u-boot/arch/arm/mach-stm32mp/tamp_nvram.c
Simeon Marijon 6b9ecdfe9a stm32mp: Add tamp_nvram driver
TAMP backup registers will be exposed as nvmem cells.

Each registers ([0..127] for STM32MP2, [0..31] for STM32MP1) could be
exposed as nvmem cells under the nvram node in device tree

Signed-off-by: Simeon Marijon <simeon.marijon@foss.st.com>
Signed-off-by: Patrice Chotard <patrice.chotard@foss.st.com>
Reviewed-by: Patrick Delaunay <patrick.delaunay@foss.st.com>
2025-06-11 09:42:56 +02:00

667 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later OR BSD-3-Clause
/*
* Copyright (C) 2025, STMicroelectronics - All Rights Reserved
*/
#define LOG_CATEGORY UCLASS_MISC
#include <clk.h>
#include <dm.h>
#include <log.h>
#include <misc.h>
#include <regmap.h>
#include <tee.h>
#include <asm/io.h>
#include <dm/device.h>
#include <dm/device_compat.h>
#include <dm/devres.h>
#define RIF_CID1 0x1
#define CURRENT_CID RIF_CID1
#define NB_ZONES_STM32MP1 3
#define NB_ZONES_STM32MP2 7
#define _TAMP_SECCFGR 0x20U
#define _TAMP_BKPRIFR(x) (0x70U + 0x4U * ((x) - 1))
#define _TAMP_RXCIDCFGR(x) (0x80U + 0x4U * ((x)))
#define BKPREG_PROTECTION_ZONE_1 0
#define BKPREG_PROTECTION_ZONE_2 1
#define BKPREG_PROTECTION_ZONE_3 2
#define BKPREG_PROTECTION_ZONE_1_RIF1 0
#define BKPREG_PROTECTION_ZONE_1_RIF2 1
#define BKPREG_PROTECTION_ZONE_2_RIF1 2
#define BKPREG_PROTECTION_ZONE_2_RIF2 3
#define BKPREG_PROTECTION_ZONE_3_RIF1 4
#define BKPREG_PROTECTION_ZONE_3_RIF0 5
#define BKPREG_PROTECTION_ZONE_3_RIF2 6
#define NB_COMPARTMENT_STM32MP2 3
enum stm32_tamp_bkpreg_access {
BKP_READ_WRITE,
BKP_READ,
BKP_NO
};
struct stm32_tamp_nvram_plat {
void __iomem *base;
void __iomem *parent_base;
fdt_size_t size;
fdt_size_t parent_size;
unsigned int nb_total_regs;
};
struct stm32_tamp_nvram_priv {
int *idx_bkpreg_zones_end;
struct regmap *config_regmap;
struct regmap *bkpregs_regmap;
const enum stm32_tamp_bkpreg_access *bkpreg_access;
};
struct stm32_tamp_nvram_drvdata {
const unsigned int nb_zones;
const struct reg_field *reg_fields;
const enum stm32_tamp_bkpreg_access *(*get_access)(struct udevice *dev);
};
static const struct reg_field stm32mp1_tamp_nvram_zone_cfg_fields[NB_ZONES_STM32MP1 - 1] = {
[BKPREG_PROTECTION_ZONE_1] = REG_FIELD(_TAMP_SECCFGR, 0, 7),
[BKPREG_PROTECTION_ZONE_2] = REG_FIELD(_TAMP_SECCFGR, 16, 23),
};
static const struct reg_field stm32mp2_tamp_nvram_zone_cfg_fields[NB_ZONES_STM32MP2 - 1] = {
[BKPREG_PROTECTION_ZONE_1_RIF1] = REG_FIELD(_TAMP_BKPRIFR(1), 0, 7),
[BKPREG_PROTECTION_ZONE_1_RIF2] = REG_FIELD(_TAMP_SECCFGR, 0, 7),
[BKPREG_PROTECTION_ZONE_2_RIF1] = REG_FIELD(_TAMP_BKPRIFR(2), 0, 7),
[BKPREG_PROTECTION_ZONE_2_RIF2] = REG_FIELD(_TAMP_SECCFGR, 16, 23),
[BKPREG_PROTECTION_ZONE_3_RIF1] = REG_FIELD(_TAMP_BKPRIFR(3), 0, 7),
[BKPREG_PROTECTION_ZONE_3_RIF0] = REG_FIELD(_TAMP_BKPRIFR(3), 16, 23),
};
static const struct reg_field stm32mp2_tamp_nvram_rxcidcfg_cfen_fields[NB_COMPARTMENT_STM32MP2] = {
REG_FIELD(_TAMP_RXCIDCFGR(0), 0, 0),
REG_FIELD(_TAMP_RXCIDCFGR(1), 0, 0),
REG_FIELD(_TAMP_RXCIDCFGR(2), 0, 0),
};
static const struct reg_field stm32mp2_tamp_nvram_rxcidcfg_fields[NB_COMPARTMENT_STM32MP2] = {
REG_FIELD(_TAMP_RXCIDCFGR(0), 4, 6),
REG_FIELD(_TAMP_RXCIDCFGR(1), 4, 6),
REG_FIELD(_TAMP_RXCIDCFGR(2), 4, 6),
};
static const enum stm32_tamp_bkpreg_access stm32mp1_tamp_bkpreg_access[NB_ZONES_STM32MP1] = {
[BKPREG_PROTECTION_ZONE_1] = BKP_NO,
[BKPREG_PROTECTION_ZONE_2] = BKP_READ,
[BKPREG_PROTECTION_ZONE_3] = BKP_READ_WRITE,
};
static const enum stm32_tamp_bkpreg_access *stm32mp1_tamp_get_access_rights(struct udevice *dev)
{
return stm32mp1_tamp_bkpreg_access;
}
static int stm32mp2_tamp_is_compartment_isolation_enabled(struct udevice *dev)
{
struct stm32_tamp_nvram_priv *priv = dev_get_priv(dev);
int nb_compartment_enabled = 0;
u32 cfen;
struct regmap_field *cfen_field;
for (int i = 0; i < NB_COMPARTMENT_STM32MP2; i++) {
cfen_field = devm_regmap_field_alloc(dev,
priv->config_regmap,
stm32mp2_tamp_nvram_rxcidcfg_cfen_fields[i]);
if (IS_ERR_OR_NULL(cfen_field)) {
dev_err(dev, "Can't allocate field for reading configuration\n");
return -ENOMEM;
}
if (regmap_field_read(cfen_field, &cfen) != 0) {
dev_err(dev, "Can't read field for registers zones\n");
devm_regmap_field_free(dev, cfen_field);
return -EINVAL;
}
nb_compartment_enabled += cfen;
devm_regmap_field_free(dev, cfen_field);
}
if (nb_compartment_enabled == 0)
return 0;
else if (nb_compartment_enabled == NB_COMPARTMENT_STM32MP2)
return 1;
else
return -EINVAL;
}
static bool *stm32mp2_tamp_get_compartment_owner(struct udevice *dev)
{
struct stm32_tamp_nvram_priv *priv = dev_get_priv(dev);
struct regmap_field *cid_field;
u32 cid_per_zone;
int isolation_enabled;
bool *compartment_owner;
isolation_enabled = stm32mp2_tamp_is_compartment_isolation_enabled(dev);
if (isolation_enabled < 0)
return NULL;
compartment_owner = devm_kcalloc(dev,
NB_COMPARTMENT_STM32MP2,
sizeof(*compartment_owner),
GFP_KERNEL);
if (!compartment_owner)
return ERR_PTR(-ENOMEM);
for (int i = 0; i < NB_COMPARTMENT_STM32MP2; i++) {
if (isolation_enabled) {
cid_field = devm_regmap_field_alloc(dev,
priv->config_regmap,
stm32mp2_tamp_nvram_rxcidcfg_fields[i]
);
if (regmap_field_read(cid_field, &cid_per_zone) != 0) {
dev_err(dev, "Can't read field for registers zones\n");
devm_regmap_field_free(dev, cid_field);
devm_kfree(dev, compartment_owner);
return ERR_PTR(-EINVAL);
}
if (cid_per_zone == CURRENT_CID)
compartment_owner[i] = true;
else
compartment_owner[i] = false;
devm_regmap_field_free(dev, cid_field);
} else {
compartment_owner[i] = true;
}
}
return compartment_owner;
}
static const enum stm32_tamp_bkpreg_access *stm32mp2_tamp_get_access_rights(struct udevice *dev)
{
struct stm32_tamp_nvram_drvdata *drvdata =
(struct stm32_tamp_nvram_drvdata *)dev_get_driver_data(dev);
unsigned int nb_zones = drvdata->nb_zones;
bool *compartment_owner;
enum stm32_tamp_bkpreg_access *bkpreg_access;
compartment_owner = stm32mp2_tamp_get_compartment_owner(dev);
if (IS_ERR(compartment_owner))
return ERR_PTR(-ENODEV);
bkpreg_access = devm_kcalloc(dev,
NB_ZONES_STM32MP2,
sizeof(*bkpreg_access),
GFP_KERNEL);
for (int protection_zone_idx = 0; protection_zone_idx < nb_zones;
protection_zone_idx++) {
switch (protection_zone_idx) {
case BKPREG_PROTECTION_ZONE_1_RIF1:
bkpreg_access[protection_zone_idx] = BKP_NO;
break;
case BKPREG_PROTECTION_ZONE_1_RIF2:
bkpreg_access[protection_zone_idx] = BKP_NO;
break;
case BKPREG_PROTECTION_ZONE_2_RIF1:
if (compartment_owner[1] || compartment_owner[2])
bkpreg_access[protection_zone_idx] = BKP_READ;
else
bkpreg_access[protection_zone_idx] = BKP_NO;
break;
case BKPREG_PROTECTION_ZONE_2_RIF2:
if (compartment_owner[1] || compartment_owner[2])
bkpreg_access[protection_zone_idx] = BKP_READ;
else
bkpreg_access[protection_zone_idx] = BKP_NO;
break;
case BKPREG_PROTECTION_ZONE_3_RIF1:
if (compartment_owner[1])
bkpreg_access[protection_zone_idx] = BKP_READ_WRITE;
else if (compartment_owner[0] || compartment_owner[2])
bkpreg_access[protection_zone_idx] = BKP_READ;
else
bkpreg_access[protection_zone_idx] = BKP_NO;
break;
case BKPREG_PROTECTION_ZONE_3_RIF0:
if (compartment_owner[0])
bkpreg_access[protection_zone_idx] = BKP_READ_WRITE;
else if (compartment_owner[1] || compartment_owner[2])
bkpreg_access[protection_zone_idx] = BKP_READ;
else
bkpreg_access[protection_zone_idx] = BKP_NO;
break;
case BKPREG_PROTECTION_ZONE_3_RIF2:
if (compartment_owner[2])
bkpreg_access[protection_zone_idx] = BKP_READ_WRITE;
else if (compartment_owner[0] || compartment_owner[1])
bkpreg_access[protection_zone_idx] = BKP_READ;
else
bkpreg_access[protection_zone_idx] = BKP_NO;
break;
default:
devm_kfree(dev, bkpreg_access);
return ERR_PTR(-ENODEV);
}
}
return bkpreg_access;
}
static const struct stm32_tamp_nvram_drvdata stm32mp1_tamp_nvram = {
.nb_zones = NB_ZONES_STM32MP1,
.reg_fields = stm32mp1_tamp_nvram_zone_cfg_fields,
.get_access = stm32mp1_tamp_get_access_rights,
};
static const struct stm32_tamp_nvram_drvdata stm32mp2_tamp_nvram = {
.nb_zones = NB_ZONES_STM32MP2,
.reg_fields = stm32mp2_tamp_nvram_zone_cfg_fields,
.get_access = stm32mp2_tamp_get_access_rights,
};
static int stm32_tamp_nvram_bkpreg_get_zone_idx(struct udevice *dev, int reg)
{
struct stm32_tamp_nvram_priv *priv = dev_get_priv(dev);
struct stm32_tamp_nvram_drvdata *drvdata =
(struct stm32_tamp_nvram_drvdata *)dev_get_driver_data(dev);
int *idx_bkpreg_zones_end = priv->idx_bkpreg_zones_end;
int nb_zones = drvdata->nb_zones;
int protection_zone_idx;
if (reg < 0)
return -1; // negative reg is the boundary of an empty zone
for (protection_zone_idx = 0; protection_zone_idx < nb_zones; protection_zone_idx++) {
if (reg <= idx_bkpreg_zones_end[protection_zone_idx])
break;
}
if (protection_zone_idx >= nb_zones)
return -1; // the reg is not a part of any zone
return protection_zone_idx;
}
static bool stm32_tamp_nvram_rights(struct udevice *dev, int reg, bool read_only)
{
struct stm32_tamp_nvram_priv *priv = dev_get_priv(dev);
int protection_zone_idx = stm32_tamp_nvram_bkpreg_get_zone_idx(dev, reg);
if (protection_zone_idx < 0)
return false;
switch (priv->bkpreg_access[protection_zone_idx]) {
case BKP_READ_WRITE:
return true;
case BKP_READ:
return read_only;
case BKP_NO:
return false;
default:
dev_err(dev, "Can't get access rights for the zone\n");
return false;
}
return false;
}
static int stm32_tamp_nvram_write_byte(struct udevice *dev, u32 offset, u8 byte)
{
struct stm32_tamp_nvram_priv *priv = dev_get_priv(dev);
int offset_aligned = ALIGN_DOWN(offset, sizeof(u32));
int byte_in_word = offset - offset_aligned;
u32 read_value, to_be_writen_value;
u32 reg_idx = offset_aligned / sizeof(u32);
if (!stm32_tamp_nvram_rights(dev, reg_idx, false))
return -EIO;
regmap_read(priv->bkpregs_regmap, offset_aligned, &read_value);
to_be_writen_value = read_value & ~(0xFFUL << byte_in_word * 8);
to_be_writen_value |= (u32)byte << (byte_in_word * 8);
return regmap_write(priv->bkpregs_regmap, offset_aligned, to_be_writen_value);
}
static int stm32_tamp_nvram_read_byte(struct udevice *dev, unsigned int offset, u8 *byte)
{
struct stm32_tamp_nvram_priv *priv = dev_get_priv(dev);
int offset_aligned = ALIGN_DOWN(offset, sizeof(u32));
int byte_in_word = offset - offset_aligned;
u32 read_value;
u32 reg_idx = offset_aligned / sizeof(u32);
if (!stm32_tamp_nvram_rights(dev, reg_idx, true))
return -EIO;
regmap_read(priv->bkpregs_regmap, offset_aligned, &read_value);
*byte = (read_value >> (byte_in_word * 8)) & 0xFF;
return 0;
}
static int stm32_tamp_nvram_read(struct udevice *dev, int offset, void *buf, int size)
{
struct stm32_tamp_nvram_priv *priv = dev_get_priv(dev);
u8 byte;
u8 *buf_u8 = buf;
u32 temp_u32;
int i, ret;
int total = offset + size;
u32 reg_idx;
i = offset;
while (i < total) {
reg_idx = i / sizeof(u32);
if (i + sizeof(u32) <= total && IS_ALIGNED(i, sizeof(u32))) {
if (!stm32_tamp_nvram_rights(dev, reg_idx, true)) {
dev_dbg(dev, "Backup register %u is not allowed to be read\n",
reg_idx);
temp_u32 = 0;
} else {
regmap_read(priv->bkpregs_regmap, i, &temp_u32);
}
memcpy(buf_u8, &temp_u32, sizeof(u32));
buf_u8 += sizeof(u32);
i += sizeof(u32);
} else {
ret = stm32_tamp_nvram_read_byte(dev, i, &byte);
if (ret != 0) {
dev_dbg(dev, "Backup register %u is not allowed to be read\n",
reg_idx);
byte = 0;
}
*buf_u8 = byte;
i++;
buf_u8++;
}
}
return size;
}
static int stm32_tamp_nvram_write(struct udevice *dev, int offset, const void *buf, int size)
{
struct stm32_tamp_nvram_priv *priv = dev_get_priv(dev);
u8 *buf_u8 = (u8 *)buf;
u32 temp_u32;
size_t total = offset + size;
int i, ret;
u32 reg_idx;
i = offset;
while (i < total) {
reg_idx = i / sizeof(u32);
if (i + sizeof(u32) <= total && IS_ALIGNED(i, sizeof(u32))) {
if (stm32_tamp_nvram_rights(dev, reg_idx, false)) {
memcpy(&temp_u32, buf_u8, sizeof(u32));
regmap_write(priv->bkpregs_regmap, i, temp_u32);
} else {
dev_dbg(dev, "Backup register %u is not allowed to be written",
reg_idx);
}
buf_u8 += sizeof(u32);
i += sizeof(u32);
} else {
ret = stm32_tamp_nvram_write_byte(dev, i, *buf_u8);
if (ret != 0)
dev_dbg(dev, "Backup register %u is not allowed to be written",
reg_idx);
i++;
buf_u8++;
}
}
return size;
}
static const struct misc_ops stm32_tamp_nvram_ops = {
.read = stm32_tamp_nvram_read,
.write = stm32_tamp_nvram_write,
};
static u32 *stm32_tamp_nvram_get_backup_zones(struct udevice *dev)
{
struct stm32_tamp_nvram_plat *plat = dev_get_plat(dev);
struct stm32_tamp_nvram_priv *priv = dev_get_priv(dev);
const struct stm32_tamp_nvram_drvdata *drvdata =
(struct stm32_tamp_nvram_drvdata *)dev_get_driver_data(dev);
int nb_zones = drvdata->nb_zones;
int zone_idx;
int *idx_bkpreg_zones_end;
struct regmap *tamp_regmap = priv->config_regmap;
u32 offset_field;
idx_bkpreg_zones_end = devm_kcalloc(dev,
sizeof(*idx_bkpreg_zones_end),
nb_zones,
GFP_KERNEL);
if (IS_ERR_OR_NULL(idx_bkpreg_zones_end)) {
dev_err(dev, "Can't allocate registers zones\n");
return ERR_PTR(-ENOMEM);
}
//Get the n-1 frontiers of zone within the tamp configuration registers
for (zone_idx = 0; zone_idx < nb_zones - 1; zone_idx++) {
const struct reg_field reg_field = drvdata->reg_fields[zone_idx];
struct regmap_field *field = devm_regmap_field_alloc(dev,
tamp_regmap,
reg_field);
if (IS_ERR_OR_NULL(field)) {
dev_err(dev, "Can't allocate registers zones\n");
devm_kfree(dev, idx_bkpreg_zones_end);
return ERR_PTR(-ENOMEM);
}
if (regmap_field_read(field, &offset_field) != 0) {
dev_err(dev, "Can't read field for registers zones\n");
devm_kfree(dev, idx_bkpreg_zones_end);
return ERR_PTR(-EIO);
}
idx_bkpreg_zones_end[zone_idx] = offset_field - 1;
}
//The last zone end is defined by the number of registers in TAMP
idx_bkpreg_zones_end[zone_idx] = plat->nb_total_regs - 1;
return idx_bkpreg_zones_end;
}
static void stm32_tamp_nvram_print_zones(struct udevice *dev)
{
struct stm32_tamp_nvram_priv *priv = dev_get_priv(dev);
int *zones_end = priv->idx_bkpreg_zones_end;
if (device_is_compatible(dev, "st,stm32mp25-tamp-nvram")) {
dev_dbg(dev,
"\n"
"Zone 1-RIF1 %3d - %3d %c%c\n"
"Zone 1-RIF2 %3d - %3d %c%c\n"
"Zone 2-RIF1 %3d - %3d %c%c\n"
"Zone 2-RIF2 %3d - %3d %c%c\n"
"Zone 3-RIF1 %3d - %3d %c%c\n"
"Zone 3-RIF0 %3d - %3d %c%c\n"
"Zone 3-RIF2 %3d - %3d %c%c\n",
0, zones_end[BKPREG_PROTECTION_ZONE_1_RIF1],
stm32_tamp_nvram_rights(dev, zones_end[BKPREG_PROTECTION_ZONE_1_RIF1],
true) ?
'R' :
'-',
stm32_tamp_nvram_rights(dev, zones_end[BKPREG_PROTECTION_ZONE_1_RIF1],
false) ?
'W' :
'-',
zones_end[BKPREG_PROTECTION_ZONE_1_RIF1] + 1,
zones_end[BKPREG_PROTECTION_ZONE_1_RIF2],
stm32_tamp_nvram_rights(dev, zones_end[BKPREG_PROTECTION_ZONE_1_RIF2],
true) ?
'R' :
'-',
stm32_tamp_nvram_rights(dev, zones_end[BKPREG_PROTECTION_ZONE_1_RIF2],
false) ?
'W' :
'-',
zones_end[BKPREG_PROTECTION_ZONE_1_RIF2] + 1,
zones_end[BKPREG_PROTECTION_ZONE_2_RIF1],
stm32_tamp_nvram_rights(dev, zones_end[BKPREG_PROTECTION_ZONE_2_RIF1],
true) ?
'R' :
'-',
stm32_tamp_nvram_rights(dev, zones_end[BKPREG_PROTECTION_ZONE_2_RIF1],
false) ?
'W' :
'-',
zones_end[BKPREG_PROTECTION_ZONE_2_RIF1] + 1,
zones_end[BKPREG_PROTECTION_ZONE_2_RIF2],
stm32_tamp_nvram_rights(dev, zones_end[BKPREG_PROTECTION_ZONE_2_RIF2],
true) ?
'R' :
'-',
stm32_tamp_nvram_rights(dev, zones_end[BKPREG_PROTECTION_ZONE_2_RIF2],
false) ?
'W' :
'-',
zones_end[BKPREG_PROTECTION_ZONE_2_RIF2] + 1,
zones_end[BKPREG_PROTECTION_ZONE_3_RIF1],
stm32_tamp_nvram_rights(dev, zones_end[BKPREG_PROTECTION_ZONE_3_RIF1],
true) ?
'R' :
'-',
stm32_tamp_nvram_rights(dev, zones_end[BKPREG_PROTECTION_ZONE_3_RIF1],
false) ?
'W' :
'-',
zones_end[BKPREG_PROTECTION_ZONE_3_RIF1] + 1,
zones_end[BKPREG_PROTECTION_ZONE_3_RIF0],
stm32_tamp_nvram_rights(dev, zones_end[BKPREG_PROTECTION_ZONE_3_RIF0],
true) ?
'R' :
'-',
stm32_tamp_nvram_rights(dev, zones_end[BKPREG_PROTECTION_ZONE_3_RIF0],
false) ?
'W' :
'-',
zones_end[BKPREG_PROTECTION_ZONE_3_RIF0] + 1,
zones_end[BKPREG_PROTECTION_ZONE_3_RIF2],
stm32_tamp_nvram_rights(dev, zones_end[BKPREG_PROTECTION_ZONE_3_RIF2],
true) ?
'R' :
'-',
stm32_tamp_nvram_rights(dev, zones_end[BKPREG_PROTECTION_ZONE_3_RIF2],
false) ?
'W' :
'-');
} else if (device_is_compatible(dev, "st,stm32mp15-tamp-nvram")) {
dev_dbg(dev,
"\n"
"Zone 1 %3d - %3d %c%c\n"
"Zone 2 %3d - %3d %c%c\n"
"Zone 3 %3d - %3d %c%c\n",
0, zones_end[BKPREG_PROTECTION_ZONE_1],
stm32_tamp_nvram_rights(dev, zones_end[BKPREG_PROTECTION_ZONE_1], true) ?
'R' :
'-',
stm32_tamp_nvram_rights(dev, zones_end[BKPREG_PROTECTION_ZONE_1], false) ?
'W' :
'-',
zones_end[BKPREG_PROTECTION_ZONE_1] + 1,
zones_end[BKPREG_PROTECTION_ZONE_2],
stm32_tamp_nvram_rights(dev, zones_end[BKPREG_PROTECTION_ZONE_2], true) ?
'R' :
'-',
stm32_tamp_nvram_rights(dev, zones_end[BKPREG_PROTECTION_ZONE_2], false) ?
'W' :
'-',
zones_end[BKPREG_PROTECTION_ZONE_2] + 1,
zones_end[BKPREG_PROTECTION_ZONE_3],
stm32_tamp_nvram_rights(dev, zones_end[BKPREG_PROTECTION_ZONE_3], true) ?
'R' :
'-',
stm32_tamp_nvram_rights(dev, zones_end[BKPREG_PROTECTION_ZONE_3], false) ?
'W' :
'-');
}
}
static int stm32_tamp_nvram_of_to_plat(struct udevice *dev)
{
struct stm32_tamp_nvram_plat *plat = dev_get_plat(dev);
fdt_addr_t addr = dev_read_addr_size_index(dev, 0, &plat->size);
fdt_addr_t parent_addr = dev_read_addr_size_index(dev->parent, 0, &plat->parent_size);
if (addr == FDT_ADDR_T_NONE)
return -EINVAL;
plat->base = (void __iomem *)addr;
if (parent_addr == FDT_ADDR_T_NONE)
return -EINVAL;
plat->parent_base = (void __iomem *)parent_addr;
if (plat->size == FDT_ADDR_T_NONE)
return -EOPNOTSUPP;
plat->nb_total_regs = plat->size / sizeof(uint32_t);
return 0;
}
static int stm32_tamp_nvram_probe(struct udevice *dev)
{
struct stm32_tamp_nvram_plat *plat = dev_get_plat(dev);
struct stm32_tamp_nvram_priv *priv = dev_get_priv(dev);
struct regmap_config config_regmap;
struct regmap_config bckreg_regmap;
const struct stm32_tamp_nvram_drvdata *drvdata =
(struct stm32_tamp_nvram_drvdata *)dev_get_driver_data(dev);
config_regmap.r_start = (ulong)(plat->parent_base);
config_regmap.r_size = plat->parent_size;
config_regmap.reg_offset_shift = 0;
config_regmap.width = REGMAP_SIZE_32;
priv->config_regmap = devm_regmap_init(dev, NULL, NULL, &config_regmap);
bckreg_regmap.r_start = (ulong)(plat->base);
bckreg_regmap.r_size = plat->size;
bckreg_regmap.reg_offset_shift = 0;
bckreg_regmap.width = REGMAP_SIZE_32;
priv->bkpregs_regmap = devm_regmap_init(dev, NULL, NULL, &bckreg_regmap);
priv->idx_bkpreg_zones_end = stm32_tamp_nvram_get_backup_zones(dev);
if (IS_ERR_OR_NULL(priv->idx_bkpreg_zones_end)) {
dev_err(dev, "Failed to get the backup zone from tamp regs\n\n");
return -ENODEV;
}
priv->bkpreg_access = drvdata->get_access(dev);
stm32_tamp_nvram_print_zones(dev);
return 0;
}
static int stm32_tamp_nvram_remove(struct udevice *dev)
{
return 0;
}
static const struct udevice_id stm32_tamp_nvram_ids[] = {
{ .compatible = "st,stm32mp15-tamp-nvram", .data = (ulong)&stm32mp1_tamp_nvram },
{ .compatible = "st,stm32mp25-tamp-nvram", .data = (ulong)&stm32mp2_tamp_nvram },
{},
};
U_BOOT_DRIVER(stm32_tamp_nvram) = {
.name = "stm32_tamp_nvram",
.id = UCLASS_MISC,
.of_match = stm32_tamp_nvram_ids,
.priv_auto = sizeof(struct stm32_tamp_nvram_priv),
.plat_auto = sizeof(struct stm32_tamp_nvram_plat),
.ops = &stm32_tamp_nvram_ops,
.of_to_plat = of_match_ptr(stm32_tamp_nvram_of_to_plat),
.probe = stm32_tamp_nvram_probe,
.remove = stm32_tamp_nvram_remove,
};