u-boot/drivers/spi/stm32_ospi.c
Patrice Chotard 01eb0a5838 spi: Add STM32MP2 Octo-SPI driver support
Add STM32 OSPI driver, it supports :
  - support sNOR / sNAND devices.
  - Two functional modes: indirect (read/write) and memory-mapped (read).
  - Single-, dual-, quad-, and octal-SPI communication.
  - Single data rate (SDR).

Signed-off-by: Patrice Chotard <patrice.chotard@foss.st.com>
Reviewed-by: Patrick Delaunay <patrick.delaunay@foss.st.com>
2025-09-18 17:20:39 +02:00

624 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later OR BSD-3-Clause
/*
* Copyright (C) 2025, STMicroelectronics - All Rights Reserved
*/
#define LOG_CATEGORY UCLASS_SPI
#include <clk.h>
#include <dm.h>
#include <log.h>
#include <reset.h>
#include <spi.h>
#include <spi-mem.h>
#include <syscon.h>
#include <asm/io.h>
#include <dm/device_compat.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/iopoll.h>
#include <linux/ioport.h>
#include <linux/sizes.h>
/* OCTOSPI control register */
#define OSPI_CR 0x00
#define OSPI_CR_EN BIT(0)
#define OSPI_CR_ABORT BIT(1)
#define OSPI_CR_TCEN BIT(3)
#define OSPI_CR_FSEL BIT(7)
#define OSPI_CR_FTHRES_MASK GENMASK(13, 8)
#define OSPI_CR_FTHRES_SHIFT 8
#define OSPI_CR_CSSEL BIT(24)
#define OSPI_CR_FMODE_SHIFT 28
#define OSPI_CR_FMODE_MASK GENMASK(29, 28)
/* OCTOSPI device configuration register */
#define OSPI_DCR1 0x08
#define OSPI_DCR1_CKMODE BIT(0)
#define OSPI_DCR1_DLYBYP BIT(3)
#define OSPI_DCR1_CSHT_SHIFT 8
#define OSPI_DCR1_CSHT_MASK GENMASK(13, 8)
#define OSPI_DCR1_DEVSIZE_MASK GENMASK(20, 16)
#define OSPI_DCR1_MTYP_MASK GENMASK(26, 24)
/* OCTOSPI device configuration register 2 */
#define OSPI_DCR2 0x0c
#define OSPI_DCR2_PRESC_SHIFT 0
#define OSPI_DCR2_PRESC_MASK GENMASK(7, 0)
/* OCTOSPI status register */
#define OSPI_SR 0x20
#define OSPI_SR_TEF BIT(0)
#define OSPI_SR_TCF BIT(1)
#define OSPI_SR_FTF BIT(2)
#define OSPI_SR_BUSY BIT(5)
/* OCTOSPI flag clear register */
#define OSPI_FCR 0x24
#define OSPI_FCR_CTEF BIT(0)
#define OSPI_FCR_CTCF BIT(1)
/* OCTOSPI data length register */
#define OSPI_DLR 0x40
/* OCTOSPI address register */
#define OSPI_AR 0x48
/* OCTOSPI data configuration register */
#define OSPI_DR 0x50
/* OCTOSPI communication configuration register */
#define OSPI_CCR 0x100
#define OSPI_CCR_IMODE_SHIFT 0
#define OSPI_CCR_IMODE_MASK GENMASK(2, 0)
#define OSPI_CCR_ADMODE_SHIFT 8
#define OSPI_CCR_ADMODE_MASK GENMASK(10, 8)
#define OSPI_CCR_ADSIZE_SHIFT 12
#define OSPI_CCR_DMODE_SHIFT 24
#define OSPI_CCR_DMODE_MASK GENMASK(26, 24)
#define OSPI_CCR_IND_WRITE 0
#define OSPI_CCR_IND_READ 1
#define OSPI_CCR_MEM_MAP 3
/* OCTOSPI timing configuration register */
#define OSPI_TCR 0x108
#define OSPI_TCR_DCYC_SHIFT 0x0
#define OSPI_TCR_DCYC_MASK GENMASK(4, 0)
#define OSPI_TCR_SSHIFT BIT(30)
/* OCTOSPI instruction register */
#define OSPI_IR 0x110
#define OSPI_MAX_MMAP_SZ SZ_256M
#define OSPI_MAX_CHIP 2
#define OSPI_FIFO_TIMEOUT_US 30000
#define OSPI_ABT_TIMEOUT_US 100000
#define OSPI_BUSY_TIMEOUT_US 100000
#define OSPI_CMD_TIMEOUT_US 1000000
struct stm32_ospi_flash {
u32 cr;
u32 dcr;
u32 dcr2;
bool initialized;
};
struct stm32_ospi_priv {
struct stm32_ospi_flash flash[OSPI_MAX_CHIP];
int cs_used;
};
struct stm32_ospi_plat {
phys_addr_t regs_base; /* register base address */
phys_addr_t mm_base; /* memory map base address */
resource_size_t mm_size;
struct clk clk;
struct reset_ctl_bulk rst_ctl;
ulong clock_rate;
};
static int stm32_ospi_mm(struct udevice *dev,
const struct spi_mem_op *op)
{
struct stm32_ospi_plat *ospi_plat = dev_get_plat(dev);
memcpy_fromio(op->data.buf.in,
(void __iomem *)ospi_plat->mm_base + op->addr.val,
op->data.nbytes);
return 0;
}
static void stm32_ospi_read_fifo(void *val, phys_addr_t addr, u8 len)
{
switch (len) {
case sizeof(u32):
*((u32 *)val) = readl_relaxed(addr);
break;
case sizeof(u16):
*((u16 *)val) = readw_relaxed(addr);
break;
case sizeof(u8):
*((u8 *)val) = readb_relaxed(addr);
};
schedule();
}
static void stm32_ospi_write_fifo(void *val, phys_addr_t addr, u8 len)
{
switch (len) {
case sizeof(u32):
writel_relaxed(*((u32 *)val), addr);
break;
case sizeof(u16):
writew_relaxed(*((u16 *)val), addr);
break;
case sizeof(u8):
writeb_relaxed(*((u8 *)val), addr);
};
}
int stm32_ospi_tx_poll(struct udevice *dev, void *buf, u32 len, bool read)
{
struct stm32_ospi_plat *ospi_plat = dev_get_plat(dev);
phys_addr_t regs_base = ospi_plat->regs_base;
void (*fifo)(void *val, phys_addr_t addr, u8 len);
u32 sr;
int ret;
u8 step = 1;
if (read)
fifo = stm32_ospi_read_fifo;
else
fifo = stm32_ospi_write_fifo;
while (len) {
ret = readl_poll_timeout(regs_base + OSPI_SR, sr,
sr & OSPI_SR_FTF,
OSPI_FIFO_TIMEOUT_US);
if (ret) {
dev_err(dev, "fifo timeout (len:%d stat:%#x)\n",
len, sr);
return ret;
}
if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) {
if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)))
step = sizeof(u8);
else
step = min((u32)len, (u32)sizeof(u16));
}
/* Buf is aligned */
else if (len >= sizeof(u32))
step = sizeof(u32);
else if (len >= sizeof(u16))
step = sizeof(u16);
else if (len)
step = sizeof(u8);
fifo(buf, regs_base + OSPI_DR, step);
len -= step;
buf += step;
}
return 0;
}
static int stm32_ospi_tx(struct udevice *dev,
const struct spi_mem_op *op,
u8 mode)
{
void *buf;
if (!op->data.nbytes)
return 0;
if (mode == OSPI_CCR_MEM_MAP)
return stm32_ospi_mm(dev, op);
if (op->data.dir == SPI_MEM_DATA_IN)
buf = op->data.buf.in;
else
buf = (void *)op->data.buf.out;
return stm32_ospi_tx_poll(dev, buf, op->data.nbytes,
op->data.dir == SPI_MEM_DATA_IN);
}
static int stm32_ospi_get_mode(u8 buswidth)
{
if (buswidth == 8)
return 4;
if (buswidth == 4)
return 3;
return buswidth;
}
int stm32_ospi_wait_for_not_busy(struct udevice *dev)
{
struct stm32_ospi_plat *ospi_plat = dev_get_plat(dev);
phys_addr_t regs_base = ospi_plat->regs_base;
u32 sr;
int ret;
ret = readl_poll_timeout(regs_base + OSPI_SR, sr, !(sr & OSPI_SR_BUSY),
OSPI_BUSY_TIMEOUT_US);
if (ret)
dev_err(dev, "busy timeout (stat:%#x)\n", sr);
return ret;
}
int stm32_ospi_wait_cmd(struct udevice *dev)
{
struct stm32_ospi_plat *ospi_plat = dev_get_plat(dev);
phys_addr_t regs_base = ospi_plat->regs_base;
u32 sr;
int ret = 0;
ret = readl_poll_timeout(regs_base + OSPI_SR, sr,
sr & OSPI_SR_TCF,
OSPI_CMD_TIMEOUT_US);
if (ret) {
dev_err(dev, "cmd timeout (stat:%#x)\n", sr);
} else if (readl(regs_base + OSPI_SR) & OSPI_SR_TEF) {
dev_err(dev, "transfer error (stat:%#x)\n", sr);
ret = -EIO;
}
/* clear flags */
writel(OSPI_FCR_CTCF | OSPI_FCR_CTEF, regs_base + OSPI_FCR);
if (!ret)
ret = stm32_ospi_wait_for_not_busy(dev);
return ret;
}
static int stm32_ospi_exec_op(struct spi_slave *slave,
const struct spi_mem_op *op)
{
struct stm32_ospi_plat *ospi_plat = dev_get_plat(slave->dev->parent);
phys_addr_t regs_base = ospi_plat->regs_base;
u32 cr, ccr = 0, addr_max;
int timeout, ret;
int dmode;
u8 mode = OSPI_CCR_IND_WRITE;
u8 dcyc = 0;
dev_dbg(slave->dev, "%s: cmd:%#x mode:%d.%d.%d.%d addr:%#llx len:%#x\n",
__func__, op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth,
op->dummy.buswidth, op->data.buswidth,
op->addr.val, op->data.nbytes);
addr_max = op->addr.val + op->data.nbytes + 1;
if (op->data.dir == SPI_MEM_DATA_IN && op->data.nbytes) {
if (addr_max < ospi_plat->mm_size && op->addr.buswidth)
mode = OSPI_CCR_MEM_MAP;
else
mode = OSPI_CCR_IND_READ;
}
if (op->data.nbytes)
writel(op->data.nbytes - 1, regs_base + OSPI_DLR);
clrsetbits_le32(regs_base + OSPI_CR, OSPI_CR_FMODE_MASK,
mode << OSPI_CR_FMODE_SHIFT);
ccr |= (stm32_ospi_get_mode(op->cmd.buswidth) << OSPI_CCR_IMODE_SHIFT) &
OSPI_CCR_IMODE_MASK;
if (op->addr.nbytes) {
ccr |= ((op->addr.nbytes - 1) << OSPI_CCR_ADSIZE_SHIFT);
ccr |= (stm32_ospi_get_mode(op->addr.buswidth)
<< OSPI_CCR_ADMODE_SHIFT) & OSPI_CCR_ADMODE_MASK;
}
if (op->dummy.buswidth && op->dummy.nbytes)
dcyc = op->dummy.nbytes * 8 / op->dummy.buswidth;
clrsetbits_le32(regs_base + OSPI_TCR, OSPI_TCR_DCYC_MASK,
dcyc << OSPI_TCR_DCYC_SHIFT);
if (op->data.nbytes) {
dmode = stm32_ospi_get_mode(op->data.buswidth);
ccr |= (dmode << OSPI_CCR_DMODE_SHIFT) & OSPI_CCR_DMODE_MASK;
}
writel(ccr, regs_base + OSPI_CCR);
/* set instruction, must be set after ccr register update */
writel(op->cmd.opcode, regs_base + OSPI_IR);
if (op->addr.nbytes && mode != OSPI_CCR_MEM_MAP)
writel(op->addr.val, regs_base + OSPI_AR);
ret = stm32_ospi_tx(slave->dev->parent, op, mode);
/*
* Abort in:
* -error case
* -read memory map: prefetching must be stopped if we read the last
* byte of device (device size - fifo size). like device size is not
* knows, the prefetching is always stop.
*/
if (ret || mode == OSPI_CCR_MEM_MAP)
goto abort;
/* Wait end of tx in indirect mode */
ret = stm32_ospi_wait_cmd(slave->dev->parent);
if (ret)
goto abort;
return 0;
abort:
setbits_le32(regs_base + OSPI_CR, OSPI_CR_ABORT);
/* Wait clear of abort bit by hw */
timeout = readl_poll_timeout(regs_base + OSPI_CR, cr,
!(cr & OSPI_CR_ABORT),
OSPI_ABT_TIMEOUT_US);
writel(OSPI_FCR_CTCF, regs_base + OSPI_FCR);
if (ret || timeout)
dev_err(slave->dev, "%s ret:%d abort timeout:%d\n", __func__,
ret, timeout);
return ret;
}
static int stm32_ospi_probe(struct udevice *bus)
{
struct stm32_ospi_priv *priv = dev_get_priv(bus);
struct stm32_ospi_plat *ospi_plat;
phys_addr_t regs_base;
int ret;
ospi_plat = dev_get_plat(bus);
regs_base = ospi_plat->regs_base;
ret = clk_enable(&ospi_plat->clk);
if (ret) {
dev_err(bus, "failed to enable clock\n");
return ret;
}
/* Reset OSPI controller */
reset_assert_bulk(&ospi_plat->rst_ctl);
udelay(2);
reset_deassert_bulk(&ospi_plat->rst_ctl);
priv->cs_used = -1;
setbits_le32(regs_base + OSPI_TCR, OSPI_TCR_SSHIFT);
clrsetbits_le32(regs_base + OSPI_CR, OSPI_CR_FTHRES_MASK,
3 << OSPI_CR_FTHRES_SHIFT);
/* Set dcr devsize to max address */
setbits_le32(regs_base + OSPI_DCR1,
OSPI_DCR1_DEVSIZE_MASK | OSPI_DCR1_DLYBYP);
return 0;
}
static int stm32_ospi_claim_bus(struct udevice *dev)
{
struct stm32_ospi_priv *priv = dev_get_priv(dev->parent);
struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
struct stm32_ospi_plat *ospi_plat = dev_get_plat(dev->parent);
phys_addr_t regs_base = ospi_plat->regs_base;
unsigned int slave_cs = slave_plat->cs[0];
if (slave_cs >= OSPI_MAX_CHIP)
return -ENODEV;
if (priv->cs_used != slave_cs) {
struct stm32_ospi_flash *flash = &priv->flash[slave_cs];
priv->cs_used = slave_cs;
if (flash->initialized) {
/* Set the configuration: speed + cs */
writel(flash->cr, regs_base + OSPI_CR);
writel(flash->dcr, regs_base + OSPI_DCR1);
writel(flash->dcr2, regs_base + OSPI_DCR2);
} else {
/* Set chip select */
clrsetbits_le32(regs_base + OSPI_CR,
OSPI_CR_CSSEL,
priv->cs_used ? OSPI_CR_CSSEL : 0);
/* Save the configuration: speed + cs */
flash->cr = readl(regs_base + OSPI_CR);
flash->dcr = readl(regs_base + OSPI_DCR1);
flash->dcr2 = readl(regs_base + OSPI_DCR2);
flash->initialized = true;
}
}
setbits_le32(regs_base + OSPI_CR, OSPI_CR_EN);
return 0;
}
static int stm32_ospi_release_bus(struct udevice *dev)
{
struct stm32_ospi_plat *ospi_plat = dev_get_plat(dev->parent);
phys_addr_t regs_base = ospi_plat->regs_base;
clrbits_le32(regs_base + OSPI_CR, OSPI_CR_EN);
return 0;
}
static int stm32_ospi_set_speed(struct udevice *bus, uint speed)
{
struct stm32_ospi_plat *ospi_plat = dev_get_plat(bus);
phys_addr_t regs_base = ospi_plat->regs_base;
u32 ospi_clk = ospi_plat->clock_rate;
u32 prescaler = 255;
u32 csht;
int ret;
if (speed > 0) {
prescaler = 0;
if (ospi_clk) {
prescaler = DIV_ROUND_UP(ospi_clk, speed) - 1;
if (prescaler > 255)
prescaler = 255;
}
}
csht = (DIV_ROUND_UP((5 * ospi_clk) / (prescaler + 1), 100000000)) - 1;
ret = stm32_ospi_wait_for_not_busy(bus);
if (ret)
return ret;
clrsetbits_le32(regs_base + OSPI_DCR2, OSPI_DCR2_PRESC_MASK,
prescaler << OSPI_DCR2_PRESC_SHIFT);
clrsetbits_le32(regs_base + OSPI_DCR1, OSPI_DCR1_CSHT_MASK,
csht << OSPI_DCR1_CSHT_SHIFT);
return 0;
}
static int stm32_ospi_set_mode(struct udevice *bus, uint mode)
{
struct stm32_ospi_plat *ospi_plat = dev_get_plat(bus);
phys_addr_t regs_base = ospi_plat->regs_base;
const char *str_rx, *str_tx;
int ret;
ret = stm32_ospi_wait_for_not_busy(bus);
if (ret)
return ret;
if ((mode & SPI_CPHA) && (mode & SPI_CPOL))
setbits_le32(regs_base + OSPI_DCR1, OSPI_DCR1_CKMODE);
else if (!(mode & SPI_CPHA) && !(mode & SPI_CPOL))
clrbits_le32(regs_base + OSPI_DCR1, OSPI_DCR1_CKMODE);
else
return -ENODEV;
if (mode & SPI_CS_HIGH)
return -ENODEV;
if (mode & SPI_RX_OCTAL)
str_rx = "octal";
else if (mode & SPI_RX_QUAD)
str_rx = "quad";
else if (mode & SPI_RX_DUAL)
str_rx = "dual";
else
str_rx = "single";
if (mode & SPI_TX_OCTAL)
str_tx = "octal";
else if (mode & SPI_TX_QUAD)
str_tx = "quad";
else if (mode & SPI_TX_DUAL)
str_tx = "dual";
else
str_tx = "single";
dev_dbg(bus, "mode=%d rx: %s, tx: %s\n", mode, str_rx, str_tx);
return 0;
}
static const struct spi_controller_mem_ops stm32_ospi_mem_ops = {
.exec_op = stm32_ospi_exec_op,
};
static const struct dm_spi_ops stm32_ospi_ops = {
.claim_bus = stm32_ospi_claim_bus,
.release_bus = stm32_ospi_release_bus,
.set_speed = stm32_ospi_set_speed,
.set_mode = stm32_ospi_set_mode,
.mem_ops = &stm32_ospi_mem_ops,
};
static int stm32_ospi_of_to_plat(struct udevice *dev)
{
struct stm32_ospi_plat *plat = dev_get_plat(dev);
struct resource res;
struct ofnode_phandle_args args;
const fdt32_t *reg;
int ret, len;
reg = dev_read_prop(dev, "reg", &len);
if (!reg) {
dev_err(dev, "Can't get regs base address\n");
return -ENOENT;
}
plat->regs_base = (phys_addr_t)dev_translate_address(dev, reg);
/* optional */
ret = dev_read_phandle_with_args(dev, "memory-region", NULL, 0, 0, &args);
if (!ret) {
ret = ofnode_read_resource(args.node, 0, &res);
if (ret) {
dev_err(dev, "Can't get mmap base address(%d)\n", ret);
return ret;
}
plat->mm_base = res.start;
plat->mm_size = resource_size(&res);
if (plat->mm_size > OSPI_MAX_MMAP_SZ) {
dev_err(dev, "Incorrect memory-map size: %lld Bytes\n", plat->mm_size);
return -EINVAL;
}
dev_dbg(dev, "%s: regs_base=<0x%llx> mm_base=<0x%llx> mm_size=<0x%x>\n",
__func__, plat->regs_base, plat->mm_base, (u32)plat->mm_size);
} else {
plat->mm_base = 0;
plat->mm_size = 0;
dev_info(dev, "memory-region property not found (%d)\n", ret);
}
ret = clk_get_by_index(dev, 0, &plat->clk);
if (ret < 0) {
dev_err(dev, "Failed to get clock\n");
return ret;
}
ret = reset_get_bulk(dev, &plat->rst_ctl);
if (ret && ret != -ENOENT) {
dev_err(dev, "Failed to get reset\n");
return ret;
}
plat->clock_rate = clk_get_rate(&plat->clk);
if (!plat->clock_rate)
return -EINVAL;
return ret;
};
static const struct udevice_id stm32_ospi_ids[] = {
{ .compatible = "st,stm32mp25-ospi" },
{ }
};
U_BOOT_DRIVER(stm32_ospi) = {
.name = "stm32_ospi",
.id = UCLASS_SPI,
.of_match = stm32_ospi_ids,
.of_to_plat = stm32_ospi_of_to_plat,
.ops = &stm32_ospi_ops,
.plat_auto = sizeof(struct stm32_ospi_plat),
.priv_auto = sizeof(struct stm32_ospi_priv),
.probe = stm32_ospi_probe,
};