u-boot/drivers/crypto/nuvoton/npcm_aes.c
Tom Rini d678a59d2d Revert "Merge patch series "arm: dts: am62-beagleplay: Fix Beagleplay Ethernet""
When bringing in the series 'arm: dts: am62-beagleplay: Fix Beagleplay
Ethernet"' I failed to notice that b4 noticed it was based on next and
so took that as the base commit and merged that part of next to master.

This reverts commit c8ffd1356d, reversing
changes made to 2ee6f3a5f7.

Reported-by: Jonas Karlman <jonas@kwiboo.se>
Signed-off-by: Tom Rini <trini@konsulko.com>
2024-05-19 08:16:36 -06:00

302 lines
7.0 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (c) 2021 Nuvoton Technology Corp.
*/
#include <common.h>
#include <dm.h>
#include <uboot_aes.h>
#include <asm/io.h>
#include <asm/arch/aes.h>
#include <asm/arch/otp.h>
#include <malloc.h>
#define ONE_SECOND 0xC00000
struct npcm_aes_priv {
struct npcm_aes_regs *regs;
};
static struct npcm_aes_priv *aes_priv;
static u8 fkeyind_to_set = 0xff;
static int second_timeout(u32 *addr, u32 bitmask, u32 bitpol)
{
ulong time, i = 0;
time = get_timer(0);
/* default 1 second timeout */
while (((readl(addr) & bitmask) == bitpol) && i < ONE_SECOND)
i++;
if (i == ONE_SECOND) {
printf("%xms timeout: addr = %x, mask = %x\n", (u32)get_timer(time),
*addr, bitmask);
return -1;
}
return 0;
}
int npcm_aes_select_key(u8 fkeyind)
{
if (npcm_otp_is_fuse_array_disabled(NPCM_KEY_SA)) {
printf("AES key access denied\n");
return -EACCES;
}
if (fkeyind < 4)
fkeyind_to_set = fkeyind;
return 0;
}
static int npcm_aes_init(u8 dec_enc)
{
struct npcm_aes_regs *regs = aes_priv->regs;
u32 ctrl, orgctrlval, wrtimeout;
/* reset hw */
writel(readl(&regs->aes_sw_reset) | SW_RESET_BIT, &regs->aes_sw_reset);
writel(readl(&regs->aes_fifo_status) | DIN_FIFO_OVERFLOW, &regs->aes_fifo_status);
writel(readl(&regs->aes_fifo_status) | DOUT_FIFO_UNDERFLOW, &regs->aes_fifo_status);
/* Workaround to over come Errata #648 */
orgctrlval = readl(&regs->aes_control);
ctrl = (0x00002004 | dec_enc); /* AES256(CBC) */
if (ctrl != orgctrlval) {
writel(ctrl, &regs->aes_control);
if (ctrl != readl(&regs->aes_control)) {
u32 read_ctrl;
int intwr;
for (wrtimeout = 0; wrtimeout < 1000; wrtimeout++) {
for (intwr = 0 ; intwr < 10; intwr++) {
writel(ctrl, &regs->aes_control);
writew(ctrl, (u16 *)&regs->aes_control + 1);
/* Write configurable info in a single write operation */
mb();
}
read_ctrl = readl(&regs->aes_control);
if (ctrl == read_ctrl)
break;
}
if (wrtimeout == 1000) {
printf("\nTIMEOUT expected data=0x%x Actual AES_CONTROL data 0x%x\n\n",
ctrl, read_ctrl);
return -EAGAIN;
}
printf("Workaround success, wrtimeout = %d\n", wrtimeout);
}
}
if (second_timeout(&regs->aes_busy, AES_BUSY_BIT, AES_BUSY_BIT))
return -EAGAIN;
return 0;
}
static inline void npcm_aes_load_iv(u8 *iv)
{
struct npcm_aes_regs *regs = aes_priv->regs;
u32 *p = (u32 *)iv;
u32 i;
/* Initialization Vector is loaded in 32-bit chunks */
for (i = 0; i < (SIZE_AES_BLOCK / sizeof(u32)); i++)
writel(p[i], &regs->aes_iv_0 + i);
}
static inline void npcm_aes_load_key(u8 *key)
{
struct npcm_aes_regs *regs = aes_priv->regs;
u32 *p = (u32 *)key;
u32 i;
/* The key can be loaded either via the configuration or by using sideband
* key port (aes_select_key).
* If aes_select_key has been called ('fkeyind_to_set' was set to desired
* key index) and no key is specified (key is NULL), we should use the
* key index. Otherwise, we write the given key to the registers.
*/
if (!key && fkeyind_to_set < 4) {
npcm_otp_select_key(fkeyind_to_set);
/* Sample the new key */
writel(readl(&regs->aes_sk) | AES_SK_BIT, &regs->aes_sk);
} else {
/* Initialization Vector is loaded in 32-bit chunks */
for (i = 0; i < (2 * SIZE_AES_BLOCK / sizeof(u32)); i++)
writel(p[i], &regs->aes_key_0 + i);
fkeyind_to_set = 0xff;
}
}
static inline void npcm_aes_write(u32 *in)
{
struct npcm_aes_regs *regs = aes_priv->regs;
u32 i;
/* 16 Byte AES Block is written in 32-bit chunks */
for (i = 0; i < (SIZE_AES_BLOCK / sizeof(u32)); i++)
writel(in[i], &regs->aes_fifo_data);
}
static inline void npcm_aes_read(u32 *out)
{
struct npcm_aes_regs *regs = aes_priv->regs;
u32 i;
/* Data is read in 32-bit chunks */
for (i = 0; i < (SIZE_AES_BLOCK / sizeof(u32)); i++)
out[i] = readl(&regs->aes_fifo_data);
}
static void npcm_aes_feed(u32 num_aes_blocks, u32 *datain, u32 *dataout)
{
struct npcm_aes_regs *regs = aes_priv->regs;
u32 aes_datablk;
u32 total_blocks = num_aes_blocks;
u32 blocks_left = num_aes_blocks;
/* data mode */
writel(readl(&regs->aes_busy) | AES_BUSY_BIT, &regs->aes_busy);
/* Clear overflow and underflow */
writel(readl(&regs->aes_fifo_status) | DIN_FIFO_OVERFLOW, &regs->aes_fifo_status);
writel(readl(&regs->aes_fifo_status) | DOUT_FIFO_UNDERFLOW, &regs->aes_fifo_status);
/* datain/dataout is advanced in 32-bit chunks */
aes_datablk = (SIZE_AES_BLOCK / sizeof(u32));
/* Quit if there is no complete blocks */
if (total_blocks == 0)
return;
/* Write the first block */
if (total_blocks > 1) {
npcm_aes_write(datain);
datain += aes_datablk;
blocks_left--;
}
/* Write the second block */
if (total_blocks > 2) {
second_timeout(&regs->aes_fifo_status, DIN_FIFO_EMPTY, 0);
npcm_aes_write(datain);
datain += aes_datablk;
blocks_left--;
}
/* Write & read available blocks */
while (blocks_left > 0) {
second_timeout(&regs->aes_fifo_status, DIN_FIFO_FULL, DIN_FIFO_FULL);
/* Write next block */
npcm_aes_write(datain);
datain += aes_datablk;
/* Wait till DOUT FIFO is empty */
second_timeout(&regs->aes_fifo_status, DOUT_FIFO_EMPTY, DOUT_FIFO_EMPTY);
/* Read next block */
npcm_aes_read(dataout);
dataout += aes_datablk;
blocks_left--;
}
if (total_blocks > 2) {
second_timeout(&regs->aes_fifo_status, DOUT_FIFO_FULL, 0);
/* Read next block */
npcm_aes_read(dataout);
dataout += aes_datablk;
second_timeout(&regs->aes_fifo_status, DOUT_FIFO_FULL, 0);
/* Read next block */
npcm_aes_read(dataout);
dataout += aes_datablk;
} else if (total_blocks > 1) {
second_timeout(&regs->aes_fifo_status, DOUT_FIFO_FULL, 0);
/* Read next block */
npcm_aes_read(dataout);
dataout += aes_datablk;
}
}
void aes_expand_key(u8 *key, u32 key_size, u8 *expkey)
{
/* npcm hw expands the key automatically, just copy it */
memcpy(expkey, key, SIZE_AES_BLOCK * 2);
}
void aes_cbc_encrypt_blocks(u32 key_size, u8 *key_exp, u8 *iv, u8 *src, u8 *dst,
u32 num_aes_blocks)
{
if (npcm_aes_init(AES_OP_ENCRYPT))
return;
npcm_aes_load_iv(iv);
npcm_aes_load_key(key_exp);
npcm_aes_feed(num_aes_blocks, (u32 *)src, (u32 *)dst);
}
void aes_cbc_decrypt_blocks(u32 key_size, u8 *key_exp, u8 *iv, u8 *src, u8 *dst,
u32 num_aes_blocks)
{
if (npcm_aes_init(AES_OP_DECRYPT))
return;
npcm_aes_load_iv(iv);
npcm_aes_load_key(key_exp);
npcm_aes_feed(num_aes_blocks, (u32 *)src, (u32 *)dst);
}
static int npcm_aes_bind(struct udevice *dev)
{
aes_priv = calloc(1, sizeof(struct npcm_aes_priv));
if (!aes_priv) {
printf("%s: %d\n", __func__, __LINE__);
return -ENOMEM;
}
aes_priv->regs = dev_read_addr_ptr(dev);
if (!aes_priv->regs) {
printf("Cannot find aes reg address, binding failed\n");
return -EINVAL;
}
printf("AES: NPCM AES module bind OK\n");
return 0;
}
static const struct udevice_id npcm_aes_ids[] = {
{ .compatible = "nuvoton,npcm845-aes" },
{ .compatible = "nuvoton,npcm750-aes" },
{ }
};
U_BOOT_DRIVER(npcm_aes) = {
.name = "npcm_aes",
.id = UCLASS_MISC,
.of_match = npcm_aes_ids,
.priv_auto = sizeof(struct npcm_aes_priv),
.bind = npcm_aes_bind,
};