buf, nand_info->data_buf, mtd->writesize);
 | |
| 
 | |
| 	if (flag)
 | |
| 		memset(buf, 0xff, mtd->writesize);
 | |
| rtn:
 | |
| 	mxs_nand_return_dma_descs(nand_info);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write a page to NAND.
 | |
|  */
 | |
| static int mxs_nand_ecc_write_page(struct mtd_info *mtd,
 | |
| 				struct nand_chip *nand, const uint8_t *buf,
 | |
| 				int oob_required, int page)
 | |
| {
 | |
| 	struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 | |
| 	struct bch_geometry *geo = &nand_info->bch_geometry;
 | |
| 	struct mxs_dma_desc *d;
 | |
| 	uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
 | |
| 	int ret;
 | |
| 
 | |
| 	memcpy(nand_info->data_buf, buf, mtd->writesize);
 | |
| 	memcpy(nand_info->oob_buf, nand->oob_poi, mtd->oobsize);
 | |
| 
 | |
| 	/* Handle block mark swapping. */
 | |
| 	mxs_nand_swap_block_mark(geo, nand_info->data_buf, nand_info->oob_buf);
 | |
| 
 | |
| 	/* Compile the DMA descriptor - write data. */
 | |
| 	d = mxs_nand_get_dma_desc(nand_info);
 | |
| 	d->cmd.data =
 | |
| 		MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
 | |
| 		MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
 | |
| 		(6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
 | |
| 
 | |
| 	d->cmd.address = 0;
 | |
| 
 | |
| 	d->cmd.pio_words[0] =
 | |
| 		GPMI_CTRL0_COMMAND_MODE_WRITE |
 | |
| 		GPMI_CTRL0_WORD_LENGTH |
 | |
| 		(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
 | |
| 		GPMI_CTRL0_ADDRESS_NAND_DATA;
 | |
| 	d->cmd.pio_words[1] = 0;
 | |
| 	d->cmd.pio_words[2] =
 | |
| 		GPMI_ECCCTRL_ENABLE_ECC |
 | |
| 		GPMI_ECCCTRL_ECC_CMD_ENCODE |
 | |
| 		GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
 | |
| 	d->cmd.pio_words[3] = (mtd->writesize + mtd->oobsize);
 | |
| 	d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
 | |
| 	d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
 | |
| 
 | |
| 	if (nand_info->en_randomizer) {
 | |
| 		d->cmd.pio_words[2] |= GPMI_ECCCTRL_RANDOMIZER_ENABLE |
 | |
| 				       GPMI_ECCCTRL_RANDOMIZER_TYPE2;
 | |
| 		/*
 | |
| 		 * Write NAND page number needed to be randomized
 | |
| 		 * to GPMI_ECCCOUNT register.
 | |
| 		 *
 | |
| 		 * The value is between 0-255. For additional details
 | |
| 		 * check 9.6.6.4 of i.MX7D Applications Processor reference
 | |
| 		 */
 | |
| 		d->cmd.pio_words[3] |= (page % 256) << 16;
 | |
| 	}
 | |
| 
 | |
| 	mxs_dma_desc_append(channel, d);
 | |
| 
 | |
| 	/* Flush caches */
 | |
| 	mxs_nand_flush_data_buf(nand_info);
 | |
| 
 | |
| 	/* Execute the DMA chain. */
 | |
| 	ret = mxs_dma_go(channel);
 | |
| 	if (ret) {
 | |
| 		printf("MXS NAND: DMA write error\n");
 | |
| 		goto rtn;
 | |
| 	}
 | |
| 
 | |
| 	ret = mxs_nand_wait_for_bch_complete(nand_info);
 | |
| 	if (ret) {
 | |
| 		printf("MXS NAND: BCH write timeout\n");
 | |
| 		goto rtn;
 | |
| 	}
 | |
| 
 | |
| rtn:
 | |
| 	mxs_nand_return_dma_descs(nand_info);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read OOB from NAND.
 | |
|  *
 | |
|  * This function is a veneer that replaces the function originally installed by
 | |
|  * the NAND Flash MTD code.
 | |
|  */
 | |
| static int mxs_nand_hook_read_oob(struct mtd_info *mtd, loff_t from,
 | |
| 					struct mtd_oob_ops *ops)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
 | |
| 	int ret;
 | |
| 
 | |
| 	if (ops->mode == MTD_OPS_RAW)
 | |
| 		nand_info->raw_oob_mode = 1;
 | |
| 	else
 | |
| 		nand_info->raw_oob_mode = 0;
 | |
| 
 | |
| 	ret = nand_info->hooked_read_oob(mtd, from, ops);
 | |
| 
 | |
| 	nand_info->raw_oob_mode = 0;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write OOB to NAND.
 | |
|  *
 | |
|  * This function is a veneer that replaces the function originally installed by
 | |
|  * the NAND Flash MTD code.
 | |
|  */
 | |
| static int mxs_nand_hook_write_oob(struct mtd_info *mtd, loff_t to,
 | |
| 					struct mtd_oob_ops *ops)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
 | |
| 	int ret;
 | |
| 
 | |
| 	if (ops->mode == MTD_OPS_RAW)
 | |
| 		nand_info->raw_oob_mode = 1;
 | |
| 	else
 | |
| 		nand_info->raw_oob_mode = 0;
 | |
| 
 | |
| 	ret = nand_info->hooked_write_oob(mtd, to, ops);
 | |
| 
 | |
| 	nand_info->raw_oob_mode = 0;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Mark a block bad in NAND.
 | |
|  *
 | |
|  * This function is a veneer that replaces the function originally installed by
 | |
|  * the NAND Flash MTD code.
 | |
|  */
 | |
| static int mxs_nand_hook_block_markbad(struct mtd_info *mtd, loff_t ofs)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
 | |
| 	int ret;
 | |
| 
 | |
| 	nand_info->marking_block_bad = 1;
 | |
| 
 | |
| 	ret = nand_info->hooked_block_markbad(mtd, ofs);
 | |
| 
 | |
| 	nand_info->marking_block_bad = 0;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * There are several places in this driver where we have to handle the OOB and
 | |
|  * block marks. This is the function where things are the most complicated, so
 | |
|  * this is where we try to explain it all. All the other places refer back to
 | |
|  * here.
 | |
|  *
 | |
|  * These are the rules, in order of decreasing importance:
 | |
|  *
 | |
|  * 1) Nothing the caller does can be allowed to imperil the block mark, so all
 | |
|  *    write operations take measures to protect it.
 | |
|  *
 | |
|  * 2) In read operations, the first byte of the OOB we return must reflect the
 | |
|  *    true state of the block mark, no matter where that block mark appears in
 | |
|  *    the physical page.
 | |
|  *
 | |
|  * 3) ECC-based read operations return an OOB full of set bits (since we never
 | |
|  *    allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
 | |
|  *    return).
 | |
|  *
 | |
|  * 4) "Raw" read operations return a direct view of the physical bytes in the
 | |
|  *    page, using the conventional definition of which bytes are data and which
 | |
|  *    are OOB. This gives the caller a way to see the actual, physical bytes
 | |
|  *    in the page, without the distortions applied by our ECC engine.
 | |
|  *
 | |
|  * What we do for this specific read operation depends on whether we're doing
 | |
|  * "raw" read, or an ECC-based read.
 | |
|  *
 | |
|  * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
 | |
|  * easy. When reading a page, for example, the NAND Flash MTD code calls our
 | |
|  * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
 | |
|  * ECC-based or raw view of the page is implicit in which function it calls
 | |
|  * (there is a similar pair of ECC-based/raw functions for writing).
 | |
|  *
 | |
|  * Since MTD assumes the OOB is not covered by ECC, there is no pair of
 | |
|  * ECC-based/raw functions for reading or or writing the OOB. The fact that the
 | |
|  * caller wants an ECC-based or raw view of the page is not propagated down to
 | |
|  * this driver.
 | |
|  *
 | |
|  * Since our OOB *is* covered by ECC, we need this information. So, we hook the
 | |
|  * ecc.read_oob and ecc.write_oob function pointers in the owning
 | |
|  * struct mtd_info with our own functions. These hook functions set the
 | |
|  * raw_oob_mode field so that, when control finally arrives here, we'll know
 | |
|  * what to do.
 | |
|  */
 | |
| static int mxs_nand_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
 | |
| 				int page)
 | |
| {
 | |
| 	struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 | |
| 
 | |
| 	/*
 | |
| 	 * First, fill in the OOB buffer. If we're doing a raw read, we need to
 | |
| 	 * get the bytes from the physical page. If we're not doing a raw read,
 | |
| 	 * we need to fill the buffer with set bits.
 | |
| 	 */
 | |
| 	if (nand_info->raw_oob_mode) {
 | |
| 		/*
 | |
| 		 * If control arrives here, we're doing a "raw" read. Send the
 | |
| 		 * command to read the conventional OOB and read it.
 | |
| 		 */
 | |
| 		nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
 | |
| 		nand->read_buf(mtd, nand->oob_poi, mtd->oobsize);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * If control arrives here, we're not doing a "raw" read. Fill
 | |
| 		 * the OOB buffer with set bits and correct the block mark.
 | |
| 		 */
 | |
| 		memset(nand->oob_poi, 0xff, mtd->oobsize);
 | |
| 
 | |
| 		nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
 | |
| 		mxs_nand_read_buf(mtd, nand->oob_poi, 1);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write OOB data to NAND.
 | |
|  */
 | |
| static int mxs_nand_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
 | |
| 					int page)
 | |
| {
 | |
| 	struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 | |
| 	uint8_t block_mark = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * There are fundamental incompatibilities between the i.MX GPMI NFC and
 | |
| 	 * the NAND Flash MTD model that make it essentially impossible to write
 | |
| 	 * the out-of-band bytes.
 | |
| 	 *
 | |
| 	 * We permit *ONE* exception. If the *intent* of writing the OOB is to
 | |
| 	 * mark a block bad, we can do that.
 | |
| 	 */
 | |
| 
 | |
| 	if (!nand_info->marking_block_bad) {
 | |
| 		printf("NXS NAND: Writing OOB isn't supported\n");
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	/* Write the block mark. */
 | |
| 	nand->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
 | |
| 	nand->write_buf(mtd, &block_mark, 1);
 | |
| 	nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
 | |
| 
 | |
| 	/* Check if it worked. */
 | |
| 	if (nand->waitfunc(mtd, nand) & NAND_STATUS_FAIL)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Claims all blocks are good.
 | |
|  *
 | |
|  * In principle, this function is *only* called when the NAND Flash MTD system
 | |
|  * isn't allowed to keep an in-memory bad block table, so it is forced to ask
 | |
|  * the driver for bad block information.
 | |
|  *
 | |
|  * In fact, we permit the NAND Flash MTD system to have an in-memory BBT, so
 | |
|  * this function is *only* called when we take it away.
 | |
|  *
 | |
|  * Thus, this function is only called when we want *all* blocks to look good,
 | |
|  * so it *always* return success.
 | |
|  */
 | |
| static int mxs_nand_block_bad(struct mtd_info *mtd, loff_t ofs)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mxs_nand_set_geometry(struct mtd_info *mtd, struct bch_geometry *geo)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct nand_chip *nand = mtd_to_nand(mtd);
 | |
| 	struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 | |
| 	int err;
 | |
| 
 | |
| 	if (chip->ecc_strength_ds > nand_info->max_ecc_strength_supported) {
 | |
| 		printf("unsupported NAND chip, minimum ecc required %d\n"
 | |
| 			, chip->ecc_strength_ds);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* use the legacy bch setting by default */
 | |
| 	if ((!nand_info->use_minimum_ecc && mtd->oobsize < 1024) ||
 | |
| 	    !(chip->ecc_strength_ds > 0 && chip->ecc_step_ds > 0)) {
 | |
| 		dev_dbg(mtd->dev, "use legacy bch geometry\n");
 | |
| 		err = mxs_nand_legacy_calc_ecc_layout(geo, mtd);
 | |
| 		if (!err)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* for large oob nand */
 | |
| 	if (mtd->oobsize > 1024) {
 | |
| 		dev_dbg(mtd->dev, "use large oob bch geometry\n");
 | |
| 		err = mxs_nand_calc_ecc_for_large_oob(geo, mtd);
 | |
| 		if (!err)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* otherwise use the minimum ecc nand chips required */
 | |
| 	dev_dbg(mtd->dev, "use minimum ecc bch geometry\n");
 | |
| 	err = mxs_nand_calc_ecc_layout_by_info(geo, mtd, chip->ecc_strength_ds,
 | |
| 					       chip->ecc_step_ds);
 | |
| 
 | |
| 	if (err)
 | |
| 		dev_err(mtd->dev, "none of the bch geometry setting works\n");
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| void mxs_nand_dump_geo(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct nand_chip *nand = mtd_to_nand(mtd);
 | |
| 	struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 | |
| 	struct bch_geometry *geo = &nand_info->bch_geometry;
 | |
| 
 | |
| 	dev_dbg(mtd->dev, "BCH Geometry :\n"
 | |
| 		"GF Length\t\t: %u\n"
 | |
| 		"ECC Strength\t\t: %u\n"
 | |
| 		"ECC for Meta\t\t: %u\n"
 | |
| 		"ECC Chunk0 Size\t\t: %u\n"
 | |
| 		"ECC Chunkn Size\t\t: %u\n"
 | |
| 		"ECC Chunk Count\t\t: %u\n"
 | |
| 		"Block Mark Byte Offset\t: %u\n"
 | |
| 		"Block Mark Bit Offset\t: %u\n",
 | |
| 		geo->gf_len,
 | |
| 		geo->ecc_strength,
 | |
| 		geo->ecc_for_meta,
 | |
| 		geo->ecc_chunk0_size,
 | |
| 		geo->ecc_chunkn_size,
 | |
| 		geo->ecc_chunk_count,
 | |
| 		geo->block_mark_byte_offset,
 | |
| 		geo->block_mark_bit_offset);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * At this point, the physical NAND Flash chips have been identified and
 | |
|  * counted, so we know the physical geometry. This enables us to make some
 | |
|  * important configuration decisions.
 | |
|  *
 | |
|  * The return value of this function propagates directly back to this driver's
 | |
|  * board_nand_init(). Anything other than zero will cause this driver to
 | |
|  * tear everything down and declare failure.
 | |
|  */
 | |
| int mxs_nand_setup_ecc(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct nand_chip *nand = mtd_to_nand(mtd);
 | |
| 	struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 | |
| 	struct bch_geometry *geo = &nand_info->bch_geometry;
 | |
| 	struct mxs_bch_regs *bch_regs = nand_info->bch_regs;
 | |
| 	uint32_t tmp;
 | |
| 	int ret;
 | |
| 
 | |
| 	nand_info->en_randomizer = 0;
 | |
| 	nand_info->oobsize = mtd->oobsize;
 | |
| 	nand_info->writesize = mtd->writesize;
 | |
| 
 | |
| 	ret = mxs_nand_set_geometry(mtd, geo);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	mxs_nand_dump_geo(mtd);
 | |
| 
 | |
| 	/* Configure BCH and set NFC geometry */
 | |
| 	mxs_reset_block(&bch_regs->hw_bch_ctrl_reg);
 | |
| 
 | |
| 	/* Configure layout 0 */
 | |
| 	tmp = (geo->ecc_chunk_count - 1) << BCH_FLASHLAYOUT0_NBLOCKS_OFFSET;
 | |
| 	tmp |= MXS_NAND_METADATA_SIZE << BCH_FLASHLAYOUT0_META_SIZE_OFFSET;
 | |
| 	tmp |= (geo->ecc_strength >> 1) << BCH_FLASHLAYOUT0_ECC0_OFFSET;
 | |
| 	tmp |= geo->ecc_chunk0_size >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT;
 | |
| 	tmp |= (geo->gf_len == 14 ? 1 : 0) <<
 | |
| 		BCH_FLASHLAYOUT0_GF13_0_GF14_1_OFFSET;
 | |
| 	writel(tmp, &bch_regs->hw_bch_flash0layout0);
 | |
| 	nand_info->bch_flash0layout0 = tmp;
 | |
| 
 | |
| 	tmp = (mtd->writesize + mtd->oobsize)
 | |
| 		<< BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET;
 | |
| 	tmp |= (geo->ecc_strength >> 1) << BCH_FLASHLAYOUT1_ECCN_OFFSET;
 | |
| 	tmp |= geo->ecc_chunkn_size >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT;
 | |
| 	tmp |= (geo->gf_len == 14 ? 1 : 0) <<
 | |
| 		BCH_FLASHLAYOUT1_GF13_0_GF14_1_OFFSET;
 | |
| 	writel(tmp, &bch_regs->hw_bch_flash0layout1);
 | |
| 	nand_info->bch_flash0layout1 = tmp;
 | |
| 
 | |
| 	/* Set erase threshold to ecc strength for mx6ul, mx6qp and mx7 */
 | |
| 	if (is_mx6dqp() || is_mx7() ||
 | |
| 	    is_mx6ul() || is_imx8() || is_imx8m())
 | |
| 		writel(BCH_MODE_ERASE_THRESHOLD(geo->ecc_strength),
 | |
| 		       &bch_regs->hw_bch_mode);
 | |
| 
 | |
| 	/* Set *all* chip selects to use layout 0 */
 | |
| 	writel(0, &bch_regs->hw_bch_layoutselect);
 | |
| 
 | |
| 	/* Enable BCH complete interrupt */
 | |
| 	writel(BCH_CTRL_COMPLETE_IRQ_EN, &bch_regs->hw_bch_ctrl_set);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate DMA buffers
 | |
|  */
 | |
| int mxs_nand_alloc_buffers(struct mxs_nand_info *nand_info)
 | |
| {
 | |
| 	uint8_t *buf;
 | |
| 	const int size = NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE;
 | |
| 
 | |
| 	nand_info->data_buf_size = roundup(size, MXS_DMA_ALIGNMENT);
 | |
| 
 | |
| 	/* DMA buffers */
 | |
| 	buf = memalign(MXS_DMA_ALIGNMENT, nand_info->data_buf_size);
 | |
| 	if (!buf) {
 | |
| 		printf("MXS NAND: Error allocating DMA buffers\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	memset(buf, 0, nand_info->data_buf_size);
 | |
| 
 | |
| 	nand_info->data_buf = buf;
 | |
| 	nand_info->oob_buf = buf + NAND_MAX_PAGESIZE;
 | |
| 	/* Command buffers */
 | |
| 	nand_info->cmd_buf = memalign(MXS_DMA_ALIGNMENT,
 | |
| 				MXS_NAND_COMMAND_BUFFER_SIZE);
 | |
| 	if (!nand_info->cmd_buf) {
 | |
| 		free(buf);
 | |
| 		printf("MXS NAND: Error allocating command buffers\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	memset(nand_info->cmd_buf, 0, MXS_NAND_COMMAND_BUFFER_SIZE);
 | |
| 	nand_info->cmd_queue_len = 0;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initializes the NFC hardware.
 | |
|  */
 | |
| static int mxs_nand_init_dma(struct mxs_nand_info *info)
 | |
| {
 | |
| 	int i = 0, j, ret = 0;
 | |
| 
 | |
| 	info->desc = malloc(sizeof(struct mxs_dma_desc *) *
 | |
| 				MXS_NAND_DMA_DESCRIPTOR_COUNT);
 | |
| 	if (!info->desc) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err1;
 | |
| 	}
 | |
| 
 | |
| 	/* Allocate the DMA descriptors. */
 | |
| 	for (i = 0; i < MXS_NAND_DMA_DESCRIPTOR_COUNT; i++) {
 | |
| 		info->desc[i] = mxs_dma_desc_alloc();
 | |
| 		if (!info->desc[i]) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto err2;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Init the DMA controller. */
 | |
| 	mxs_dma_init();
 | |
| 	for (j = MXS_DMA_CHANNEL_AHB_APBH_GPMI0;
 | |
| 		j <= MXS_DMA_CHANNEL_AHB_APBH_GPMI7; j++) {
 | |
| 		ret = mxs_dma_init_channel(j);
 | |
| 		if (ret)
 | |
| 			goto err3;
 | |
| 	}
 | |
| 
 | |
| 	/* Reset the GPMI block. */
 | |
| 	mxs_reset_block(&info->gpmi_regs->hw_gpmi_ctrl0_reg);
 | |
| 	mxs_reset_block(&info->bch_regs->hw_bch_ctrl_reg);
 | |
| 
 | |
| 	/*
 | |
| 	 * Choose NAND mode, set IRQ polarity, disable write protection and
 | |
| 	 * select BCH ECC.
 | |
| 	 */
 | |
| 	clrsetbits_le32(&info->gpmi_regs->hw_gpmi_ctrl1,
 | |
| 			GPMI_CTRL1_GPMI_MODE,
 | |
| 			GPMI_CTRL1_ATA_IRQRDY_POLARITY | GPMI_CTRL1_DEV_RESET |
 | |
| 			GPMI_CTRL1_BCH_MODE);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err3:
 | |
| 	for (--j; j >= MXS_DMA_CHANNEL_AHB_APBH_GPMI0; j--)
 | |
| 		mxs_dma_release(j);
 | |
| err2:
 | |
| 	for (--i; i >= 0; i--)
 | |
| 		mxs_dma_desc_free(info->desc[i]);
 | |
| 	free(info->desc);
 | |
| err1:
 | |
| 	if (ret == -ENOMEM)
 | |
| 		printf("MXS NAND: Unable to allocate DMA descriptors\n");
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * <1> Firstly, we should know what's the GPMI-clock means.
 | |
|  *     The GPMI-clock is the internal clock in the gpmi nand controller.
 | |
|  *     If you set 100MHz to gpmi nand controller, the GPMI-clock's period
 | |
|  *     is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
 | |
|  *
 | |
|  * <2> Secondly, we should know what's the frequency on the nand chip pins.
 | |
|  *     The frequency on the nand chip pins is derived from the GPMI-clock.
 | |
|  *     We can get it from the following equation:
 | |
|  *
 | |
|  *         F = G / (DS + DH)
 | |
|  *
 | |
|  *         F  : the frequency on the nand chip pins.
 | |
|  *         G  : the GPMI clock, such as 100MHz.
 | |
|  *         DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
 | |
|  *         DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
 | |
|  *
 | |
|  * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
 | |
|  *     the nand EDO(extended Data Out) timing could be applied.
 | |
|  *     The GPMI implements a feedback read strobe to sample the read data.
 | |
|  *     The feedback read strobe can be delayed to support the nand EDO timing
 | |
|  *     where the read strobe may deasserts before the read data is valid, and
 | |
|  *     read data is valid for some time after read strobe.
 | |
|  *
 | |
|  *     The following figure illustrates some aspects of a NAND Flash read:
 | |
|  *
 | |
|  *                   |<---tREA---->|
 | |
|  *                   |             |
 | |
|  *                   |         |   |
 | |
|  *                   |<--tRP-->|   |
 | |
|  *                   |         |   |
 | |
|  *                  __          ___|__________________________________
 | |
|  *     RDN            \________/   |
 | |
|  *                                 |
 | |
|  *                                 /---------\
 | |
|  *     Read Data    --------------<           >---------
 | |
|  *                                 \---------/
 | |
|  *                                |     |
 | |
|  *                                |<-D->|
 | |
|  *     FeedbackRDN  ________             ____________
 | |
|  *                          \___________/
 | |
|  *
 | |
|  *          D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
 | |
|  *
 | |
|  *
 | |
|  * <4> Now, we begin to describe how to compute the right RDN_DELAY.
 | |
|  *
 | |
|  *  4.1) From the aspect of the nand chip pins:
 | |
|  *        Delay = (tREA + C - tRP)               {1}
 | |
|  *
 | |
|  *        tREA : the maximum read access time.
 | |
|  *        C    : a constant to adjust the delay. default is 4000ps.
 | |
|  *        tRP  : the read pulse width, which is exactly:
 | |
|  *                   tRP = (GPMI-clock-period) * DATA_SETUP
 | |
|  *
 | |
|  *  4.2) From the aspect of the GPMI nand controller:
 | |
|  *         Delay = RDN_DELAY * 0.125 * RP        {2}
 | |
|  *
 | |
|  *         RP   : the DLL reference period.
 | |
|  *            if (GPMI-clock-period > DLL_THRETHOLD)
 | |
|  *                   RP = GPMI-clock-period / 2;
 | |
|  *            else
 | |
|  *                   RP = GPMI-clock-period;
 | |
|  *
 | |
|  *            Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
 | |
|  *            is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
 | |
|  *            is 16000ps, but in mx6q, we use 12000ps.
 | |
|  *
 | |
|  *  4.3) since {1} equals {2}, we get:
 | |
|  *
 | |
|  *                     (tREA + 4000 - tRP) * 8
 | |
|  *         RDN_DELAY = -----------------------     {3}
 | |
|  *                           RP
 | |
|  */
 | |
| static void mxs_compute_timings(struct nand_chip *chip,
 | |
| 				const struct nand_sdr_timings *sdr)
 | |
| {
 | |
| 	struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
 | |
| 	unsigned long clk_rate;
 | |
| 	unsigned int dll_wait_time_us;
 | |
| 	unsigned int dll_threshold_ps = nand_info->max_chain_delay;
 | |
| 	unsigned int period_ps, reference_period_ps;
 | |
| 	unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles;
 | |
| 	unsigned int tRP_ps;
 | |
| 	bool use_half_period;
 | |
| 	int sample_delay_ps, sample_delay_factor;
 | |
| 	u16 busy_timeout_cycles;
 | |
| 	u8 wrn_dly_sel;
 | |
| 	u32 timing0;
 | |
| 	u32 timing1;
 | |
| 	u32 ctrl1n;
 | |
| 
 | |
| 	if (sdr->tRC_min >= 30000) {
 | |
| 		/* ONFI non-EDO modes [0-3] */
 | |
| 		clk_rate = 22000000;
 | |
| 		wrn_dly_sel = GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
 | |
| 	} else if (sdr->tRC_min >= 25000) {
 | |
| 		/* ONFI EDO mode 4 */
 | |
| 		clk_rate = 80000000;
 | |
| 		wrn_dly_sel = GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
 | |
| 		debug("%s, setting ONFI onfi edo 4\n", __func__);
 | |
| 	} else {
 | |
| 		/* ONFI EDO mode 5 */
 | |
| 		clk_rate = 100000000;
 | |
| 		wrn_dly_sel = GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
 | |
| 		debug("%s, setting ONFI onfi edo 5\n", __func__);
 | |
| 	}
 | |
| 
 | |
| 	/* SDR core timings are given in picoseconds */
 | |
| 	period_ps = div_u64((u64)NSEC_PER_SEC * 1000, clk_rate);
 | |
| 
 | |
| 	addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps);
 | |
| 	data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps);
 | |
| 	data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps);
 | |
| 	busy_timeout_cycles = TO_CYCLES(sdr->tWB_max + sdr->tR_max, period_ps);
 | |
| 
 | |
| 	timing0 = (addr_setup_cycles << GPMI_TIMING0_ADDRESS_SETUP_OFFSET) |
 | |
| 		      (data_hold_cycles << GPMI_TIMING0_DATA_HOLD_OFFSET) |
 | |
| 		      (data_setup_cycles << GPMI_TIMING0_DATA_SETUP_OFFSET);
 | |
| 	timing1 = (busy_timeout_cycles * 4096) << GPMI_TIMING1_DEVICE_BUSY_TIMEOUT_OFFSET;
 | |
| 
 | |
| 	/*
 | |
| 	 * Derive NFC ideal delay from {3}:
 | |
| 	 *
 | |
| 	 *                     (tREA + 4000 - tRP) * 8
 | |
| 	 *         RDN_DELAY = -----------------------
 | |
| 	 *                                RP
 | |
| 	 */
 | |
| 	if (period_ps > dll_threshold_ps) {
 | |
| 		use_half_period = true;
 | |
| 		reference_period_ps = period_ps / 2;
 | |
| 	} else {
 | |
| 		use_half_period = false;
 | |
| 		reference_period_ps = period_ps;
 | |
| 	}
 | |
| 
 | |
| 	tRP_ps = data_setup_cycles * period_ps;
 | |
| 	sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8;
 | |
| 	if (sample_delay_ps > 0)
 | |
| 		sample_delay_factor = sample_delay_ps / reference_period_ps;
 | |
| 	else
 | |
| 		sample_delay_factor = 0;
 | |
| 
 | |
| 	ctrl1n = (wrn_dly_sel << GPMI_CTRL1_WRN_DLY_SEL_OFFSET);
 | |
| 	if (sample_delay_factor)
 | |
| 		ctrl1n |= (sample_delay_factor << GPMI_CTRL1_RDN_DELAY_OFFSET) |
 | |
| 			GPMI_CTRL1_DLL_ENABLE |
 | |
| 			(use_half_period ? GPMI_CTRL1_HALF_PERIOD : 0);
 | |
| 
 | |
| 	writel(timing0, &nand_info->gpmi_regs->hw_gpmi_timing0);
 | |
| 	writel(timing1, &nand_info->gpmi_regs->hw_gpmi_timing1);
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear several CTRL1 fields, DLL must be disabled when setting
 | |
| 	 * RDN_DELAY or HALF_PERIOD.
 | |
| 	 */
 | |
| 	writel(GPMI_CTRL1_CLEAR_MASK, &nand_info->gpmi_regs->hw_gpmi_ctrl1_clr);
 | |
| 	writel(ctrl1n, &nand_info->gpmi_regs->hw_gpmi_ctrl1_set);
 | |
| 
 | |
| 	clk_set_rate(nand_info->gpmi_clk, clk_rate);
 | |
| 
 | |
| 	/* Wait 64 clock cycles before using the GPMI after enabling the DLL */
 | |
| 	dll_wait_time_us = USEC_PER_SEC / clk_rate * 64;
 | |
| 	if (!dll_wait_time_us)
 | |
| 		dll_wait_time_us = 1;
 | |
| 
 | |
| 	/* Wait for the DLL to settle. */
 | |
| 	udelay(dll_wait_time_us);
 | |
| }
 | |
| 
 | |
| static int mxs_nand_setup_interface(struct mtd_info *mtd, int chipnr,
 | |
| 				    const struct nand_data_interface *conf)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	const struct nand_sdr_timings *sdr;
 | |
| 
 | |
| 	sdr = nand_get_sdr_timings(conf);
 | |
| 	if (IS_ERR(sdr))
 | |
| 		return PTR_ERR(sdr);
 | |
| 
 | |
| 	/* Stop here if this call was just a check */
 | |
| 	if (chipnr < 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Do the actual derivation of the controller timings */
 | |
| 	mxs_compute_timings(chip, sdr);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int mxs_nand_init_spl(struct nand_chip *nand)
 | |
| {
 | |
| 	struct mxs_nand_info *nand_info;
 | |
| 	int err;
 | |
| 
 | |
| 	nand_info = malloc(sizeof(struct mxs_nand_info));
 | |
| 	if (!nand_info) {
 | |
| 		printf("MXS NAND: Failed to allocate private data\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	memset(nand_info, 0, sizeof(struct mxs_nand_info));
 | |
| 
 | |
| 	nand_info->gpmi_regs = (struct mxs_gpmi_regs *)MXS_GPMI_BASE;
 | |
| 	nand_info->bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
 | |
| 
 | |
| 	if (is_mx6sx() || is_mx7() || is_imx8() || is_imx8m())
 | |
| 		nand_info->max_ecc_strength_supported = 62;
 | |
| 	else
 | |
| 		nand_info->max_ecc_strength_supported = 40;
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_NAND_MXS_USE_MINIMUM_ECC))
 | |
| 		nand_info->use_minimum_ecc = true;
 | |
| 
 | |
| 	err = mxs_nand_alloc_buffers(nand_info);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = mxs_nand_init_dma(nand_info);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	nand_set_controller_data(nand, nand_info);
 | |
| 
 | |
| 	nand->options |= NAND_NO_SUBPAGE_WRITE;
 | |
| 
 | |
| 	nand->cmd_ctrl		= mxs_nand_cmd_ctrl;
 | |
| 	nand->dev_ready		= mxs_nand_device_ready;
 | |
| 	nand->select_chip	= mxs_nand_select_chip;
 | |
| 
 | |
| 	nand->read_byte		= mxs_nand_read_byte;
 | |
| 	nand->read_buf		= mxs_nand_read_buf;
 | |
| 
 | |
| 	nand->ecc.read_page	= mxs_nand_ecc_read_page;
 | |
| 
 | |
| 	nand->ecc.mode		= NAND_ECC_HW;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int mxs_nand_init_ctrl(struct mxs_nand_info *nand_info)
 | |
| {
 | |
| 	struct mtd_info *mtd;
 | |
| 	struct nand_chip *nand;
 | |
| 	int err;
 | |
| 
 | |
| 	nand = &nand_info->chip;
 | |
| 	mtd = nand_to_mtd(nand);
 | |
| 	err = mxs_nand_alloc_buffers(nand_info);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = mxs_nand_init_dma(nand_info);
 | |
| 	if (err)
 | |
| 		goto err_free_buffers;
 | |
| 
 | |
| 	memset(&fake_ecc_layout, 0, sizeof(fake_ecc_layout));
 | |
| 
 | |
| #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
 | |
| 	nand->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
 | |
| #endif
 | |
| 
 | |
| 	nand_set_controller_data(nand, nand_info);
 | |
| 	nand->options |= NAND_NO_SUBPAGE_WRITE;
 | |
| 
 | |
| 	if (nand_info->dev)
 | |
| 		nand->flash_node = dev_ofnode(nand_info->dev);
 | |
| 
 | |
| 	nand->cmd_ctrl		= mxs_nand_cmd_ctrl;
 | |
| 
 | |
| 	nand->dev_ready		= mxs_nand_device_ready;
 | |
| 	nand->select_chip	= mxs_nand_select_chip;
 | |
| 	nand->block_bad		= mxs_nand_block_bad;
 | |
| 
 | |
| 	nand->read_byte		= mxs_nand_read_byte;
 | |
| 
 | |
| 	nand->read_buf		= mxs_nand_read_buf;
 | |
| 	nand->write_buf		= mxs_nand_write_buf;
 | |
| 
 | |
| 	if (nand_info->gpmi_clk)
 | |
| 		nand->setup_data_interface = mxs_nand_setup_interface;
 | |
| 
 | |
| 	/* first scan to find the device and get the page size */
 | |
| 	if (nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_DEVICE, NULL))
 | |
| 		goto err_free_buffers;
 | |
| 
 | |
| 	if (mxs_nand_setup_ecc(mtd))
 | |
| 		goto err_free_buffers;
 | |
| 
 | |
| 	nand->ecc.read_page	= mxs_nand_ecc_read_page;
 | |
| 	nand->ecc.write_page	= mxs_nand_ecc_write_page;
 | |
| 	nand->ecc.read_oob	= mxs_nand_ecc_read_oob;
 | |
| 	nand->ecc.write_oob	= mxs_nand_ecc_write_oob;
 | |
| 
 | |
| 	nand->ecc.layout	= &fake_ecc_layout;
 | |
| 	nand->ecc.mode		= NAND_ECC_HW;
 | |
| 	nand->ecc.size		= nand_info->bch_geometry.ecc_chunkn_size;
 | |
| 	nand->ecc.strength	= nand_info->bch_geometry.ecc_strength;
 | |
| 
 | |
| 	/* second phase scan */
 | |
| 	err = nand_scan_tail(mtd);
 | |
| 	if (err)
 | |
| 		goto err_free_buffers;
 | |
| 
 | |
| 	/* Hook some operations at the MTD level. */
 | |
| 	if (mtd->_read_oob != mxs_nand_hook_read_oob) {
 | |
| 		nand_info->hooked_read_oob = mtd->_read_oob;
 | |
| 		mtd->_read_oob = mxs_nand_hook_read_oob;
 | |
| 	}
 | |
| 
 | |
| 	if (mtd->_write_oob != mxs_nand_hook_write_oob) {
 | |
| 		nand_info->hooked_write_oob = mtd->_write_oob;
 | |
| 		mtd->_write_oob = mxs_nand_hook_write_oob;
 | |
| 	}
 | |
| 
 | |
| 	if (mtd->_block_markbad != mxs_nand_hook_block_markbad) {
 | |
| 		nand_info->hooked_block_markbad = mtd->_block_markbad;
 | |
| 		mtd->_block_markbad = mxs_nand_hook_block_markbad;
 | |
| 	}
 | |
| 
 | |
| 	err = nand_register(0, mtd);
 | |
| 	if (err)
 | |
| 		goto err_free_buffers;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_free_buffers:
 | |
| 	free(nand_info->data_buf);
 | |
| 	free(nand_info->cmd_buf);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_NAND_MXS_DT
 | |
| void board_nand_init(void)
 | |
| {
 | |
| 	struct mxs_nand_info *nand_info;
 | |
| 
 | |
| 	nand_info = malloc(sizeof(struct mxs_nand_info));
 | |
| 	if (!nand_info) {
 | |
| 		printf("MXS NAND: Failed to allocate private data\n");
 | |
| 			return;
 | |
| 	}
 | |
| 	memset(nand_info, 0, sizeof(struct mxs_nand_info));
 | |
| 
 | |
| 	nand_info->gpmi_regs = (struct mxs_gpmi_regs *)MXS_GPMI_BASE;
 | |
| 	nand_info->bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
 | |
| 
 | |
| 	/* Refer to Chapter 17 for i.MX6DQ, Chapter 18 for i.MX6SX */
 | |
| 	if (is_mx6sx() || is_mx7())
 | |
| 		nand_info->max_ecc_strength_supported = 62;
 | |
| 	else
 | |
| 		nand_info->max_ecc_strength_supported = 40;
 | |
| 
 | |
| #ifdef CONFIG_NAND_MXS_USE_MINIMUM_ECC
 | |
| 	nand_info->use_minimum_ecc = true;
 | |
| #endif
 | |
| 
 | |
| 	if (mxs_nand_init_ctrl(nand_info) < 0)
 | |
| 		goto err;
 | |
| 
 | |
| 	return;
 | |
| 
 | |
| err:
 | |
| 	free(nand_info);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Read NAND layout for FCB block generation.
 | |
|  */
 | |
| void mxs_nand_get_layout(struct mtd_info *mtd, struct mxs_nand_layout *l)
 | |
| {
 | |
| 	struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
 | |
| 	u32 tmp;
 | |
| 
 | |
| 	tmp = readl(&bch_regs->hw_bch_flash0layout0);
 | |
| 	l->nblocks = (tmp & BCH_FLASHLAYOUT0_NBLOCKS_MASK) >>
 | |
| 			BCH_FLASHLAYOUT0_NBLOCKS_OFFSET;
 | |
| 	l->meta_size = (tmp & BCH_FLASHLAYOUT0_META_SIZE_MASK) >>
 | |
| 			BCH_FLASHLAYOUT0_META_SIZE_OFFSET;
 | |
| 
 | |
| 	tmp = readl(&bch_regs->hw_bch_flash0layout1);
 | |
| 	l->data0_size = 4 * ((tmp & BCH_FLASHLAYOUT0_DATA0_SIZE_MASK) >>
 | |
| 			BCH_FLASHLAYOUT0_DATA0_SIZE_OFFSET);
 | |
| 	l->ecc0 = (tmp & BCH_FLASHLAYOUT0_ECC0_MASK) >>
 | |
| 			BCH_FLASHLAYOUT0_ECC0_OFFSET;
 | |
| 	l->datan_size = 4 * ((tmp & BCH_FLASHLAYOUT1_DATAN_SIZE_MASK) >>
 | |
| 			BCH_FLASHLAYOUT1_DATAN_SIZE_OFFSET);
 | |
| 	l->eccn = (tmp & BCH_FLASHLAYOUT1_ECCN_MASK) >>
 | |
| 			BCH_FLASHLAYOUT1_ECCN_OFFSET;
 | |
| 	l->gf_len = (tmp & BCH_FLASHLAYOUT1_GF13_0_GF14_1_MASK) >>
 | |
| 		     BCH_FLASHLAYOUT1_GF13_0_GF14_1_OFFSET;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set BCH to specific layout used by ROM bootloader to read FCB.
 | |
|  */
 | |
| void mxs_nand_mode_fcb_62bit(struct mtd_info *mtd)
 | |
| {
 | |
| 	u32 tmp;
 | |
| 	struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
 | |
| 	struct nand_chip *nand = mtd_to_nand(mtd);
 | |
| 	struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 | |
| 
 | |
| 	nand_info->en_randomizer = 1;
 | |
| 
 | |
| 	mtd->writesize = 1024;
 | |
| 	mtd->oobsize = 1862 - 1024;
 | |
| 
 | |
| 	/* 8 ecc_chunks_*/
 | |
| 	tmp = 7	<< BCH_FLASHLAYOUT0_NBLOCKS_OFFSET;
 | |
| 	/* 32 bytes for metadata */
 | |
| 	tmp |= 32 << BCH_FLASHLAYOUT0_META_SIZE_OFFSET;
 | |
| 	/* using ECC62 level to be performed */
 | |
| 	tmp |= 0x1F << BCH_FLASHLAYOUT0_ECC0_OFFSET;
 | |
| 	/* 0x20 * 4 bytes of the data0 block */
 | |
| 	tmp |= 0x20 << BCH_FLASHLAYOUT0_DATA0_SIZE_OFFSET;
 | |
| 	tmp |= 0 << BCH_FLASHLAYOUT0_GF13_0_GF14_1_OFFSET;
 | |
| 	writel(tmp, &bch_regs->hw_bch_flash0layout0);
 | |
| 
 | |
| 	/* 1024 for data + 838 for OOB */
 | |
| 	tmp = 1862 << BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET;
 | |
| 	/* using ECC62 level to be performed */
 | |
| 	tmp |= 0x1F << BCH_FLASHLAYOUT1_ECCN_OFFSET;
 | |
| 	/* 0x20 * 4 bytes of the data0 block */
 | |
| 	tmp |= 0x20 << BCH_FLASHLAYOUT1_DATAN_SIZE_OFFSET;
 | |
| 	tmp |= 0 << BCH_FLASHLAYOUT1_GF13_0_GF14_1_OFFSET;
 | |
| 	writel(tmp, &bch_regs->hw_bch_flash0layout1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set BCH to specific layout used by ROM bootloader to read FCB.
 | |
|  */
 | |
| void mxs_nand_mode_fcb_40bit(struct mtd_info *mtd)
 | |
| {
 | |
| 	u32 tmp;
 | |
| 	struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
 | |
| 	struct nand_chip *nand = mtd_to_nand(mtd);
 | |
| 	struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 | |
| 
 | |
| 	/* no randomizer in this setting*/
 | |
| 	nand_info->en_randomizer = 0;
 | |
| 
 | |
| 	mtd->writesize = 1024;
 | |
| 	mtd->oobsize = 1576 - 1024;
 | |
| 
 | |
| 	/* 8 ecc_chunks_*/
 | |
| 	tmp = 7	<< BCH_FLASHLAYOUT0_NBLOCKS_OFFSET;
 | |
| 	/* 32 bytes for metadata */
 | |
| 	tmp |= 32 << BCH_FLASHLAYOUT0_META_SIZE_OFFSET;
 | |
| 	/* using ECC40 level to be performed */
 | |
| 	tmp |= 0x14 << BCH_FLASHLAYOUT0_ECC0_OFFSET;
 | |
| 	/* 0x20 * 4 bytes of the data0 block */
 | |
| 	tmp |= 0x20 << BCH_FLASHLAYOUT0_DATA0_SIZE_OFFSET;
 | |
| 	tmp |= 0 << BCH_FLASHLAYOUT0_GF13_0_GF14_1_OFFSET;
 | |
| 	writel(tmp, &bch_regs->hw_bch_flash0layout0);
 | |
| 
 | |
| 	/* 1024 for data + 552 for OOB */
 | |
| 	tmp = 1576 << BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET;
 | |
| 	/* using ECC40 level to be performed */
 | |
| 	tmp |= 0x14 << BCH_FLASHLAYOUT1_ECCN_OFFSET;
 | |
| 	/* 0x20 * 4 bytes of the data0 block */
 | |
| 	tmp |= 0x20 << BCH_FLASHLAYOUT1_DATAN_SIZE_OFFSET;
 | |
| 	tmp |= 0 << BCH_FLASHLAYOUT1_GF13_0_GF14_1_OFFSET;
 | |
| 	writel(tmp, &bch_regs->hw_bch_flash0layout1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Restore BCH to normal settings.
 | |
|  */
 | |
| void mxs_nand_mode_normal(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
 | |
| 	struct nand_chip *nand = mtd_to_nand(mtd);
 | |
| 	struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
 | |
| 
 | |
| 	nand_info->en_randomizer = 0;
 | |
| 
 | |
| 	mtd->writesize = nand_info->writesize;
 | |
| 	mtd->oobsize = nand_info->oobsize;
 | |
| 
 | |
| 	writel(nand_info->bch_flash0layout0, &bch_regs->hw_bch_flash0layout0);
 | |
| 	writel(nand_info->bch_flash0layout1, &bch_regs->hw_bch_flash0layout1);
 | |
| }
 | |
| 
 | |
| uint32_t mxs_nand_mark_byte_offset(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
 | |
| 	struct bch_geometry *geo = &nand_info->bch_geometry;
 | |
| 
 | |
| 	return geo->block_mark_byte_offset;
 | |
| }
 | |
| 
 | |
| uint32_t mxs_nand_mark_bit_offset(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct nand_chip *chip = mtd_to_nand(mtd);
 | |
| 	struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
 | |
| 	struct bch_geometry *geo = &nand_info->bch_geometry;
 | |
| 
 | |
| 	return geo->block_mark_bit_offset;
 | |
| }
 |